Mapping Arable Land and Permanent Agriculture Extent and Change in Southern Greece Using the European Union LUCAS Survey and a 35-Year Landsat Time Series Analysis
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. Landsat Imagery and Preprocessing
2.2.2. LUCAS Data
3. Methods
3.1. Landcover Classification
3.1.1. Training Dataset
3.1.2. Classification Predictor Metrics
3.1.3. Random Forest Classification
3.2. Time Series Post-Classification Processing
3.3. Validation and Area Estimation
4. Results
4.1. Random Forest Classification and Post-Classification Processing
4.2. Annual Agriculture Maps and Spatiotemporal Dynamics
4.3. Accuracy Assessment and Sample-Based Area
5. Discussion
5.1. Agricultural Extent Dynamics through Time
5.2. Random Forest Classification and Post-Classification Processing
5.3. Classification Accuracy and Class Confusion
5.4. Limitations and Future Work
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gómez, J.A.; Llewellyn, C.; Basch, G.; Sutton, P.B.; Dyson, J.S.; Jones, C.A. The effects of cover crops and conventional tillage on soil and runoff loss in vineyards and olive groves in several Mediterranean countries. Soil Use Manag. 2011, 27, 502–514. [Google Scholar] [CrossRef] [Green Version]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Fernández-Muñoz, S. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Change 2012, 110, 215–226. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Millán, M.M. Greening and browning in a climate change hotspot: The Mediterranean Basin. BioScience 2019, 69, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Kasimis, C.; Papadopoulos, A.G. Rural transformations and family farming in contemporary Greece. In Agriculture in Mediterranean Europe: Between Old and New Paradigms; Emerald Group Publishing Limited: Bingley, UK, 2013. [Google Scholar] [CrossRef]
- Xystrakis, F.; Psarras, T.; Koutsias, N. A process-based land use/land cover change assessment on a mountainous area of Greece during 1945–2009: Signs of socio-economic drivers. Sci. Total Environ. 2017, 587, 360–370. [Google Scholar] [CrossRef] [PubMed]
- Zambon, I.; Ferrara, A.; Salvia, R.; Mosconi, E.M.; Fici, L.; Turco, R.; Salvati, L. Rural districts between urbanization and land abandonment: Undermining long-term changes in mediterranean landscapes. Sustainability 2018, 10, 1159. [Google Scholar] [CrossRef] [Green Version]
- Apostolou, N. Why Are So Many Young Greeks Turning to Farming? Aljazeera. Available online: https://www.aljazeera.com/features/2017/5/22/why-are-so-many-young-greeks-turning-to-farming#:~:text=Almost%20half%20of%20all%20new,aged%20between%2025%20and%2034 (accessed on 1 July 2021).
- Neves, B.; Pires, I.M. The mediterranean diet and the increasing demand of the olive oil sector. Region 2018, 5, 101–112. [Google Scholar] [CrossRef]
- Scheidel, A.; Krausmann, F. Diet, trade and land use: A socio-ecological analysis of the transformation of the olive oil system. Land Use Policy 2011, 28, 47–56. [Google Scholar] [CrossRef]
- Moreira, F.; Pe’er, G. Agricultural policy can reduce wildfires. Science 2018, 359, 1001. [Google Scholar] [CrossRef]
- Pe’er, G.; Zinngrebe, Y.; Moreira, F.; Sirami, C.; Schindler, S.; Müller, R.; Bontzorlos, V.; Clough, D.; Bezák, P.; Bonn, A.; et al. A greener path for the EU Common Agricultural Policy. Science 2019, 365, 449–451. [Google Scholar] [CrossRef]
- Ramankutty, N.; Evan, A.T.; Monfreda, C.; Foley, J.A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 2008, 22, GB1003. [Google Scholar] [CrossRef]
- Pittman, K.; Hansen, M.C.; Becker-Reshef, I.; Potapov, P.V.; Justice, C.O. Estimating global cropland extent with multi-year MODIS data. Remote Sens. 2010, 2, 1844–1863. [Google Scholar] [CrossRef] [Green Version]
- Phalke, A.R.; Özdoğan, M.; Thenkabail, P.S.; Erickson, T.; Gorelick, N.; Yadav, K.; Congalton, R.G. Mapping croplands of Europe, middle east, russia, and central asia using landsat, random forest, and google earth engine. ISPRS J. Photogram. Remote Sens. 2020, 167, 104–122. [Google Scholar] [CrossRef]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; Zalles, V.; Khan, A.; Song, X.P.; Pickens, A.; Shen, Q.; Cortez, J. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 2022, 3, 19–28. [Google Scholar] [CrossRef]
- Kizos, T.; Marin-Guirao, J.I.; Georgiadi, M.E.; Dimoula, S.; Karatsolis, E.; Mpartzas, A.; Mpelali, A.; Papaioannou, S. Survival strategies of farm households and multifunctional farms in Greece. Geogr. J. 2011, 177, 335–346. [Google Scholar] [CrossRef]
- Siachalou, S.; Mallinis, G.; Tsakiri-Strati, M. A hidden Markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data. Remote Sens. 2015, 7, 3633–3650. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Prishchepov, A.V.; Kuemmerle, T.; Bleyhl, B.; Buchner, J.; Radeloff, V.C. Mapping agricultural land abandonment from spatial and temporal segmentation of Landsat time series. Remote Sens. Environ. 2018, 210, 12–24. [Google Scholar] [CrossRef]
- Zheng, B.; Campbell, J.B.; de Beurs, K.M. Remote sensing of crop residue cover using multi-temporal Landsat imagery. Remote Sens. Environ. 2012, 117, 177–183. [Google Scholar] [CrossRef]
- Kovalskyy, V.; Roy, D.P. The global availability of Landsat 5 TM and Landsat 7 ETM+ land surface observations and implications for global 30 m Landsat data product generation. Remote Sens. Environ. 2013, 130, 280–293. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on Google Earth Engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, A.Y.M.; Masrur, A.; Adnan, M.S.G.; Baky, M.A.A.; Hassan, Q.K.; Dewan, A. Spatio-temporal patterns of land use/land cover change in the heterogeneous coastal region of Bangladesh between 1990 and 2017. Remote Sens. 2019, 11, 790. [Google Scholar] [CrossRef] [Green Version]
- Pflugmacher, D.; Rabe, A.; Peters, M.; Hostert, P. Mapping pan-European land cover using Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sens. Environ. 2019, 221, 583–595. [Google Scholar] [CrossRef]
- Senf, C.; Leitão, P.J.; Pflugmacher, D.; van der Linden, S.; Hostert, P. Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens. Environ. 2015, 156, 527–536. [Google Scholar] [CrossRef]
- Abercrombie, S.P.; Friedl, M.A. Improving the consistency of multitemporal land cover maps using a hidden Markov model. IEEE Trans. Geosci. Remote Sens. 2015, 54, 703–713. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W. Disturbance-informed annual land cover classification maps of Canada’s forested ecosystems for a 29-year landsat time series. Can. J. Remote Sens. 2018, 44, 67–87. [Google Scholar] [CrossRef]
- Büttner, G. CORINE land cover and land cover change products. In Land Use and Land Cover Mapping in Europe; Springer: Dordrecht, The Netherlands, 2014; pp. 55–74. [Google Scholar] [CrossRef]
- Yin, H.; Brandão, A., Jr.; Buchner, J.; Helmers, D.; Iuliano, B.G.; Kimambo, N.E.; Lewińska, K.E.; Razenkova, E.; Rizayeva, A.; Rogova, N.; et al. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar] [CrossRef]
- HSA/Hellenic Statistical Authority. 2019. Available online: https://www.statistics.gr/en/home/ (accessed on 7 January 2021).
- Salvati, L.; Sateriano, A.; Bajocco, S. To grow or to sprawl? Evolving land cover relationships in a compact Mediterranean city region. Cities 2013, 30, 113–121. [Google Scholar] [CrossRef]
- Papanastasis, V.P. Land abandonment and old field dynamics in Greece. In Old Fields: Dynamics and Restoration of Abandoned Farmland; Island Press: Washington, DC, USA, 2007; pp. 225–246. [Google Scholar]
- EFFIS. European Forest Fire Information System. 2021. Available online: http://effis.jrc.ec.europa.eu/ (accessed on 10 February 2021).
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martino, L.; Fritz, M. New insight into land cover and land use in Europe. In Eurostat: Statistics in Focus; European Commission, Eurostat: Luxembourg, 2008. [Google Scholar]
- Weigand, M.; Staab, J.; Wurm, M.; Taubenböck, H. Spatial and semantic effects of LUCAS samples on fully automated land use/land cover classification in high-resolution Sentinel-2 data. Int. J. Appl. Earth Obs. Geoinform. 2020, 88, 102065. [Google Scholar] [CrossRef]
- Mellor, A.; Boukir, S.; Haywood, A.; Jones, S. Exploring issues of training data imbalance and mislabelling on random forest performance for large area land cover classification using the ensemble margin. ISPRS J. Photogramm. Remote Sens. 2015, 105, 155–168. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape Assessment: Ground Measure of Severity, the Composite Burn Index; and Remote Sensing of Severity, the Normalized Burn Ratio; General Technical Report RMRS-GTR-164-CD; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2006. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Diek, S.; Fornallaz, F.; Schaepman, M.E.; De Jong, R. Barest pixel composite for agricultural areas using landsat time series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef] [Green Version]
- Crist, E.P. A TM tasseled cap equivalent transformation for reflectance factor data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Wolfe, R.E.; Roy, D.P.; Vermote, E. MODIS land data storage, gridding, and compositing methodology: Level 2 grid. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1324–1338. [Google Scholar] [CrossRef] [Green Version]
- Friedl, M.A. Land Cover and Surface Climate, Multi-Temporal Land Cover Maps with a Hidden Markov Model (MTLCHMM). 2019. Available online: https://github.com/BU-LCSC/mtlchmm (accessed on 5 May 2021).
- Liu, D.; Cai, S. A spatial-temporal modeling approach to reconstructing land-cover change trajectories from multi-temporal satellite imagery. Ann. Assoc. Am. Geogr. 2012, 102, 1329–1347. [Google Scholar] [CrossRef]
- Giourga, H.; Margaris, N.S.; Vokou, D. Effects of grazing pressure on succession process and productivity of old fields on Mediterranean islands. Environ. Manag. 1998, 22, 589–596. [Google Scholar] [CrossRef]
- Tzanopoulos, J.; Mitchley, J.; Pantis, J.D. Vegetation dynamics in abandoned crop fields on a Mediterranean island: Development of succession model and estimation of disturbance thresholds. Agri. Ecosys. Environ. 2007, 120, 370–376. [Google Scholar] [CrossRef]
- Pesaresi, M.; Ehrlich, D.; Florczyk, A.; Freire, S.; Julea, A.; Kemper, T.; Soille, P.; Syrris, V. GHS Built-Up Grid, Derived from Landsat, Multitemporal (1975, 1990, 2000, 2014). European Commission, Joint Research Centre (JRC) [Dataset] PID. 2015. Available online: http://data.europa.eu/89h/jrc-ghsl-ghs_built_ldsmt_globe_r2015b (accessed on 1 April 2021).
- Cochran, W.G. Sampling Techniques, 3rd ed.; John Wiley & Sons: New York, NY, USA, 1977. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Cohen, W.B.; Yang, Z.G.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010, 114, 2911–2924. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Levers, C.; Schneider, M.; Prishchepov, A.V.; Estel, S.; Kuemmerle, T. Spatial variation in determinants of agricultural land abandonment in Europe. Sci. Total Environ. 2018, 644, 95–111. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A global analysis of sentinel-2A, sentinel-2B and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef] [Green Version]
- Ackrill, R. The Common Agricultural Policy; Sheffield Academic Press: Sheffield, UK, 2000. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). FAOSTAT. Available online: http://www.fao.org/ag/agn/nutrition/Indicatorsfiles/Agriculture.pdf (accessed on 7 January 2021).
- Zhu, X.; Karagiannis, G.; Oude Lansink, A. The impact of direct income transfers of CAP on Greek olive farms’ performance: Using a non-monotonic inefficiency effects model. J. Agri. Econ. 2011, 62, 630–638. [Google Scholar] [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape–wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manage. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.C.; Vasconcelos, M.J.; Pereira, J.M.; Dasgupta, N.; Alldredge, R.J.; Rego, F.C. Land cover type and fire in Portugal: Do fires burn land cover selectively? Landsc. Ecol. 2005, 20, 661–673. [Google Scholar] [CrossRef]
- Xanthopoulos, G.; Caballero, D.; Galante, M.; Alexandrian, D.; Rigolot, E.; Marzano, R. Forest fuels management in Europe. In Proceedings of the RMRS-P-41: Fuels Management-How to Measure Success: Conference Proceedings, Portland, OR, USA, 28–30 March 2006; Andrews, P.L., Butler, B.W., Eds.; Rocky Mountain Research Station, US Department of Agriculture, Forest Service: Fort Collins, CO, USA, 2006; Volume 41, pp. 29–46. [Google Scholar]
- Zirogiannis, N. Wildfire Prevention and Mitigation: The Case of Southern Greece. Master’s Thesis, University of Massachusetts, Amherst, MA, USA, 2009. [Google Scholar]
- Pantera, A. Initial Stakeholder Meeting Report: Intercropping of Olive Groves in Greece. Available online: https://www.agforward.eu/intercropping-of-olive-groves-in-greece.html (accessed on 7 July 2021).
- Karydas, C.G.; Gitas, I.Z.; Kuntz, S.; Minakou, C. Use of LUCAS LC point database for validating country-scale land cover maps. Remote Sens. 2015, 7, 5012–5041. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Koutsou, S.; Partalidou, M.; Petrou, M. Present or absent farm heads? A contemporary reading of family farming in Greece. Sociol. Rural. 2011, 51, 404–419. [Google Scholar] [CrossRef]
- Rao, P.; Zhou, W.; Bhattarai, N.; Srivastava, A.K.; Singh, B.; Poonia, S.; Lobell, D.B.; Jain, M. Using Sentinel-1, Sentinel-2, and Planet Imagery to Map Crop Type of Smallholder Farms. Remote Sens. 2021, 13, 1870. [Google Scholar] [CrossRef]
- Millard, K.; Richardson, M. On the importance of training data sample selection in random forest image classification: A case study in peatland ecosystem mapping. Remote Sens. 2015, 7, 8489–8515. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Tran, M.; Siwabessy, J. Selecting optimal random forest predictive models: A case study on predicting the spatial distribution of seabed hardness. PLoS ONE 2016, 11, e0149089. [Google Scholar] [CrossRef]
- Collins, L.; McCarthy, G.; Mellor, A.; Newell, G.; Smith, L. Training data requirements for fire severity mapping using Landsat imagery and random forest. Remote Sens. Environ. 2020, 245, 111839. [Google Scholar] [CrossRef]
Landcover Class | Definition and Corresponding LUCAS Class | LUCAS Samples |
---|---|---|
Arable land | Areas where seasonal crops are planted and are typically harvested and tilled at least once a year. Arable land includes cereal crops (B10), root crops (B20), non-permanent industrial crops (B30), dry pulses, vegetables and flowers (B40), fodder crops (B50). Areas that are classified as ‘bare soil’ (F40) but were identified in the field as being tilled/prepped for seeding are also included. | 146 |
Permanent crops | Areas with permanent crops including fruit trees (B70) and other permanent crops such as olive groves and vineyards (B80). | 910 |
Forest | Areas covered with trees, with canopy cover greater than 10% (C00). | 396 |
Shrubland | Areas dominated by shrubs and low woody plants typically less than 5 m in height (D00). | 1270 |
Grassland | Areas covered by herbaceous species (E00). This class also includes temporary grasslands that occupy an area between 1 and 4 years (B55). | 324 |
Water | Areas without vegetation and covered by water (G00) or wetlands (H00). | 36 |
Other | Areas not covered by prior classes. Includes artificial and/or impervious surfaces (A00) and areas with no dominant vegetation on at least 90% of the area (F00). | 296 |
Spectral Index | Formula | Reference |
---|---|---|
Normalized Burn Ratio (NBR) | (ρNIR − ρSWIR2)/(ρNIR + ρSWIR2) | [41] |
Normalized Difference Vegetation Index (NDVI) | (ρNIR − ρred)/(ρNIR + ρred) | [42] |
Bare Soil Index (BSI) | [(ρSWIR2 + ρred) − (ρNIR + ρblue)]/[(ρSWIR2 + ρred) + (ρNIR + ρblue)] | [43] |
Tasseled cap brightness | 0.2043 × ρblue + 0.4158 × ρgreen + 0.5524 × ρred + 0.5741 × ρNIR + 0.3124 × ρSWIR1 + 0.2303 × ρSWIR2 | [44] |
Tasseled cap greenness | −0.1603 × ρblue − 0.2819 × ρgreen − 0.4934 × ρred + 0.7940 × ρNIR − 0.0002 × ρSWIR1 − 0.1446 × ρSWIR2 | |
Tasseled cap wetness | 0.0315 × ρblue + 0.2021 × ρgreen + 0.3102 × ρred + 0.1594 × ρNIR − 0.6806 × ρSWIR1 − 0.6109 × ρSWIR2 |
TO | ||||||||
---|---|---|---|---|---|---|---|---|
Arable Land | Permanent Ag. | Grassland | Shrubland | Forest | Water | Other | ||
FROM | Arable land | 0.9 | 0.025 | 0.025 | 0.001 | 0.001 | 0.001 | 0.025 |
Permanent ag. | 0.025 | 0.9 | 0.001 | 0.001 | 0.001 | 0.001 | 0.025 | |
Grassland | 0.025 | 0.025 | 0.9 | 0.1 | 0.001 | 0.001 | 0.025 | |
Shrubland | 0.001 | 0.001 | 0.001 | 0.9 | 0.1 | 0.001 | 0.025 | |
Forest | 0.001 | 0.001 | 0.001 | 0.001 | 0.9 | 0.001 | 0.025 | |
Water | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.9 | 0.001 | |
Other | 0.025 | 0.025 | 0.1 | 0.001 | 0.001 | 0.001 | 0.9 |
Stratum Name | Description | Wi (1993–1994) | Wi (2000–2001) | Wi (2016–2017) | ni |
---|---|---|---|---|---|
Stable arable | Stable arable land | 5.3 | 5.2 | 5.7 | 50 |
Stable permanent ag. | Stable permanent agriculture | 18.2 | 19.5 | 22.2 | 75 |
Stable natural veg. | Stable natural vegetation (forest, shrubland, grassland) | 63.8 | 64.5 | 63.9 | 300 |
Stable other | Stable other | 10.4 | 8.8 | 6.5 | 75 |
Arable to permanent ag. | Areas that converted from arable to permanent agriculture | 0.06 | 0.05 | 0.02 | 50 |
Loss of Arable | Areas that were converted to any non-agriculture class | 0.05 | 0.05 | 0.05 | 50 |
Permanent ag. to arable | Areas that converted from permanent agriculture to arable | 0.02 | 0.02 | 0.06 | 50 |
Loss of Permanent ag. | Areas that were converted to any non-agriculture class | 0.02 | 0.03 | 0.03 | 50 |
Gain of arable | Areas that were converted from any non-agriculture class to arable | 0.09 | 0.06 | 0.04 | 50 |
Gain of permanent | Areas that were converted from any non-agriculture class to permanent | 0.34 | 0.25 | 0.10 | 50 |
All other to all other | Other transitions that are not relevant | 1.7 | 1.3 | 1.4 | 50 |
Producer’s Accuracy (%) | User’s Accuracy (%) | |||||
---|---|---|---|---|---|---|
1993–1994 | 2000–2001 | 2016–2017 | 1993–1994 | 2000–2001 | 2016–2017 | |
Stable arable | 45.4 | 41.1 | 57.0 | 93.1 | 89.5 | 85.9 |
Stable permanent ag. | 50.7 | 52.9 | 36.8 | 89.5 | 96.0 | 84.0 |
Stable natural veg. | 87.0 | 80.5 | 75.0 | 97.7 | 97.7 | 98.7 |
Stable other | 94.2 | 95.1 | 94.9 | 87.8 | 96.3 | 98.7 |
Arable to permanent ag. | 93.8 | 100.0 | 100.0 | 29.4 | 29.1 | 24.0 |
Loss of arable | 100.0 | 88.2 | 94.1 | 43.4 | 54.5 | 55.2 |
Permanent ag. to arable | 100.0 | 100.0 | 100.0 | 46.0 | 20.0 | 30.0 |
Loss of permanent ag. | 92.3 | 93.8 | 100.0 | 24.0 | 27.3 | 15.8 |
Gain of arable | 84.0 | 82.8 | 79.2 | 76.4 | 48.0 | 34.5 |
Gain of permanent | 91.3 | 96.3 | 100.0 | 75.0 | 49.1 | 6.3 |
All other to all other | 88.4 | 76.7 | 84.2 | 76.0 | 66.0 | 92.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sparks, A.M.; Bouhamed, I.; Boschetti, L.; Gitas, I.Z.; Kalaitzidis, C. Mapping Arable Land and Permanent Agriculture Extent and Change in Southern Greece Using the European Union LUCAS Survey and a 35-Year Landsat Time Series Analysis. Remote Sens. 2022, 14, 3369. https://doi.org/10.3390/rs14143369
Sparks AM, Bouhamed I, Boschetti L, Gitas IZ, Kalaitzidis C. Mapping Arable Land and Permanent Agriculture Extent and Change in Southern Greece Using the European Union LUCAS Survey and a 35-Year Landsat Time Series Analysis. Remote Sensing. 2022; 14(14):3369. https://doi.org/10.3390/rs14143369
Chicago/Turabian StyleSparks, Aaron M., Imen Bouhamed, Luigi Boschetti, Ioannis Z. Gitas, and Chariton Kalaitzidis. 2022. "Mapping Arable Land and Permanent Agriculture Extent and Change in Southern Greece Using the European Union LUCAS Survey and a 35-Year Landsat Time Series Analysis" Remote Sensing 14, no. 14: 3369. https://doi.org/10.3390/rs14143369
APA StyleSparks, A. M., Bouhamed, I., Boschetti, L., Gitas, I. Z., & Kalaitzidis, C. (2022). Mapping Arable Land and Permanent Agriculture Extent and Change in Southern Greece Using the European Union LUCAS Survey and a 35-Year Landsat Time Series Analysis. Remote Sensing, 14(14), 3369. https://doi.org/10.3390/rs14143369