The Influence of Environmental Factors on the Quality of GPR Data: The Borre Monitoring Project
Abstract
:1. Introduction
1.1. Background
1.2. The Site of Borre
2. Methods
2.1. Monitoring Approach
2.2. In Situ Measurements
2.2.1. Monitoring Station 1
2.2.2. Background Stations
2.3. GPR Data Acquisition and Processing
2.4. Soil and Sediment Sampling and Analyses
3. Results
3.1. Comparison of GPR Datasets
3.1.1. Qualitative Analysis of the GPR Data
3.1.2. Quantitative Analysis of the GPR Data
3.2. Soil and Sedimentological Analyses
3.3. Environmental Conditions
3.3.1. Weather
3.3.2. In Situ Monitoring Data
3.3.3. Surveys in Dry Conditions
3.3.4. Surveys in Wet Conditions
3.3.5. Contrast
4. Discussion
4.1. Comparison of High and Low Quality GPR Datasets
4.2. Influence of Environmental Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Trinks, I. (University of Vienna, Vienna, Austria). Borre October 2007. Unpublished Report Prepared for Vestfold County Council. 2007. [Google Scholar]
- Sala, J. (3D Radar, Oslo, Norway). Informasjon om Borreparken. Unpublished Report Prepared for Vestfold County Council. 2008. [Google Scholar]
- Gabler, M.; Trinks, I.; Nau, E.; Hinterleitner, A.; Paasche, K.; Gustavsen, L.; Kristiansen, M.; Tonning, C.; Schneidhofer, P.; Kucera, M.; et al. Archaeological Prospection with Motorised Multichannel Ground-Penetrating Radar Arrays on Snow-Covered Areas in Norway. Remote Sens. 2019, 11, 2485. [Google Scholar] [CrossRef] [Green Version]
- Tonning, C.; Schneidhofer, P.; Nau, E.; Gansum, T.; Lia, V.; Gustavsen, L.; Filzwieser, R.; Wallner, M.; Kristiansen, M.; Neubauer, W.; et al. Halls at Borre: The discovery of three large buildings at a Late Iron and Viking Age royal burial site in Norway. Antiquity 2020, 94, 145–163. [Google Scholar] [CrossRef]
- Boddice, D. Changing Geophysical Contrast between Archaeological Features and Surrounding Soil. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2014. [Google Scholar]
- Schultz, J.J. Sequential Monitoring of Burials Containing Small Pig Cadavers Using Ground Penetrating Radar. J. Forensic Sci. 2008, 53, 279–287. [Google Scholar] [CrossRef]
- Linck, R.; Fassbinder, J.W.E. Determination of the influence of soil parameters and sample density on ground-penetrating radar: A case study of a Roman picket in Lower Bavaria. Archaeol. Anthr. Sci. 2013, 6, 93–106. [Google Scholar] [CrossRef]
- Fry, R. Time-Lapse Geophysical Investigations over Known Archaeological Features Using Electrical Resistivity Imaging and Earth Resistance. Ph.D. Thesis, University of Bradford, Bradford, UK, 2014. [Google Scholar]
- Annan, A.P. Electromagnetic principles of ground penetrating radar. In Ground Penetrating Radar Theory and Applications; Jol, H.M., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2008; pp. 1–40. [Google Scholar] [CrossRef]
- Conyers, L.B. Ground-Penetrating Radar for Archaeology, 3rd ed.; Altamira Press: Lanham, MD, USA, 2013. [Google Scholar]
- Cassidy, N.J. Electrical and magnetic properties of rocks, soils and fluids. In Ground Penetrating Radar Theory and Applications; Jol, H.M., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2008; pp. 41–72. [Google Scholar] [CrossRef]
- Scollar, I.; Tabbagh, A.; Hesse, A.; Herzog, I. Archaeological Prospecting and Remote Sensing; Topics in Remote Sensing 2; Cambridge University Press: Cambridge, UK, 1990; p. 696. [Google Scholar]
- Visconti, F.; de Paz, J.M.; Martínez, D.; Molina, M.J. Laboratory and field assessment of the capacitance sensors Decagon 10HS and 5TE for estimating the water content of irrigated soils. Agric. Water Manag. 2014, 132, 111–119. [Google Scholar] [CrossRef]
- Doolittle, J.A.; Butnor, J.R. Soils, peatlands, and biomonitoring. In Ground Penetrating Radar Theory and Applications; Jol, H.M., Ed.; Elsevier Science: Amsterdam, The Netherlands, 2008; pp. 197–202. [Google Scholar]
- Donahue, R.L.; Miller, R.W.; Shickluna, J.C. Soils: An Introduction to Soils and Plant Growth, 4th ed.; Prentice-Hall: Hoboken, NJ, USA, 1977; p. 626. [Google Scholar]
- Tan, K.H. Principles of Soil Chemistry; Marcel Dekker, Inc.: New York, NY, USA, 1998; p. 320. [Google Scholar]
- Cates, A. The Connection between Soil Organic Matter and Soil Water; Minnesota Crop News; Minnesota University Extension. 2020. Available online: https://blog-crop-news.extension.umn.edu/2020/03/the-connection-between-soil-organic.html (accessed on 11 June 2022).
- Nicolaysen, N. Om Borrefundet i 1852, Foreningen til Norske Fortidsminnesmerkers Bevaring; Foreningen til Norske Fortidsmin-Nesmerkers Bevaring: Kristiania, Norway, 1854; pp. 25–30. [Google Scholar]
- Brøgger, A.W. Borrefundet og Vestfoldkongenes graver; Videnskapsselskapet Skrifter II. Hist. Folisofisk Kl. 1916, 1, 1–67. [Google Scholar]
- Blindheim, C. Borre i lys av Borre-funnet og Nasjonalparken. In Borre Bygdebok; Lillevold, E., Ed.; Borre Kommune: Horten, Norway, 1954; pp. 1–26. [Google Scholar]
- Myhre, B. Borre-et Merovingertidssentrum i Øst-Norge. In Økonomiske og Politiske Sentra i Norge ca 400–1000 e.Kr; Universitetets Oldsaksamlings Skrifter Ny Rekke 13; Mikkelsen, E., Larsen, H.J., Eds.; Universitetets Oldsaksamlings: Oslo, Norway, 1992; pp. 155–179. [Google Scholar]
- Myhre, B. Før Viken ble Norge, Borregravfeltet Som Religiøs og Politisk Arena, Norske Oldfunn XXXI; Cicero Grafisk: Oslo, Norway, 2015; p. 223. [Google Scholar]
- stigård, T.; Gansum, T. Vikingtiden på Borre. Hvordan har fortiden blitt brukt og formidlet? In Tankar om Ursprung, Forntiden och Medeltiden I Nordisk Historie Använding; Edquist, S., Hermansson, L., Johansen, S., Eds.; The Museum of National An-tiquities: Stockholm, Sweden, 2009; pp. 249–268. [Google Scholar]
- Ljungkvist, J. Monumentaliseringen av Gamla Uppsala. In Gamla Uppsala i ny Belysning; Sundquist, O., Vikstrand, P., Eds.; Swedish Science: Uppsala, Sweden, 2013; pp. 33–68. [Google Scholar]
- Christensen, T. Lejre Bag Myden, De Arkæologiske Udgravninger, Jysk Arkæologisk Selskab Skrifter 87; Aarhus Universitet: Aarhus, Denmark, 2016; p. 564. [Google Scholar]
- Sørensen, R.; Henningsmoen, K.E.; Høeg, H.; Stabell, B.; Bukholm, K.M. Geology, soils, vegetation and sea-levels in the Kaupang Area. In Kaupang in Skiringssal; Skre, D., Ed.; Aarhus University Press: Aarhus, Denmark, 2007; pp. 252–272. [Google Scholar]
- Draganits, E.; Doneus, M.; Gansum, T.; Gustavsen, L.; Nau, E.; Tonning, C.; Trinks, I.; Neubauer, W. The late Nordic Iron Age and Viking Age royal burial site of Borre in Norway: ALS- and GPR-based landscape reconstruction and harbour location at an uplifting coastal area. Quat. Int. 2015, 367, 96–110. [Google Scholar] [CrossRef]
- FAO. World reference base for soil ressources 2014, Update 2015. International soil classification system for naming soils and creating legends for soil maps. In Food and Agriculture Organization for the United Nations; World Soil Resources Reports 106; United Nations: Rome, Italy, 2015; p. 192. [Google Scholar]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Meter (Meter Group AG, Muenchen, Germany). GS3-Manual. Unpublished User Manual. 2013. [Google Scholar]
- Gustavsen, L.; Cannell, R.J.; Nau, E.; Tonning, C.; Trinks, I.; Kristiansen, M.; Gabler, M.; Paasche, K.; Gansum, T.; Hinterleitner, A.; et al. Archaeological prospection of a specialized cooking-pit site at Lunde in Vestfold, Norway. Archaeol. Prospect. 2017, 25, 17–31. [Google Scholar] [CrossRef]
- Hecheltjen, A.; Thonfeld, F.; Menz, G. Recent Advances in Remote Sensing Change Detection—A Review. Land Use Land Cover. Mapp. Eur. 2014, 18, 145–178. [Google Scholar] [CrossRef]
- Weismiller, R.A.; Kristof, S.J.; Scholz, D.K.; Anuta, P.E.; Momin, S.A. Change detection in coastal zone environments. Photogramm. Eng. Remote Sens. 1977, 43, 1533–1539. [Google Scholar]
- Canty, M.J.; Nielsen, A. Visualization and unsupervised classification of changes in multispectral satellite imagery. Int. J. Remote Sens. 2006, 27, 3961–3975. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, A.; Dabas, M.; Sarris, A. Dreaming of Perfect Data: Characterizing Noise in Archaeo-Geophysical Measurements. Geosciences 2020, 10, 382. [Google Scholar] [CrossRef]
- Stuurop, J.C.; van der Zee, S.E.; French, H.K. The influence of soil texture and environmental conditions on frozen soil infiltration: A numerical investigation. Cold Reg. Sci. Technol. 2021, 194, 103456. [Google Scholar] [CrossRef]
- Urban, T.M.; Rasic, J.T.; Alix, C.; Anderson, D.D.; Manning, S.W.; Mason, O.K.; Tremayne, A.H.; Wolff, C.B. Frozen: The Potential and Pitfalls of Ground-Penetrating Radar for Archaeology in the Alaskan Arctic. Remote Sens. 2016, 8, 1007. [Google Scholar] [CrossRef] [Green Version]
- Hoogsteen, M.J.J.; Lantinga, E.A.; Bakker, E.J.; Groot, J.C.J.; Tittonell, P.A. Estimating soil organic carbon through loss on ignition: Effects of ignition conditions and structural water loss. Eur. J. Soil Sci. 2015, 66, 320–328. [Google Scholar] [CrossRef]
GPR Datasets | Quality |
---|---|
04082016 | low |
14092016 | high |
06102016 | high |
09112016 | high |
13122016 | high |
09012017 | high |
27022017 | low |
18052017 | low |
15062017 | high |
04072017 | high |
16082017 | low |
07092017 | low |
StdDev 40–80 cm | GPR Datasets | Quality |
---|---|---|
53.440 | 07092017 | Low |
51.501 | 16082017 | Low |
49.540 | 18052017 | Low |
48.195 | 09112016 | High |
47.888 | 13122016 | High |
46.811 | 15062017 | High |
45.556 | 06102016 | High |
42.929 | 09012017 | High |
42.885 | 04072017 | High |
42.237 | 14092016 | High |
40.094 | 04082016 | Low |
31.544 | 27022017 | Low |
Sample Number | Sample Depth | Matrix | Stones and Gravels | Inclusions (Rare X, Common XX, Frequent XXX) | Observations | |
---|---|---|---|---|---|---|
1 | 55 cm | Cooking pit backfill | Silt with sand, with organic content (>10%) | c. 2% gravel (=7 small stones), SR and SA (mostly SA). Mixed geology. | Roots and charcoal, very rare (x), larger than 1 mm, in addition to small particles | Highly organic, topsoil, silt and fine sand, with a few stones, homogeneous. |
2 | 65 cm | Subsoil, arenic | Sand with gravel | c. 30% gravel, SA and SR (mostly SA). Mixed geology | Roots, rare (x) | Very fine sand with medium and coarse pebbles |
3 | 65 cm | Cooking pit backfill | Silt with fine sand and gravel, high organic content (>10%) | c. 2% gravel, SA, mixed geology | Charcoal, common (xx), pieces larger than 1 mm | Highly organic, silt and fine sand, humic. Fire-cracked stones |
4 | 75 cm | Posthole backfill | Sandy silt with organic content (>10%). | c. 5% gravel (including two pebbles), SA. Mixed geology | Charcoal, frequent (xxx), larger than 1 mm, in addition to smaller particles | Humic, fine sandy silt, with gravel and very coarse pebbles. |
5 | 80 cm | Posthole backfill | Sand with some silt, with a few gravels. Organic content (<5%) | c. 1% gravel, SR. Mixed geology | Single piece of charcoal, very rare (x), 10 mm long | Very sandy with some silt and gravel. |
6 | 85 cm | Posthole backfill | Very fine sand with silt, with gravel. Organic content (<5%) | c. 2% gravel, SR and SA. Mixed geology | None | Very fine sand with silt, gravel, homogenous |
7 | 90 cm | Beach deposit, fine | Fine sand with two coarse gravels, homogeneous, organic content (<5%) | c. 1% gravel, SR. Mixed geology | None | Gravel shows signs of water rolling/erosion. |
8 | 95 cm | Posthole backfill | Fine sandy silt (approximately 50/50), organic content (c.50%) | c. 2% gravel, SR. Three pebbles. Mixed geology | Charcoal, rare (x) larger than 1 mm, a single piece of burnt hazelnut shell, 5 mm | Very humic sandy silt |
9 | 95 cm | Beach deposit, coarse | Gravel with traces of sand, organic content (<5%) | c.95% gravel, mostly SR and SA. Mixed geology | None | Fine gravel |
10 | 105 cm | Posthole backfill | Fine sand with gravel and pebbles (<50%) | c. 7% gravel, SR and SA. mixed geology | Charcoal, rare (x), larger than 1 mm | Humic, sand |
Sample Number | Sample Depth (cm) | Description | Loss (%) | Organic Carbon (%) |
---|---|---|---|---|
1 | 55 | Cooking pit backfill | 4.40 | 7.59 |
2 | 65 | Subsoil, arenic | 1.27 | 2.17 |
3 | 65 | Cooking pit backfill | 5.63 | 9.70 |
4 | 75 | Posthole backfill | 4.78 | 8.24 |
5 | 80 | Posthole backfill | 1.07 | 1.85 |
6 | 85 | Posthole backfill | 1.34 | 2.31 |
7 | 90 | Beach deposit, fine | 1.70 | 2.93 |
8 | 95 | Posthole backfill | 1.80 | 2.11 |
9 | 95 | Beach deposit, coarse | 1.74 | 2.99 |
10 | 105 | Posthole backfill | 6.28 | 10.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneidhofer, P.; Tonning, C.; Cannell, R.J.S.; Nau, E.; Hinterleitner, A.; Verhoeven, G.J.; Gustavsen, L.; Paasche, K.; Neubauer, W.; Gansum, T. The Influence of Environmental Factors on the Quality of GPR Data: The Borre Monitoring Project. Remote Sens. 2022, 14, 3289. https://doi.org/10.3390/rs14143289
Schneidhofer P, Tonning C, Cannell RJS, Nau E, Hinterleitner A, Verhoeven GJ, Gustavsen L, Paasche K, Neubauer W, Gansum T. The Influence of Environmental Factors on the Quality of GPR Data: The Borre Monitoring Project. Remote Sensing. 2022; 14(14):3289. https://doi.org/10.3390/rs14143289
Chicago/Turabian StyleSchneidhofer, Petra, Christer Tonning, Rebecca J. S. Cannell, Erich Nau, Alois Hinterleitner, Geert J. Verhoeven, Lars Gustavsen, Knut Paasche, Wolfgang Neubauer, and Terje Gansum. 2022. "The Influence of Environmental Factors on the Quality of GPR Data: The Borre Monitoring Project" Remote Sensing 14, no. 14: 3289. https://doi.org/10.3390/rs14143289
APA StyleSchneidhofer, P., Tonning, C., Cannell, R. J. S., Nau, E., Hinterleitner, A., Verhoeven, G. J., Gustavsen, L., Paasche, K., Neubauer, W., & Gansum, T. (2022). The Influence of Environmental Factors on the Quality of GPR Data: The Borre Monitoring Project. Remote Sensing, 14(14), 3289. https://doi.org/10.3390/rs14143289