GPR Data Processing and Interpretation Based on Artificial Intelligence Approaches: Future Perspectives for Archaeological Prospection
Abstract
:1. Introduction
2. Artificial Intelligence (Machine Learning and Deep Learning)
3. AI Applications on GPR
4. AI Approaches Applied in GPR within Archaeological Research
5. Discussion
5.1. Limitations and Suggestions
5.2. Future Possibilities
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Domínguez-Rodrigo, M.; Cifuentes-Alcobendas, G.; Jiménez-García, B.; Abellán, N.; Pizarro-Monzo, M.; Organista, E.; Baquedano, E. Artificial intelligence provides greater accuracy in the classification of modern and ancient bone surface modifications. Sci. Rep. 2020, 10, 18862. [Google Scholar] [CrossRef] [PubMed]
- Trier, Ø.D.; Cowley, D.; Waldeland, A.U. Using deep neural networks on airborne laser scanning data: Results from a case study of semi-automatic mapping of archaeological topography on Arran, Scotland. Archaeol. Prospect. 2018, 26, 165–175. [Google Scholar] [CrossRef]
- Guyot, A.; Hubert-Moy, L.; Lorho, T. Detecting Neolithic Burial Mounds from LiDAR-Derived Elevation Data Using a Multi-Scale Approach and Machine Learning Techniques. Remote Sens. 2018, 10, 225. [Google Scholar] [CrossRef] [Green Version]
- Caspari, G.; Crespo, P. Convolutional neural networks for archaeological site detection–Finding “princely” tombs. J. Archaeol. Sci. 2019, 110, 104998. [Google Scholar] [CrossRef]
- Lambers, K.; Verschoof-van der Vaart, W.B.; Bourgeois, Q.P.J. Integrating Remote Sensing, Machine Learning, and Citizen Science in Dutch Archaeological Prospection. Remote Sens. 2019, 11, 794. [Google Scholar] [CrossRef] [Green Version]
- Verschoof-van der Vaart, W.B.; Lambers, K. Learning to Look at LiDAR: The Use of R-CNN in the Automated Detection of Archaeological Objects in LiDAR Data from the Netherlands. J. Comput. Appl. Archaeol. 2019, 2, 31–40. [Google Scholar] [CrossRef] [Green Version]
- Verschoof-van der Vaart, W.B.; Lambers, K. Applying automated object detection in archaeological practice: A case study from the southern Netherlands. Archaeol. Prospect. 2021, 29, 15–31. [Google Scholar] [CrossRef]
- Guyot, A.; Lennon, M.; Lorho, T.; Hubert-Moy, L. Combined Detection and Segmentation of Archeological Structures from LiDAR Data Using a Deep Learning Approach. J. Comput. Appl. Archaeol. 2021, 4, 1–19. [Google Scholar] [CrossRef]
- Orengo, H.A.; Conesa, F.C.; Garcia-Molsosa, A.; Lobo, A.; Green, A.S.; Madella, M.; Petrie, C.A. Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data. Proc. Natl. Acad. Sci. USA 2020, 117, 18240–18250. [Google Scholar] [CrossRef]
- Agapiou, A.; Vionis, A.; Papantoniou, G. Detection of Archaeological Surface Ceramics Using Deep Learning Image-Based Methods and Very High-Resolution UAV Imageries. Land 2021, 10, 1365. [Google Scholar] [CrossRef]
- Garcia-Molsosa, A.; Orengo, H.A.; Lawrence, D.; Philip, G.; Hopper, K.; Petrie, C.A. Potential of Deep Learning Segmentation for the Extraction of Archaeological Features from Historical Map Series. Archaeol. Prospect. 2021, 28, 187–199. [Google Scholar] [CrossRef] [PubMed]
- Küçükdemirci, M.; Landeschi, G.; Dell’Unto, N.; Ohlson, M. Mapping archaeological signs from airborne Lidar data using deep neural networks: Primary Results. In Proceedings of the International Conference of Archaeological Prospection, Lyon, France, 8–11 September 2021; pp. 1–5. [Google Scholar]
- Küçükdemirci, M.; Sarris, A. Automated segmentation of archaeo-geophysical images by convolutional neural networks. In Proceedings of the 13th International Conference on Archaeological Prospection—New Global Perspectives on Archaeological Prospection, Sligo, Ireland, 28 August–1 September 2019; pp. 295–299, ISBN 978-1-78969-306-5. [Google Scholar]
- Küçükdemirci, M.; Sarris, A. Deep learning based automated analysis of archaeo-geophysical images. Archaeol. Prospect. 2020, 27, 107–118. [Google Scholar] [CrossRef]
- Green, A.; Cheetham, P. Rise of the Machines: Improving the identification of possible graves in GPR data with interactive survey guidance and machine learning. In Proceedings of the 13th International Conference on Archaeological Prospection—New Global Perspectives on Archaeological Prospection, Sligo, Ireland, 28 August–1 September 2019; pp. 300–304. [Google Scholar]
- Green, A. Detecting Graves in GPR Data: Assessing the Viability of Machine Learning for the Interpretation of Graves in B-Scan Data Using Medieval Irish Case Studies. Ph.D. Thesis, Bournemouth University, Poole, UK, 2020. [Google Scholar]
- Manataki, M.; Vafidis, A.; Sarris, A. GPR Data Interpretation Approaches in Archaeological Prospection. Appl. Sci. 2021, 11, 7531. [Google Scholar] [CrossRef]
- Gonthier, N.; Gousseau, Y.; Ladjal, S.; Bonfait, O. Weakly Supervised Object Detection in Artworks. In Computer Vision—ECCV 2018 Workshops. ECCV 2018. Lecture Notes in Computer Science; Leal-Taixé, L., Roth, S., Eds.; Springer: Cham, Switzerland, 2018; Volume 11130. [Google Scholar] [CrossRef] [Green Version]
- Pawlowicz, L.M.; Downum, C.E. Applications of deep learning to decorated ceramic typology and classification: A case study using Tusayan White Ware from Northeast Arizona. J. Archaeol. Sci. 2021, 130, 105375. [Google Scholar] [CrossRef]
- Croce, V.; Caroti, G.; De Luca, L.; Jacquot, K.; Piemonte, A.; Véron, P. From the Semantic Point Cloud to Heritage-Building Information Modeling: A Semiautomatic Approach Exploiting Machine Learning. Remote Sens. 2021, 13, 461. [Google Scholar] [CrossRef]
- Alloghani, M.; Al-Jumeily, D.; Mustafina, J.; Hussain, A.; Aljaaf, A.J. A Systematic Review on Supervised and Unsupervised Machine Learning Algorithms for Data Science. In Supervised and Unsupervised Learning for Data Science. Unsupervised and Semi-Supervised Learning; Berry, M., Mohamed, A., Yap, B., Eds.; Springer: Cham, Switzerland, 2019; pp. 3–21. [Google Scholar] [CrossRef]
- Kotsiantis, S.B. Supervised machine learning: A review of classification techniques. Informatica 2007, 31, 249–268. [Google Scholar]
- Somvanshi, M.; Chavan, P.; Tambade, S.; Shinde, S.V. A review of machine learning techniques using decision tree and support vector machine. In Proceedings of the 2016 International Conference on Computing Communication Control and Automation (ICCUBEA), Pune, India, 12–13 August 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Couronné, R.; Probst, P.; Boulesteix, A.-L. Random forest versus logistic regression: A large-scale benchmark experiment. BMC Bioinform. 2018, 19, 27. [Google Scholar] [CrossRef]
- Teuwen, J.; Moriakov, N. Convolutional neural networks. In Handbook of Medical Image Computing and Computer Assisted Intervention; Zhou, S.K., Ruceckert, D., Fichtinger, G., Eds.; Academic Press: New York, NY, USA, 2020; pp. 481–501. ISBN 9780128161760. [Google Scholar] [CrossRef]
- O’Shea, K.; Nash, R. An Introduction to Convolutional Neural Networks. arXiv 2015, arXiv:1511.08458. [Google Scholar]
- Emmert-Streib, F.; Yang, Z.; Feng, H.; Tripathi, S.; Dehmer, M. An Introductory Review of Deep Learning for Prediction Models With Big Data. Front. Artif. Intell. 2020, 3, 4. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Jain, V.; Mishra, A. An Analysis Of Convolutional Neural Networks For Image Classification. Procedia Comput. Sci. 2018, 132, 377–384. [Google Scholar] [CrossRef]
- Travassos, X.L.; Vieira, D.A.G.; Ida, N.; Vollaire, C.; Nicolas, A. Characterization of Inclusions in a Nonhomogeneous GPR Problem by Artificial Neural Networks. IEEE Trans. Magn. 2008, 44, 1630–1633. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Su, Y.; Huang, C. Inversion of Ground Penetrating Radar Data Based on Neural Networks. Remote Sens. 2018, 10, 730. [Google Scholar] [CrossRef] [Green Version]
- Leong, Z.X.; Zhu, T. Direct Velocity Inversion of Ground Penetrating Radar Data Using GPRNet. J. Geophys. Res. Solid Earth 2021, 126, e2020JB021047. [Google Scholar] [CrossRef]
- Liu, B.; Ren, Y.; Liu, H.; Xu, H.; Wang, Z.; Cohn, A.G.; Jiang, P. GPRInvNet: Deep Learning-Based Ground-Penetrating Radar Data Inversion for Tunnel Linings. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8305–8325. [Google Scholar] [CrossRef]
- Giannakis, I.; Giannopoulos, A.; Warren, C. A machine learning approach for simulating ground penetrating radar. In Proceedings of the 17th International Conference on Ground Penetrating Radar (GPR 2018), Rapperswil, Switzerland, 18–21 June 2018; ISBN 978-1-5386-5777-5. [Google Scholar]
- Giannakis, I.; Giannopoulos, A.; Warren, C. A Machine Learning-Based Fast-Forward Solver for Ground Penetrating Radar with Application to Full-Waveform Inversion. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4417–4426. [Google Scholar] [CrossRef] [Green Version]
- Ali, H.; Azalan, M.S.Z.; Amran, T.S.T.; Ahmad, M.R.; Elshaikh, M. Feature Extraction based on Empirical Mode Decomposition for Shapes Recognition of Buried Objects by Ground Penetrating Radar. J. Phys. Conf. Ser. 2021, 1878, 012022. [Google Scholar] [CrossRef]
- Chen, S.; Wang, L.; Fang, Z.; Shi, Z.; Zhang, A. A Ground-penetrating Radar Object Detection Method Based on Deep Learning. In Proceedings of the 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT), Xi’an, China, 18–20 August 2021; pp. 110–113. [Google Scholar] [CrossRef]
- Gong, Z.; Huaiqing, Z. Research on GPR image recognition based on deep learning. In Proceedings of the 2019 International Conference on Computer Science Communication and Network Security, Sanya, China, 22–23 December 2019; Volume 309. [Google Scholar]
- Elsaadouny, M.; Barowski, J.; Rolfes, I. Extracting the Features of the Shallowly Buried Objects using LeNet Convolutional Network. In Proceedings of the14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–4. [Google Scholar]
- Pham, M.-T.; Lefèvre, S. Buried Object Detection from B-Scan Ground Penetrating RadarData Using Faster-RCNN. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar] [CrossRef] [Green Version]
- Warren, C.; Giannopoulos, A.; Giannakis, I. gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar. Comput. Phys. Commun. 2016, 209, 163–170. [Google Scholar] [CrossRef] [Green Version]
- Dai, Q.; Wen, B.; Lee, Y.H.; Yucel, A.C.; Ow, G.; Yusof, M.L.M. A Deep Learning-Based Methodology for Rapidly Detecting the Defects inside Tree Trunks via GPR. In Proceedings of the 2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium), Toronto, ON, Canada, 5–10 July 2020; pp. 139–140. [Google Scholar]
- Massaro, A.; Dipierro, G.; Selicato, S.; Cannella, E.; Galiano, A.; Saponaro, A. Intelligent Inspection of Railways Infrastructure and Risks Estimation by Artificial Intelligence Applied on Noninvasive Diagnostic Systems. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Roma, Italy, 7–9 June 2021; pp. 231–236. [Google Scholar] [CrossRef]
- Núñez-Nieto, X.; Solla, M.; Gómez-Pérez, P.; Lorenzo, H. GPR Signal Characterization for Automated Landmine and UXO Detection Based on Machine Learning Techniques. Remote Sens. 2014, 6, 9729–9748. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Yuan, D.; Tong, Z.; Yang, J.; Yu, D. Autonomous pavement distress detection using ground penetrating radar and region-based deep learning. Measurement 2020, 164, 108077. [Google Scholar] [CrossRef]
- Tong, Z.; Yuan, D.; Gao, J.; Wei, Y.; Dou, H. Pavement-distress detection using ground-penetrating radar and network in networks. Constr. Build. Mater. 2019, 233, 117352. [Google Scholar] [CrossRef]
- Sukhobok, Y.A.; Verkhovtsev, L.R.; Ponomarchuk, Y.V. Automatic Evaluation of Pavement Thickness in GPR Data with Artificial Neural Networks. IOP Conf. Ser. Earth Environ. Sci. 2019, 272, 022202. [Google Scholar] [CrossRef]
- Viswanathan, R.; Samui, P. Determination of rock depth using artificial intelligence techniques. Geosci. Front. 2016, 7, 61–66. [Google Scholar] [CrossRef] [Green Version]
- Leckebusch, J.; Weibel, A.; Bühler, F. Semi-automatic feature extraction from GPR data for archaeology. Near Surf. Geophys. 2007, 6, 75–84. [Google Scholar] [CrossRef]
- Ernenwein, E.G. Integration of multidimensional archaeogeophysical data using supervised and unsupervised classification. Near Surf. Geophys. 2009, 7, 147–158. [Google Scholar] [CrossRef]
- Schmidt, A.; Tsetskhladze, G. Raster was Yesterday: Using Vector Engines to Process Geophysical Data. Archaeol. Prospect. 2013, 20, 59–65. [Google Scholar] [CrossRef]
- Pregesbauer, M.; Trinks, I.; Neubauer, W. An object oriented approach to automatic classification of archaeological features in magnetic prospection data. Near Surf. Geophys. 2014, 12, 651–656. [Google Scholar] [CrossRef]
- Verdonck, L. Detection of Buried Roman Wall Remains in Ground-penetrating Radar Data using Template Matching. Archaeol. Prospect. 2016, 23, 257–272. [Google Scholar] [CrossRef]
- Mertens, L.; Persico, R.; Matera, L.; Lambot, S. Automated Detection of Reflection Hyperbolas in Complex GPR Images With No A Priori Knowledge on the Medium. IEEE Trans. Geosci. Remote Sens. 2015, 54, 580–596. [Google Scholar] [CrossRef]
- Linford, N.; Linford, P.; Persico, R.; Piro, S. The Application of Semi-Automated Vector Identification to Large Scale Archaeological Data Sets Considering Anomaly Morphology. In Proceedings of the 12th International Conference of Archaeological Prospection, Bradford, UK, 12–16 September 2017. [Google Scholar]
- Trinks, I.; Hinterleitner, A.; Neubauer, W.; Nau, E.; Löcker, K.; Wallner, M.; Gabler, M.; Filzwieser, R.; Wilding, J.; Schiel, H.; et al. Large-area high-resolution ground-penetrating radar measurements for archaeological prospection. Archaeol. Prospect. 2018, 25, 171–195. [Google Scholar] [CrossRef]
- Verdonck, L. Automated detection and analysis of diffraction hyperbolas in ground penetrating radar data. In Proceedings of the 13th International Conference on Archaeological Prospection—New Global Perspectives on Archaeological Prospection, Sligo, Ireland, 28 August–1 September 2019; pp. 305–308, ISBN 978-1-78969-306-5. [Google Scholar]
- Goodman, D. Ground-penetrating radar simulation in engineering and archaeology. Geophysics 1994, 59, 224–232. [Google Scholar] [CrossRef]
- Engelmann, F.; Kontogianni, T.; Hermans, A.; Leibe, B. Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds. In Proceedings of the IEEE international conference on computer vision workshops, Venice, Italy, 22–29 October 2017; pp. 716–724. [Google Scholar]
- Burume, D.M.; Du, S. Deep Learning Methods Applied to 3D Point Clouds Based Instance Segmentation: A Review. Preprints 2021, 2021110228. [Google Scholar] [CrossRef]
- Khudoyarov, S.; Kim, N.; Lee, J.-J. Three-dimensional convolutional neural network–based underground object classification using three-dimensional ground penetrating radar data. Struct. Health Monit. 2020, 19, 1884–1893. [Google Scholar] [CrossRef]
- Bestagini, P.; Lombardi, F.; Lualdi, M.; Picetti, F.; Tubaro, S. Landmine Detection Using Autoencoders on Multipolarization GPR Volumetric Data. IEEE Trans. Geosci. Remote Sens. 2020, 59, 182–195. [Google Scholar] [CrossRef]
- Kim, N.; Kim, S.; An, Y.-K.; Lee, J.-J. A novel 3D GPR image arrangement for deep learning-based underground object classification. Int. J. Pavement Eng. 2019, 22, 740–751. [Google Scholar] [CrossRef]
- Chai, X.; Gu, H.; Li, F.; Duan, H.; Hu, X.; Lin, K. Deep learning for irregularly and regularly missing data reconstruction. Sci. Rep. 2020, 10, 3302. [Google Scholar] [CrossRef] [PubMed]
- Hur, B.; Ryoo, B.Y.; Zhan, W. Intelligent GPR Semi-Autonomous UAV in 3D Internal Structural Analysis, Course and Research Projects. In Proceedings of the 2020 ASEE Virtual Annual Conference, Online, 22–26 June 2020. [Google Scholar]
- Akhila, V.; Das, S.K. Application of Artificial Intelligence Technique in Calibration of Ground-Penetrating Radar. In Geotechnical Characterization and Modelling; Springer: Singapore, 2020; Volume 85, pp. 1029–1043. [Google Scholar] [CrossRef]
- Verdonck, L.; De Smedt, P.; Verhegge, J. Making sense of anomalies: Practices and challenges in the archaeological interpretation of geophysical data. In Innovation in Near-Surface Geophysics. Instrumentation, Application, and Data Processing Methods; Persico, R., Piro, S., Linford, N., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 151–194. [Google Scholar]
Frameworks | Web Link |
---|---|
Tensorflow | https://www.tensorflow.org/ |
Keras | https://keras.io/ |
Scikit-learn | https://scikit-learn.org/ |
PyTorch | https://pytorch.org/ |
Caffe | https://caffe.berkeleyvision.org/ |
MXnet | https://mxnet.apache.org/ |
XGboost | https://xgboost.readthedocs.io/ |
Fastai | https://www.fast.ai/ |
Microsoft Cognitive Toolkit | https://docs.microsoft.com/en-us/cognitive-toolkit/ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Küçükdemirci, M.; Sarris, A. GPR Data Processing and Interpretation Based on Artificial Intelligence Approaches: Future Perspectives for Archaeological Prospection. Remote Sens. 2022, 14, 3377. https://doi.org/10.3390/rs14143377
Küçükdemirci M, Sarris A. GPR Data Processing and Interpretation Based on Artificial Intelligence Approaches: Future Perspectives for Archaeological Prospection. Remote Sensing. 2022; 14(14):3377. https://doi.org/10.3390/rs14143377
Chicago/Turabian StyleKüçükdemirci, Melda, and Apostolos Sarris. 2022. "GPR Data Processing and Interpretation Based on Artificial Intelligence Approaches: Future Perspectives for Archaeological Prospection" Remote Sensing 14, no. 14: 3377. https://doi.org/10.3390/rs14143377
APA StyleKüçükdemirci, M., & Sarris, A. (2022). GPR Data Processing and Interpretation Based on Artificial Intelligence Approaches: Future Perspectives for Archaeological Prospection. Remote Sensing, 14(14), 3377. https://doi.org/10.3390/rs14143377