Subsurface Temperature Reconstruction for the Global Ocean from 1993 to 2020 Using Satellite Observations and Deep Learning
Abstract
:1. Introduction
2. Study Area and Data
3. Methods
3.1. ConvLSTM Neural Network
3.2. LightGBM
3.3. Experimental Design
4. Results and Discussion
4.1. Accuracy Comparison between the ConvLSTM and LightGBM Models
4.2. DORS Dataset and Accuracy Evaluation
4.2.1. Time Series Accuracy Evaluation
4.2.2. Spatial Distribution Validation
4.2.3. Vertical Distribution Validation
4.3. Subsurface Temperature Evolution and Global Ocean Warming
4.3.1. Spatiotemporal Patterns from EOF Analysis
4.3.2. Subsurface Temperature Evolution Related to ENSO
4.3.3. Subsurface Temperature Anomaly and Ocean Warming Trends
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Von Schuckmann, K.; Cheng, L.; Palmer, M.D.; Hansen, J.; Tassone, C.; Aich, V.; Adusumilli, S.; Beltrami, H.; Boyer, T.; Cuesta-Valero, F.J. Heat stored in the Earth system: Where does the energy go? Earth Syst. Sci. Data 2020, 12, 2013–2041. [Google Scholar] [CrossRef]
- Wouters, B.; van de Wal, R. Global sea-level budget 1993--present. Earth Syst. Sci. Data 2018, 10, 1551–1590. [Google Scholar]
- Meyssignac, B.; Boyer, T.; Zhao, Z.; Hakuba, M.Z.; Landerer, F.W.; Stammer, D.; Köhl, A.; Kato, S.; L Ecuyer, T.; Ablain, M. Measuring global ocean heat content to estimate the Earth energy imbalance. Front. Mar. Sci. 2019, 6, 432. [Google Scholar] [CrossRef] [Green Version]
- Von Schuckmann, K.; Palmer, M.D.; Trenberth, K.E.; Cazenave, A.; Chambers, D.; Champollion, N.; Hansen, J.; Josey, S.A.; Loeb, N.; Mathieu, P. An imperative to monitor Earth’s energy imbalance. Nat. Clim. Chang. 2016, 6, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.H.; Boyer, T.; Trenberth, K.; Karl, T.R.; Xie, S.P.; Nieves, V.; Tung, K.K.; Roemmich, D. The global warming hiatus: Slowdown or redistribution? Earth’s Future 2016, 4, 472–482. [Google Scholar] [CrossRef]
- Cheng, L.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Abraham, J.; Zhu, J. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 2017, 3, e1601545. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Abraham, J.; Zhu, J.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Locarnini, R.; Zhang, B.; Yu, F.; Wan, L.; et al. Record-Setting Ocean Warmth Continued in 2019. Adv. Atmos. Sci. 2020, 37, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Cheng, L.; Zhu, J. Uncertainties of the ocean heat content estimation induced by insufficient vertical resolution of historical ocean subsurface observations. J. Atmos. Ocean. Technol. 2014, 31, 1383–1396. [Google Scholar] [CrossRef]
- Wang, G.; Cheng, L.; Abraham, J.; Li, C. Consensuses and discrepancies of basin-scale ocean heat content changes in different ocean analyses. Clim. Dynam. 2018, 50, 2471–2487. [Google Scholar]
- Dickey, T.D. Emerging ocean observations for interdisciplinary data assimilation systems. J. Mar. Syst. 2003, 40, 5–48. [Google Scholar] [CrossRef]
- Talley, L.D.; Pickard, G.L.; Emery, W.J.; Swift, J.H. Dynamical processes for descriptive ocean circulation. Descr. Phys. Oceanogr. 2011, 6, 187–259. [Google Scholar]
- Klein, S.A.; Soden, B.J.; Lau, N. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge. J. Clim. 1999, 12, 917–932. [Google Scholar] [CrossRef] [Green Version]
- Martin, S. An Introduction to Ocean Remote Sensing; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Ali, M.M.; Swain, D.; Weller, R.A. Estimation of ocean subsurface thermal structure from surface parameters: A neural network approach. Geophys. Res. Lett. 2004, 31, L20308. [Google Scholar] [CrossRef] [Green Version]
- Klemas, V.; Yan, X. Subsurface and deeper ocean remote sensing from satellites: An overview and new results. Prog. Oceanogr. 2014, 122, 1–9. [Google Scholar] [CrossRef]
- Wang, J.; Flierl, G.R.; LaCasce, J.H.; McClean, J.L.; Mahadevan, A. Reconstructing the ocean′s interior from surface data. J. Phys. Oceanogr. 2013, 43, 1611–1626. [Google Scholar] [CrossRef]
- Su, H.; Wu, X.; Yan, X.; Kidwell, A. Estimation of subsurface temperature anomaly in the Indian Ocean during recent global surface warming hiatus from satellite measurements: A support vector machine approach. Remote Sens. Environ. 2015, 160, 63–71. [Google Scholar] [CrossRef]
- Cheng, L.; Zhu, J. Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations. J. Clim. 2016, 29, 5393–5416. [Google Scholar] [CrossRef]
- Guinehut, S.; Dhomps, A.; Larnicol, G.; Le Traon, P. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean. Sci. 2012, 8, 845–857. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Huang, L.; Li, W.; Yang, X.; Yan, X.H. Retrieving ocean subsurface temperature using a satellite-based geographically weighted regression model. J. Geophys. Res. Ocean. 2018, 123, 5180–5193. [Google Scholar] [CrossRef]
- Yu, F.; Wang, Z.; Liu, S.; Chen, G. Inversion of the three-dimensional temperature structure of mesoscale eddies in the Northwest Pacific based on deep learning. Acta Oceanol. Sin. 2021, 40, 176–186. [Google Scholar] [CrossRef]
- Akbari, E.; Alavipanah, S.K.; Jeihouni, M.; Hajeb, M.; Haase, D.; Alavipanah, S. A review of ocean/sea subsurface water temperature studies from remote sensing and non-remote sensing methods. Water 2017, 9, 936. [Google Scholar] [CrossRef] [Green Version]
- Su, H.; Li, W.; Yan, X.H. Retrieving temperature anomaly in the global subsurface and deeper ocean from satellite observations. J. Geophys. Res. Ocean. 2018, 123, 399–410. [Google Scholar] [CrossRef]
- Su, H.; Yang, X.; Lu, W.; Yan, X. Estimating subsurface thermohaline structure of the global ocean using surface remote sensing observations. Remote Sens. 2019, 11, 1598. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Song, T.; Zhu, S.; Yang, S.; Feng, L. Subsurface temperature estimation from sea surface data using neural network models in the western pacific ocean. Mathematics 2021, 9, 852. [Google Scholar] [CrossRef]
- Bolton, T.; Zanna, L. Applications of deep learning to ocean data inference and subgrid parameterization. J. Adv. Model. Earth Syst. 2019, 11, 376–399. [Google Scholar]
- Ham, Y.; Kim, J.; Luo, J. Deep learning for multi-year ENSO forecasts. Nature 2019, 573, 568–572. [Google Scholar] [CrossRef]
- Meng, L.; Yan, C.; Zhuang, W.; Zhang, W.; Geng, X.; Yan, X. Reconstructing High-Resolution Ocean Subsurface and Interior Temperature and Salinity Anomalies From Satellite Observations. IEEE Trans. Geosci. Remote Sens. 2021, 99, 1–14. [Google Scholar] [CrossRef]
- Zuo, X.; Zhou, X.; Guo, D.; Li, S.; Liu, S.; Xu, C. Ocean Temperature Prediction Based on Stereo Spatial and Temporal 4-D Convolution Model. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Su, H.; Zhang, T.; Lin, M.; Lu, W.; Yan, X. Predicting subsurface thermohaline structure from remote sensing data based on long short-term memory neural networks. Remote Sens. Environ. 2021, 260, 112465. [Google Scholar]
- Jiang, F.; Ma, J.; Wang, B.; Shen, F.; Yuan, L. Ocean Observation Data Prediction for Argo Data Quality Control Using Deep Bidirectional LSTM Network. Secur. Commun. Netw. 2021, 2021, 5665386. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, T.; Han, G.; Gou, Y. TD-LSTM: Temporal dependence-based LSTM networks for marine temperature prediction. Sensors 2018, 18, 3797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contractor, S.; Roughan, M. Efficacy of feedforward and lstm neural networks at predicting and gap filling coastal ocean timeseries: Oxygen, nutrients, and temperature. Front. Mar. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Su, H.; Qin, T.; Wang, A.; Lu, W. Reconstructing ocean heat content for revisiting global ocean warming from remote sensing perspectives. Remote Sens. 2021, 13, 3799. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.; Wong, W.; Woo, W. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. Adv. Neural Inf. Processing Syst. 2015, 28, 802–810. [Google Scholar]
- Good, S.A.; Martin, M.J.; Rayner, N.A. EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. J. Geophys. Res. Ocean. 2013, 118, 6704–6716. [Google Scholar] [CrossRef]
- Ishii, M.; Fukuda, Y.; Hirahara, S.; Yasui, S.; Suzuki, T.; Sato, K. Accuracy of global upper ocean heat content estimation expected from present observational data sets. SOLA 2017, 13, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Processing Syst. 2017, 30, 3149–3157. [Google Scholar]
- Zhang, T.Y.; Su, H.; Yang, X.; Yan, X.-H. Remote sensing prediction of global subsurface thermohaline and the impact of longitude and latitude based on LightGBM. J. Remote Sens. 2020, 24, 1255–1269. [Google Scholar]
- Cheng, L.; Trenberth, K.E.; Fasullo, J.T.; Mayer, M.; Balmaseda, M.; Zhu, J. Evolution of ocean heat content related to ENSO. J. Clim. 2019, 32, 3529–3556. [Google Scholar] [CrossRef]
Data | Sources | Time | Spatial Resolution |
---|---|---|---|
SSH | http://www.aviso.altimetry.fr (accessed on 1 April 2021) | 1993– | 0.25° × 0.25° |
SST | https://www.ncei.noaa.gov/products/optimum-interpolation-sst (accessed on 1 April 2021) | 1981– | 0.25° × 0.25° |
SSW | https://rda.ucar.edu/datasets/ds745.1/ (accessed on 1 April 2021) | 1987– | 0.25° × 0.25° |
Argo | http://apdrc.soest.hawaii.edu/projects/Argo/ (accessed on 1 April 2021) | 2005– | 1° × 1° |
IAP | http://159.226.119.60/cheng/ (accessed on 1 June 2021) | 1940– | 1° × 1° |
EN4 | https://www.metoffice.gov.uk/hadobs/en4/ (accessed on 1 June 2021) | 1900– | 1° × 1° |
EN4-Profile | https://www.metoffice.gov.uk/hadobs/en4/ (accessed on accessed on 1 April 2022) | 1900– | |
Ishii | https://climate.mri-jma.go.jp/pub/ocean/ts/v7.3.1 (accessed on 1 July 2021) | 1955– | 1° × 1° |
ARMOR3D | https://resources.marine.copernicus.eu/product-detail/ (accessed on 15 July 2021) | 1993– | 0.25° × 0.25° |
Network Parameters | Optimal Parameters |
---|---|
Loss function | Mean-squared-error |
Optimizer | RMSprop |
Activation | ELU |
Learning rate | 0.001 |
Training samples | 413,881 |
Epoch | 4000 |
Depths | Global | Global (1993 to 1999) | Global (2000 to 2020) | AO | PO | IO | SO |
---|---|---|---|---|---|---|---|
0–700 m | 0.123 | 0.089 | 0.127 | 0.144 | 0.138 | 0.137 | 0.036 |
700–2000 m | 0.017 | 0.016 | 0.017 | 0.022 | 0.013 | 0.025 | 0.014 |
0–2000 m | 0.063 | 0.047 | 0.064 | 0.074 | 0.068 | 0.073 | 0.024 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, H.; Jiang, J.; Wang, A.; Zhuang, W.; Yan, X.-H. Subsurface Temperature Reconstruction for the Global Ocean from 1993 to 2020 Using Satellite Observations and Deep Learning. Remote Sens. 2022, 14, 3198. https://doi.org/10.3390/rs14133198
Su H, Jiang J, Wang A, Zhuang W, Yan X-H. Subsurface Temperature Reconstruction for the Global Ocean from 1993 to 2020 Using Satellite Observations and Deep Learning. Remote Sensing. 2022; 14(13):3198. https://doi.org/10.3390/rs14133198
Chicago/Turabian StyleSu, Hua, Jinwen Jiang, An Wang, Wei Zhuang, and Xiao-Hai Yan. 2022. "Subsurface Temperature Reconstruction for the Global Ocean from 1993 to 2020 Using Satellite Observations and Deep Learning" Remote Sensing 14, no. 13: 3198. https://doi.org/10.3390/rs14133198
APA StyleSu, H., Jiang, J., Wang, A., Zhuang, W., & Yan, X. -H. (2022). Subsurface Temperature Reconstruction for the Global Ocean from 1993 to 2020 Using Satellite Observations and Deep Learning. Remote Sensing, 14(13), 3198. https://doi.org/10.3390/rs14133198