Evaluating Satellite Sounders for Monitoring the Tropical Cyclone Environment in Operational Forecasting
Abstract
:1. Introduction
2. Materials and Methods
2.1. NUCAPS
2.2. Research Flight Plan
2.3. Statistical Metrics
2.4. Operational Requirements
3. Results
3.1. Hurricane Jerry (2019) Case Study
3.2. Retrieval Diagnostics
3.3. Statistical Evaluation
3.4. Estimating the Vertical Resolution of Temperature and Water Vapor Retrievals
3.5. Evaluating Data Latency, Coverage, and Display
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esmaili, R.B.; Smith, N.; Berndt, E.B.; Dostalek, J.F.; Kahn, B.H.; White, K.; Barnet, C.D.; Sjoberg, W.; Goldberg, M.D. Adapting Satellite Soundings for Operational Forecasting within the Hazardous Weather Testbed. Remote. Sens. 2020, 12, 886. [Google Scholar] [CrossRef] [Green Version]
- Browning, K.A.; Collier, C.G. Nowcasting of precipitation systems. Rev. Geophys. 1989, 27, 345–370. [Google Scholar] [CrossRef]
- Velden, C.S.; Herndon, D. A Consensus Approach for Estimating Tropical Cyclone Intensity from Meteorological Satellites: SATCON. Weather Forecast. 2020, 35, 1645–1662. [Google Scholar] [CrossRef]
- Sun, B.; Reale, A.; Tilley, F.H.; Pettey, M.E.; Nalli, N.R.; Barnet, C.D. Assessment of NUCAPS S-NPP CrIS/ATMS Sounding Products Using Reference and Conventional Radiosonde Observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2499–2509. [Google Scholar] [CrossRef]
- Nalli, N.R.; Barnet, C.D.; Reale, A.; Tobin, D.; Gambacorta, A.; Maddy, E.S.; Joseph, E.; Sun, B.; Borg, L.; Mollner, A.K.; et al. Validation of satellite sounder environmental data records: Application to the Cross-track Infrared Microwave Sounder Suite. J. Geophys. Res. Atmos. 2013, 118, 13,628-13,643. [Google Scholar] [CrossRef]
- Kalluri, S.; Barnet, C.; Divakarla, M.; Esmaili, R.; Nalli, N.; Pryor, K.; Reale, T.; Smith, N.; Tan, C.; Wang, T.; et al. Validation and Utility of Satellite Retrievals of Atmospheric Profiles in Detecting and Monitoring Significant Weather Events. Bull. Am. Meteorol. Soc. 2022, 103, E570–E590. [Google Scholar] [CrossRef]
- Rogers, R.; Aberson, S.; Black, M.; Black, P.; Cione, J.; Dodge, P.; Dunion, J.; Gamache, J.; Kaplan, J.; Powell, M.; et al. The Intensity Forecasting Experiment: A NOAA Multiyear Field Program for Improving Tropical Cyclone Intensity Forecasts. Bull. Am. Meteorol. Soc. 2006, 87, 1523–1538. [Google Scholar] [CrossRef] [Green Version]
- Zawislak, J.; Rogers, R.F.; Aberson, S.D.; Alaka, G.J.; Alvey, G.R.; Aksoy, A.; Bucci, L.; Cione, J.; Dorst, N.; Dunion, J.; et al. Accomplishments of NOAA’s Airborne Hurricane Field Program and a Broader Future Approach to Forecast Improvement. Bull. Am. Meteorol. Soc. 2022, 103, E311–E338. [Google Scholar] [CrossRef]
- Ralph, F.M.; Intrieri, J.; Andra, D.; Atlas, R.; Boukabara, S.; Bright, D.; Davidson, P.; Entwistle, B.; Gaynor, J.; Goodman, S.; et al. The Emergence of Weather-Related Test Beds Linking Research and Forecasting Operations. Bull. Am. Meteorol. Soc. 2013, 94, 1187–1211. [Google Scholar] [CrossRef]
- Smith, N.; Shontz, K.; Barnet, C.D. What Is a Satellite Measurement? Communicating Abstract Satellite Science Concepts to the World; AMS: Austin, TX, USA, 2018. [Google Scholar]
- Esmaili, R.B.; Barnet, C.D. Campaign Situational Awareness from Satellite Data. In Field Measurements for Passive Environmental Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 978-0-12-823953-7. [Google Scholar]
- Susskind, J.; Barnet, C.D.; Blaisdell, J.M. Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens. 2003, 41, 390–409. [Google Scholar] [CrossRef]
- Barnet, C.D.; Divakarla, M.G.; Gambacorta, A.; Iturbide-Sanchez, F.; Nalli, N.R.; Pryor, K.L.; Tan, C.; Wang, T.; Warner, J.; Zhang, K.; et al. The NOAA Unique Combined Atmospheric Processing System (NUCAPS) Algorithm Theoretical Basis Document (v3.1); National Oceanic and Atmospheric Administration: Washington, DC, USA, 2021.
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding: Theory and Practice; Series on Atmospheric Oceanic and Planetary Physics; Reprinted; World Scientific: Singapore, 2004; ISBN 978-981-02-2740-1. [Google Scholar]
- Goldberg, M.D.; Qu, Y.; McMillin, L.M.; Wolf, W.; Zhou, L.; Divakarla, M. AIRS near-real-time products and algorithms in support of operational numerical weather prediction. IEEE Trans. Geosci. Remote Sens. 2003, 41, 379–389. [Google Scholar] [CrossRef]
- Gambacorta, A.; Barnet, C.D. Methodology and Information Content of the NOAA NESDIS Operational Channel Selection for the Cross-Track Infrared Sounder (CrIS). IEEE Trans. Geosci. Remote Sens. 2013, 51, 3207–3216. [Google Scholar] [CrossRef]
- Duran, E.L.; Berndt, E.B.; Duran, P. Observation of the Tropical Cyclone Diurnal Cycle Using Hyperspectral Infrared Satellite Sounding Retrievals. Mon. Weather Rev. 2021, 149, 3671–3690. [Google Scholar] [CrossRef]
- Strow, L.; Hannon, S.; De Souza-Machado, S.; Motteler, H.; Tobin, D. An overview of the AIRS radiative transfer model. IEEE Trans. Geosci. Remote Sens. 2003, 41, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Strow, L.L.; Hannon, S.E.; De-Souza Machado, S.; Motteler, H.E.; Tobin, D.C. Validation of the Atmospheric Infrared Sounder radiative transfer algorithm. J. Geophys. Res. Atmos. 2006, 111, 1–24. [Google Scholar] [CrossRef]
- Rosenkranz, P.W. Rapid radiative transfer model for AMSU/HSB channels. IEEE Trans. Geosci. Remote Sens. 2003, 41, 362–368. [Google Scholar] [CrossRef]
- Rosenkranz, P.W.; Barnet, C.D. Microwave radiative transfer model validation. J. Geophys. Res. 2006, 111, D09S07. [Google Scholar] [CrossRef] [Green Version]
- Rosenkranz, P.W. Rapid Calculation of Microwave Opacity and Transmittance for Water-Vapor Atmospheric-Sounding Channels. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–4. [Google Scholar] [CrossRef]
- Maddy, E.; Barnet, C.D. Vertical Resolution Estimates in Version 5 of AIRS Operational Retrievals. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2375–2384. [Google Scholar] [CrossRef]
- Vömel, H.; Dunion, J. Aircraft Dropsonde Campaigns. In Field Measurements for Passive Environmental Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 978-0-12-823953-7. [Google Scholar]
- Dropsonde RD41. Available online: https://www.vaisala.com/en/products/weather-environmental-sensors/dropsonde-rd41 (accessed on 6 April 2022).
- Nalli, N.R.; Gambacorta, A.; Liu, Q.; Barnet, C.D.; Tan, C.; Iturbide-Sanchez, F.; Reale, T.; Sun, B.; Wilson, M.; Borg, L.; et al. Validation of Atmospheric Profile Retrievals from the SNPP NOAA-Unique Combined Atmospheric Processing System. Part 1: Temperature and Moisture. IEEE Trans. Geosci. Remote Sens. 2018, 56, 180–190. [Google Scholar] [CrossRef]
- WMO. Guide to the Direct Broadcast Network for Near-Real-Time Relay of Low Earth Orbit Satellite Data: Attachment to the Guide to the WMO Information System; (WMO-No. 1061); WMO: Geneva, Switzerland, 2017. [Google Scholar]
- Gumley, L.; Goldberg, M.; Flynn, B.; Santek, D. NOAA Direct Broadcast Real-Time Network (DBRTN): Advanced Infrared and Microwave Sounder Data from Polar Orbiting Satellites for Numerical Weather Prediction (NWP) and Other Time-Sensitive Applications. In Proceedings of the Near-Real-Time/Low-Latency Data for Earth Science and Space Weather Applications I, Washington, DC, USA, 13 December 2018; Volume 2018, p. IN42B-07. [Google Scholar]
- Berndt, E.; Smith, N.; Burks, J.; White, K.; Esmaili, R.; Kuciauskas, A.; Duran, E.; Allen, R.; LaFontaine, F.; Szkodzinski, J. Gridded Satellite Sounding Retrievals in Operational Weather Forecasting: Product Description and Emerging Applications. Remote Sens. 2020, 12, 3311. [Google Scholar] [CrossRef]
- Berndt, E. Air Mass RGB Quick Guide. 2017. Available online: https://rammb.cira.colostate.edu/training/visit/quick_guides/QuickGuide_GOESR_AirMassRGB_final.pdf (accessed on 27 April 2022).
- Dunion, J. Rewriting the Climatology of the Tropical North Atlantic and Caribbean Sea Atmosphere. J. Clim. 2011, 24, 893–908. [Google Scholar] [CrossRef]
- Iturbide-Sanchez, F.; Liu, Q.; Gambacorta, A.; Barnet, C.; Nalli, N.R.; Tan, C.; Santos da Silva, S.R. Using Averaging Kernels to Study the Vertical Resolution of Nucaps Temperature and Water Vapor. In Proceedings of the 2017 IEEE International Geo-science and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 33–35. [Google Scholar]
- Smith, N.; Barnet, C.D. Uncertainty Characterization and Propagation in the Community Long-Term Infrared Microwave Combined Atmospheric Product System (CLIMCAPS). Remote Sens. 2019, 11, 1227. [Google Scholar] [CrossRef] [Green Version]
- Zelinsky, D. National Hurricane Center Tropical Cyclone Report: Hurricane Lorenzo. Available online: https://www.nhc.noaa.gov/data/tcr/AL132019_Lorenzo.pdf (accessed on 1 March 2022).
- NASA Short-Term Prediction Research and Transition Center (SPoRT) Gridded NUCAPS Display. Available online: https://weather.msfc.nasa.gov/cgi-bin/sportPublishData.pl?dataset=griddednucaps (accessed on 18 May 2022).
- Blumberg, W.G.; Halbert, K.T.; Supinie, T.A.; Marsh, P.T.; Thompson, R.L.; Hart, J.A. SHARPpy: An Open-Source Sounding Analysis Toolkit for the Atmospheric Sciences. Bull. Am. Meteorol. Soc. 2017, 98, 1625–1636. [Google Scholar] [CrossRef]
Pressure Layers (mb) | Clear to Partly Cloudy | Cloudy Scenes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IR + MW | MW-Only | IR + MW | MW-Only | |||||||||
RMSE | μ | σ | RMSE | μ | σ | RMSE | μ | σ | RMSE | μ | σ | |
300–0 | 1.21 | −0.34 | 0.20 | 1.37 | −0.81 | 0.20 | 4.59 | 0.78 | 0.90 | 1.62 | −1.08 | 0.22 |
600–300 | 0.83 | −0.001 | 0.79 | 0.86 | 0.02 | 0.84 | 3.96 | −0.90 | 3.80 | 1.33 | 0.50 | 1.16 |
1000–600 | 1.26 | 0.10 | 1.01 | 1.53 | 0.58 | 1.04 | 4.61 | 1.52 | 3.40 | 4.13 | 3.00 | 2.22 |
Pressure Layers (mb) | Clear to Partly Cloudy | Cloudy Scenes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IR + MW | MW-Only | IR + MW | MW-Only | |||||||||
RMSE | μ | σ | RMSE | μ | σ | RMSE | μ | σ | RMSE | μ | σ | |
300–0 | 49.63 | −19.41 | 7.19 | 56.96 | −36.42 | 6.84 | 57.26 | −40.87 | 6.07 | 41.50 | −24.69 | 4.98 |
600–300 | 46.35 | −22.07 | 39.72 | 46.00 | −2.45 | 44.52 | 65.83 | −17.93 | 59.25 | 43.74 | 21.10 | 37.24 |
1000–600 | 26.05 | −9.51 | 19.24 | 22.17 | −5.89 | 17.19 | 70.92 | 29.94 | 50.92 | 23.08 | 0.43 | 15.62 |
Temperature (km) | Water Vapor (km) | |
---|---|---|
0–300 mb | 7.5 (3.5) | 5.5 (1.5) |
300–600 mb | 5.9 (1.8) | 4.4 (1.2) |
600–1000 mb | 1.7 (0.2) | 2.2 (0.4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esmaili, R.; Barnet, C.; Dunion, J.; Folmer, M.; Zawislak, J. Evaluating Satellite Sounders for Monitoring the Tropical Cyclone Environment in Operational Forecasting. Remote Sens. 2022, 14, 3189. https://doi.org/10.3390/rs14133189
Esmaili R, Barnet C, Dunion J, Folmer M, Zawislak J. Evaluating Satellite Sounders for Monitoring the Tropical Cyclone Environment in Operational Forecasting. Remote Sensing. 2022; 14(13):3189. https://doi.org/10.3390/rs14133189
Chicago/Turabian StyleEsmaili, Rebekah, Christopher Barnet, Jason Dunion, Michael Folmer, and Jonathan Zawislak. 2022. "Evaluating Satellite Sounders for Monitoring the Tropical Cyclone Environment in Operational Forecasting" Remote Sensing 14, no. 13: 3189. https://doi.org/10.3390/rs14133189
APA StyleEsmaili, R., Barnet, C., Dunion, J., Folmer, M., & Zawislak, J. (2022). Evaluating Satellite Sounders for Monitoring the Tropical Cyclone Environment in Operational Forecasting. Remote Sensing, 14(13), 3189. https://doi.org/10.3390/rs14133189