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Abstract: The reconstruction of the ocean’s 3D thermal structure is essential to the study of ocean
interior processes and global climate change. Satellite remote sensing technology can collect large-
scale, high-resolution ocean observation data, but only at the surface layer. Based on empirical
statistical and artificial intelligence models, deep ocean remote sensing techniques allow us to retrieve
and reconstruct the 3D ocean temperature structure by combining surface remote sensing observations
with in situ float observations. This study proposed a new deep learning method, Convolutional Long
Short-Term Memory (ConvLSTM) neural networks, which combines multisource remote sensing
observations and Argo gridded data to reconstruct and produce a new long-time-series global ocean
subsurface temperature (ST) dataset for the upper 2000 m from 1993 to 2020, which is named the
Deep Ocean Remote Sensing (DORS) product. The data-driven ConvLSTM model can learn the
spatiotemporal features of ocean observation data, significantly improves the model’s robustness
and generalization ability, and outperforms the LighGBM model for the data reconstruction. The
validation results show our DORS dataset has high accuracy with an average R2 and RMSE of
0.99/0.34 ◦C compared to the Argo gridded dataset, and the average R2 and NRMSE validated
by the EN4-Profile dataset over the time series are 0.94/0.05 ◦C. Furthermore, the ST structure
between DORS and Argo has good consistency in the 3D spatial morphology and distribution pattern,
indicating that the DORS dataset has high quality and strong reliability, and well fills the pre-Argo
data gaps. We effectively track the global ocean warming in the upper 2000 m from 1993 to 2020
based on the DORS dataset, and we further examine and understand the spatial patterns, evolution
trends, and vertical characteristics of global ST changes. From 1993 to 2020, the average global ocean
temperature warming trend is 0.063 ◦C/decade for the upper 2000 m. The 3D temperature trends
revealed significant spatial heterogeneity across different ocean basins. Since 2005, the warming
signal has become more significant in the subsurface and deeper ocean. From a remote sensing
standpoint, the DORS product can provide new and robust data support for ocean interior process
and climate change studies.

Keywords: subsurface temperature; remote sensing data; deep learning; ocean warming; DORS dataset

1. Introduction

The ocean acts as a heat sink and greatly modulates the Earth’s energy balance.
The ocean absorbs about 90% of the excess heat trapped in the climate system [1]; the
huge heat storage in the ocean causes significant ocean warming and leads to sea level
rise [2]. Quantitative and accurate monitoring of the internal thermal structure of the
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ocean is the foundation for detecting and understanding changes in the Earth’s Energy
Imbalance [3,4], as well as ocean heat sequestration and redistribution during global
warming and hiatus [5–7]. Ocean temperature is the most direct reflection of changes in
the global ocean’s internal thermal structure. Internal ocean temperature observations are
sparse and inhomogeneous, which severely limits study on ocean warming and dynamic
processes [8,9]. Although the Argo float observing network has achieved global ocean
observations within a depth range of 0–2000 m, there are still data gaps in the pre-Argo
period. The ocean’s internal dynamic processes, characterized by multiple spatiotemporal
scales, are complicated [10,11]. The time series of the Argo float dataset is too short to
support long-term ocean phenomena analysis. As a result, long-term reconstruction of the
global ocean subsurface temperature (ST) dataset is imperative.

Satellite remote sensing technology provided large-scale and high-spatiotemporal-
resolution, as well as long-time-series, ocean observation in the 1970s, which aided the
development of atmospheric and marine sciences [12,13]. However, due to the physical
properties of the ocean, the electromagnetic waves of satellite remote sensing cannot pene-
trate directly into the ocean, making direct observation of the ocean’s internal information
impossible [14]. Some studies have indicated that certain physical phenomena and changes
within the ocean have surface manifestations that can be detected by satellite remote sens-
ing [15]. By developing a certain model of the relationship between satellite-based sea
surface observations and float-based subsurface observations, the environmental param-
eters within the ocean can be accurately retrieved [16,17]. Through deep ocean remote
sensing (DORS) techniques combining satellite data and Argo data, it is possible to realize
the expansion of satellite observations from the surface to the subsurface as well as the
time sequence from the back to the front. So far, empirical statistical methods [18–21], and
artificial intelligence data-driven methods [14,17,22–25] have become the most common
and popular methods for developing DORS techniques.

With the increasing number of ocean observations, the large amount of ocean data
(including remote sensing and float data) is sufficient to build new data-driven methods
such as deep learning models for developing DORS techniques. Nowadays, advanced
artificial intelligence technology has a new impetus for the inversion and reconstruction of
ocean internal parameters. In big data modeling, deep learning networks can capture more
spatiotemporal features than machine learning methods [26,27]. Convolutional neural
networks (CNN), which have the advantage of capturing spatial feature information,
and long short-term memory (LSTM), which solves time series dependency problems,
are frequently used in the fields of geoscience and remote sensing. CNN can well learn
the spatial pattern and relationships of the input data, and can achieve high accuracy
in the spatial distribution [28,29]. The subsurface thermohaline structure can be well
predicted based on LSTM and its variants, and the accuracy is higher than methods such as
random forests (RFs) [30], recurrent neural network (RNN) [31], support vector regression
(SVR), and multilayer perceptron regressor (MLPR) [32]. LSTM is not only suitable for the
inversion of ocean subsurface temperature but also has a good application in predicting
other ocean internal parameters [33], such as the time series reconstruction of global ocean
heat content for the upper 2000 m [34]. Because of ocean data’s inherent spatial nonlinearity
and temporal dependence, traditional LSTM and CNN cannot fully exploit the temporal
and spatial properties of ocean data. As a result, the ConvLSTM algorithm was proposed
to extend LSTM [35]. The model can account for not only the time series dependence of
ocean data but also the spatial characteristics of ocean data, allowing it to better capture
the characteristics of temporal and spatial changes in the ocean.

The purpose of this study is to develop a new spatiotemporal deep learning model
to reconstruct the time series global ocean ST dataset using the ConvLSTM algorithm by
combining multisource remote sensing observations with Argo float observations. Here,
a new long-time-series and global-scale DORS product based on satellite remote sensing
and AI is reconstructed for tracking global ocean warming from 1993 to 2020. This new
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satellite-based DORS product is promising and has great potential to support the study of
global ocean warming and climate change from a remote sensing perspective.

2. Study Area and Data

The ocean, as a massive heat storage reservoir, is critical to the global climate system.
The study area spans 180◦W–180◦E and 78.375◦S–77.625◦N, primarily covering the Pacific,
Atlantic, Indian, and Southern Oceans (Figure 1).
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Figure 1. Technical flowchart for satellite-based time series reconstruction of global subsurface
temperature based on the ConvLSTM model.

To reconstruct a time series model, this study combines surface remote sensing ob-
servations with Argo float observations: (1) sea surface temperature (SST), sea surface
height (SSH), sea surface wind, and the sea surface wind field, which can be decomposed
into northward and eastward components (USSW, VSSW); and (2) Argo gridded ocean
temperature data in the upper 2000 m since 2005, including 23 standard layers. Moreover,
Institute of Atmospheric Physics (IAP) gridded ocean temperature data from the Insti-
tute of Atmospheric Sciences, Chinese Academy of Sciences [6], EN4 analyses and profile
ocean temperature data of the British Meteorological Service Hadley Centre [36], Ishii data
provided by the Meteorological Institute of the Japan Meteorological Agency [37], and
ARMOR3D ocean temperature data provided by the European Copernicus Service [18]
were used in this study for accuracy validation (Table 1).

Table 1. Data used in this study.

Data Sources Time Spatial Resolution

SSH http://www.aviso.altimetry.fr (accessed on 1 April 2021) 1993– 0.25◦ × 0.25◦

SST https://www.ncei.noaa.gov/products/optimum-interpolation-sst (accessed on 1 April 2021) 1981– 0.25◦ × 0.25◦

SSW https://rda.ucar.edu/datasets/ds745.1/ (accessed on 1 April 2021) 1987– 0.25◦ × 0.25◦

Argo http://apdrc.soest.hawaii.edu/projects/Argo/ (accessed on 1 April 2021) 2005– 1◦ × 1◦

IAP http://159.226.119.60/cheng/ (accessed on 1 June 2021) 1940– 1◦ × 1◦

EN4 https://www.metoffice.gov.uk/hadobs/en4/ (accessed on 1 June 2021) 1900– 1◦ × 1◦

EN4-Profile https://www.metoffice.gov.uk/hadobs/en4/ (accessed on accessed on 1 April 2022) 1900–

Ishii https://climate.mri-jma.go.jp/pub/ocean/ts/v7.3.1 (accessed on 1 July 2021) 1955– 1◦ × 1◦

ARMOR3D https://resources.marine.copernicus.eu/product-detail/ (accessed on 15 July 2021) 1993– 0.25◦ × 0.25◦

http://www.aviso.altimetry.fr
https://www.ncei.noaa.gov/products/optimum-interpolation-sst
https://rda.ucar.edu/datasets/ds745.1/
http://apdrc.soest.hawaii.edu/projects/Argo/
http://159.226.119.60/cheng/
https://www.metoffice.gov.uk/hadobs/en4/
https://www.metoffice.gov.uk/hadobs/en4/
https://climate.mri-jma.go.jp/pub/ocean/ts/v7.3.1
https://resources.marine.copernicus.eu/product-detail/
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3. Methods
3.1. ConvLSTM Neural Network

LSTM, as a special recurrent neural network (RNN) structure, performs well in process-
ing time series data with temporal correlation. However, when processing spatiotemporal
data, it does not encode spatial information, resulting in excessive spatial redundancy, and
the spatial data has strong local characteristics that LSTM cannot describe. The ConvLSTM
model is an LSTM variant that can be used to solve spatiotemporal prediction problems.
The purpose of ConvLSTM is to predict the precipitation of adjacent time nodes, which
is a time series problem [35]. Because the ocean observation data used in this study have
inherent spatial nonlinearity and temporal dependence, the reconstruction of the global ST
structure can be thought of as a spatiotemporal prediction problem, with input and output
targets and also spatiotemporal sequences. The ConvLSTM algorithm can account for not
only the time series dependence of ocean data but also the spatial correlation of ocean data.
Furthermore, the governing equations of oceanic dynamics, the Navier-Stokes equation, is
a set of equations with nonlinear and time-dependent terms. Hence, we consider that our
ConvLSTM method can better grasp these features and improve the prediction accuracy.
ConvLSTM proposes a ConvLSTM unit with a convolutional structure in the input-to-state
and state-to-state transitions by extending the LSTM, that is, by changing the traditional
LSTM fully connected layer to a convolutional layer.

3.2. LightGBM

The light-gradient-boosting machine (LightGBM) [38], proposed by Microsoft Research
Asia, is a gradient-boosting framework and an improved algorithm for the gradient-boosted
decision tree (GBDT) model. LightGBM solves the shortcomings of the traditional boosting
algorithm in scalability and running speed. The model supports parallel learning, which
can greatly reduce the training time and computational cost. At present, LightGBM has
been effectively applied in the field of remote sensing. LightGBM is superior to other
classic machine learning methods [39]. Therefore, this study employed LightGBM as
a comparison model.

3.3. Experimental Design

Figure 2 depicts the overall experiment technical flowchart, which is divided into three
steps: model setup, time series reconstruction, and accuracy evaluation. A training set of
surface remote sensing observations from 2010 to 2015 and Argo float observation is used
in this study: longitude, latitude, SSH, SST, USSW, VSSW, and the training label is Argo
gridded data. The reconstruction accuracy of the model is quantitatively evaluated in this
study using R2, RMSE, and normalized root-mean-square error (NRMSE) indicators.

Based on the ConvLSTM model, this study reconstructs an end-to-end trainable model
to deal with the global ST structure reconstruction problem. The data acceptance form of
the ConvLSTM network is a 4D tensor of (time step, image height, image width, image
channel). In the data component stage, the training set needs to be organized as a 5D tensor
(image batch, time step, image height, image width, image channel). The vital parameters
of the model that are tuned to the optimal ones by the grid search strategy are shown in
Table 2. The activation function used here is Elu, and we set the optimizer to RMSprop
and the maximum number of epochs to 4000. The ConvLSTM network structure has
1 input layer, 11 hidden layers, and 1 output layer. The ConvLSTM2D layer is chosen by
the hidden layer, along with the BatchNormalization layer and the Dropout layer, and
the ConvLSTM3D layer is chosen by the output layer. For the LightGBM model, there
are three important hyperparameters: the number of leaf nodes, the learning rate, and
the number of iterations. We set them as 30, 0.5, and 3000, respectively, by grid-search
hyperparameter tuning.
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temperature based on the ConvLSTM model.

Table 2. ConvLSTM network parameters.

Network Parameters Optimal Parameters

Loss function Mean-squared-error
Optimizer RMSprop
Activation ELU

Learning rate 0.001
Training samples 413,881

Epoch 4000

4. Results and Discussion
4.1. Accuracy Comparison between the ConvLSTM and LightGBM Models

Here, in order to validate the advantages of the ConvLSTM model, we employed
the advanced LightGBM method as a comparison algorithm. We established time series
ConvLSTM and LightGBM models to estimate ST at different depth levels in January 2016
and evaluated the accuracy using the EN4-Profile dataset by R2 and NRMSE indicators
(NRMSE is the RMSE divided by the range of the EN4-Profile ST values at the current
depth level). The R2 of the ConvLSTM were higher than the LightGBM and the NRMSE
were lower than the LightGBM at different depth levels (Figure 3), which suggests that the
ConvLSTM model has better performance and higher accuracy than the LightGBM model,
regardless of the depth. Overall, the ConvLSTM model outperformed the LightGBM model
in subsurface temperature estimation because the deep-neural-network-based method has
an advantage in learning the spatiotemporal features of the ocean data.
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4.2. DORS Dataset and Accuracy Evaluation

Here, a new long-time-series global ocean ST dataset (DORS) was reconstructed
using the aforementioned ConvLSTM model by combining multisource remote sensing
observations with Argo float observations. The DORS dataset contains 23 depth layers
(from 30 m to 2000 m depth) and is a monthly dataset from 1993 to 2020 with a spatial
resolution of 1◦ × 1◦, which has been shared and can be freely accessed (http://www.doi.
org/10.57760/sciencedb.01918, accessed on 1 April 2022).

4.2.1. Time Series Accuracy Evaluation

The DORS dataset and the Argo/IAP/EN4/Ishii/ARMOR3D dataset are used for
consistency comparison and quality validation based on the evaluation indicators R2

and RMSE (Figure 4). The R2 of the DORS dataset and the validation dataset decreased
gradually with increasing depth at the 0–600 m layers and decreased rapidly at 100–500 m
(Figure 4a). The disturbance of seawater in the mixed layer and thermocline may render
internal phenomena of the ocean insignificant in the surface layer, resulting in a decrease
in the model reconstruction accuracy. At 800–1300 m, the R2 showed an upward trend
again, and the correlation trend with the IAP and ARMOR3D datasets at 1800–2000 m
was different from the other datasets and showed a downward trend with the increase
in depth. In general, the R2 of the DORS and Argo/IAP/Ishii datasets remained above
0.98 at 0–2000 m, and the overall fluctuation was small, whereas the R2 of the dataset and
EN4 /ARMOR3D fluctuated more at the 100–800 m layers, but it remained above 0.96.
When compared to the validation datasets, the DORS had similar changes in the multiyear
average RMSE at different depths. Except for the rising trend of the RMSE in the mixed
layer (0–100 m), the RMSEs of the other layers all showed a downward trend with the
increase in depth. Because the temperature of the ocean gradually decreases with depth,
the range and variance of ST are small, so the RMSE is kept in a low range.

The average R2 and RMSE of DORS relative to Argo over the time series were
0.99/0.34 ◦C, respectively (Figure 4b). The average R2 and RMSE with IAP were 0.98/0.46 ◦C.
The average R2 and RMSE with EN4 were 0.98/0.53 ◦C. The average R2 and RMSE with
Ishii were 0.99/0.44 ◦C. The average R2 and RMSE with ARMOR3D were 0.98/0.57 ◦C.
Overall, DORS had the highest R2 with Argo and the lowest with ARMOR3D. Our DORS
dataset, reconstructed from satellite observations and deep learning, has high consistency
with the various gridded datasets (with high R2 ranging from 0.97 to 0.99), and the dis-
crepancies among the different datasets are really low and indistinctive. The DORS also
has high prediction accuracy, validated by the EN4-Profile dataset over the whole time

http://www.doi.org/10.57760/sciencedb.01918
http://www.doi.org/10.57760/sciencedb.01918
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series from 1993 to 2020. The average R2 and NRMSE validated by EN4-Profile dataset
over the time series were 0.94/0.05 ◦C, respectively (Figure 4c). Although there are some
fluctuations in the accuracy indicators for the prediction at deep layer, the overall accuracy
is relatively high and stable over different years and different depth levels. The R2 is almost
above 0.90, and the NRMSE ranges from 0.02 to 0.08 ◦C generally. Overall, the DORS
dataset has high accuracy and high consistency with each validation dataset, which shows
great potential in ocean process and climate change applications.
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EN4, Ishii, and ARMOR3D datasets. (b) Depth-averaged R2 of DORS relative to the Argo (from 2005 
to 2019), IAP, EN4, Ishii, and ARMOR3D datasets over long time series. (c) The R2 and NRMSE at 
different depths in the upper 2000 m validated by the EN4-Profile dataset from 1993 to 2020. The 
lines in the figure were smoothed by running a mean filter for 6 months. 

A wide range of high-temperature zones can be observed at the 100 m depth level, 
ranging from 30°S to 30°N (Figure 5a,d). Meanwhile, there are some low-temperature 
zones from 40°S to 60°S and from 40°N to 60°N. The high-value area of the global ocean 
temperature shrinks at the 500 m depth level. The North Atlantic Ocean has the highest 
temperature (Figure 6a,d). The spatial distribution at 1000 m is similar to that at 500 m 
(Figure 7a,d). The Atlantic Ocean temperature is warmer than the other ocean basins at 
2000 m (Figure 8a,d). The spatial distributions of the DORS and Argo dataset at all layers 
are generally consistent, and there is no abrupt excursion. This demonstrates that the Con-
vLSTM performance is robust and effective, and the spatial distribution characteristics of 
global subsurface temperature are well learned. The ConvLSTM model outperforms the 
LightGBM model in both consistency and accuracy, implying that the reconstruction qual-
ity of the DORS dataset is good. 

Figure 4. (a) Time series mean R2 and RMSE at different depths for DORS relative to the Argo, IAP,
EN4, Ishii, and ARMOR3D datasets. (b) Depth-averaged R2 of DORS relative to the Argo (from
2005 to 2019), IAP, EN4, Ishii, and ARMOR3D datasets over long time series. (c) The R2 and NRMSE
at different depths in the upper 2000 m validated by the EN4-Profile dataset from 1993 to 2020. The
lines in the figure were smoothed by running a mean filter for 6 months.

4.2.2. Spatial Distribution Validation

The spatial distribution differences in our reconstructed datasets were compared to
the validation datasets at the same time (January 2016) and layer. Figures 5–8 depict the
spatial distribution of the reconstructed subsurface temperature for different layers (100 m,
500 m, 1000 m, and 2000 m) based on the ConvLSTM model, LightGBM model, and Argo
dataset, and the intensity scatter plots between the EN4-Profile ST and reconstructed ST. It
is clear that the spatial patterns of subsurface temperature between DORS and Argo are
quite similar, while there are some deviations in some regions between LightGBM and Argo
at different depth levels. The scatter density plot shows that DORS is highly correlated with
EN4-Profile, regardless of depth levels. The R2 of DORS is higher than that of LightGBM,
while the RMSE of DORS is lower at different depth levels.
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Figure 5. The spatial distributions of DORS, LightGBM, and Argo at 100 m for January 2016, and
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plots between the DORS ST and the EN4-Profile ST.
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A wide range of high-temperature zones can be observed at the 100 m depth level,
ranging from 30◦S to 30◦N (Figure 5a,d). Meanwhile, there are some low-temperature
zones from 40◦S to 60◦S and from 40◦N to 60◦N. The high-value area of the global ocean
temperature shrinks at the 500 m depth level. The North Atlantic Ocean has the highest
temperature (Figure 6a,d). The spatial distribution at 1000 m is similar to that at 500 m
(Figure 7a,d). The Atlantic Ocean temperature is warmer than the other ocean basins at
2000 m (Figure 8a,d). The spatial distributions of the DORS and Argo dataset at all layers
are generally consistent, and there is no abrupt excursion. This demonstrates that the
ConvLSTM performance is robust and effective, and the spatial distribution characteristics
of global subsurface temperature are well learned. The ConvLSTM model outperforms
the LightGBM model in both consistency and accuracy, implying that the reconstruction
quality of the DORS dataset is good.

4.2.3. Vertical Distribution Validation

We compared and analyzed the temperature structure from the perspective of the 3D
spatial form and distribution pattern to thoroughly verify the pros and cons of the DORS
dataset. Figure 9a depicts the spatial distribution of SST in the global ocean in January 2016,
from which meridian section A and rectangular section B are intercepted, and the length
and width of the matrix are 10. Figure 9b depicts the meridional section of the DORS and
Argo datasets at a longitude of 160◦W. The result indicates that the vertical temperature
structure presents a gradual decrease trend from the surface to the subsurface and deep
ocean. The high temperature south of the Equator vertically extends deeper than north
of the Equator, which may be related to season variability. The high-temperature zone is
mainly concentrated between 30◦S–30◦N, and the temperature changes significantly in the
range of 0–500 m. Temperature fluctuation below 500 m tends to be stable, with a small
range of change. The DORS isotherms are relatively smooth, and the data transitions
in different layers are also relatively smooth. The overall spatial shape and trend of the
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DORS dataset are similar to those of the Argo dataset, indicating that the ConvLSTM
reconstruction accuracy will not be significantly reduced as the depth increases.
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of ST. This study conducts an EOF analysis of the global temperature monthly product 
after removing linear trends and seasonal signals (using a 12-month moving average). 
Figure 10 depicts the comparative EOF analysis of the average temperature anomaly of 23 
layers from 0 to 2000 m based on the DORS and Argo data. The spatial patterns of the 
DORS and Argo data are relatively consistent. The EOFs (spatial modes) and PCs (tem-
poral coefficients) of the first two modes are shown in Figure 10, and the total variance 
contribution rates for the two modes are 58.0% (DORS) and 45.1% (Argo), respectively. In 
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Figure 9. (a) Spatial distribution of sea surface temperature (SST) in the global ocean in January 2016.
A meridional profile A (longitude of 160◦W) and a rectangular profile B were intercepted in the figure
to analyze the vertical variation of ST. (b) The meridional vertical distribution of Argo ST and DORS
ST in January 2016 where the longitude is 160◦W. (c) Vertical profile of all grid points in rectangular
area B for DORS ST and Argo ST in January 2016.

Figure 9c depicts the vertical distribution of all grid points for DORS ST and Argo ST
in rectangular area B in January 2016. Statistical analysis shows that more than 98.48% of
the profile points for reconstruction have error less than ±1 ◦C, and more than 88.87% of
the profile points for reconstruction have error less than ±0.5 ◦C. The temperature of the
subsurface layer drops gently, and the temperature of the subsurface layer drops from about
30 ◦C to about 27 ◦C in this range. In the thermocline layer, the ST drops abruptly, while
in the deep layer the ST keeps stable. The results show that the temperature distribution
patterns of DORS and Argo are similar in all layers for the upper 2000 m, indicating that
DORS has a high reconstruction quality.
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4.3. Subsurface Temperature Evolution and Global Ocean Warming
4.3.1. Spatiotemporal Patterns from EOF Analysis

Empirical orthogonal function (EOF) analysis was performed on the DORS and Argo
datasets to further demonstrate DORS’s ability to capture the spatiotemporal variability of
ST. This study conducts an EOF analysis of the global temperature monthly product after
removing linear trends and seasonal signals (using a 12-month moving average). Figure 10
depicts the comparative EOF analysis of the average temperature anomaly of 23 layers from
0 to 2000 m based on the DORS and Argo data. The spatial patterns of the DORS and Argo
data are relatively consistent. The EOFs (spatial modes) and PCs (temporal coefficients)
of the first two modes are shown in Figure 10, and the total variance contribution rates
for the two modes are 58.0% (DORS) and 45.1% (Argo), respectively. In the first mode,
the PCs of the two products match very well and differ only slightly (Figure 10a), and
the EOFs are also very similar, particularly in the tropical Pacific. The majority of the
differences only exist in the North Atlantic and the Southern Ocean, with Argo capturing
more variation details in the latter. In the first mode, a strong ENSO-dominated dipole
pattern in the tropical Pacific is presented, and there is also a dipole pattern around the
tropical Indian Ocean (IO), indicating that DORS accurately captures the leading pattern of
ocean temperature anomaly. There is a positive anomaly pattern and a negative anomaly
pattern coexisting in the North Atlantic Ocean. The first PC shows strong interannual
variability with a relatively stable trend for the time series temporal coefficient, which
may be related to ENSO variability. The second mode demonstrates distinctive boundary
currents and Antarctic Circumpolar Current (ACC) variations, and there are some pattern
inconsistencies between DORS and Argo, with more prominent differences in the Atlantic
Ocean and the Southern Ocean (SO), but the overall trends of temporal coefficients are
similar with a slight increase trend (Figure 10b). In general, the ENSO variability and
large-scale ocean circulations dominate the spatiotemporal pattern of the global subsurface
temperature anomaly.

4.3.2. Subsurface Temperature Evolution Related to ENSO

El Niño–Southern Oscillation (ENSO) is the dominant mode of air-sea interaction in
the climate system. The spatial pattern of ocean temperature is greatly modulated by ENSO
(Figure 10). To examine the subsurface temperature evolution related to ENSO, we calcu-
lated the subsurface temperature tendency (STT) using the central difference method based
on the DORS dataset (using Lanczos filters and smoothing to reduce noise and the effects
of decadal variability before calculation) [40]. The result indicated that global STT is nega-
tively correlated with the NINO 3.4 index, that is, the ocean subsurface temperature shows
a cooling trend during El Niño and a warming trend during La Niña. The relationship
between STT and ENSO was well examined based on time series, and the global subsurface
temperature showed a trend of cooling during the developmental stage of El Niño and
reached a minimum value shortly after the peak of El Niño (Figure 11). This phenomenon
can be easily observed in the years of several stronger El Niño events. In addition, it is
found that the trend of ocean temperature change lags behind the development of ENSO
events, such that observation of the development stages of ENSO events can make some
simple projections of the trend of ocean temperature changes.

In addition, we also discuss the temperature changes in the tropics where ENSO
events originate and analyze the spatial characteristics of temperature changes from the
perspective of latitude. A Hovmöller diagram of the meridional-averaged STT in the upper
2000 m in the tropics from 1993 to 2020 shows the ENSO-related heat redistribution in
and out of the equatorial zone (Figure 12). The southern and equatorial tropical oceans
(15◦S–5◦N) tend to warm during La Niña and before El Niño (STT > 0) and cool during
and after El Niño (STT < 0). There is an opposite temperature trend in the 5–25◦N region,
suggesting that heat losses from the southern tropics during El Niño are dumped to areas
beyond the equator in the northern hemisphere. During the 1997–1998 and 2015–2016
super El Niño events, temperature trends in the tropics differed by more than 0.6 ◦C.



Remote Sens. 2022, 14, 3198 14 of 21

Remote Sens. 2022, 14, 3198 14 of 22 
 

 

10a), and the EOFs are also very similar, particularly in the tropical Pacific. The majority 
of the differences only exist in the North Atlantic and the Southern Ocean, with Argo cap-
turing more variation details in the latter. In the first mode, a strong ENSO-dominated 
dipole pattern in the tropical Pacific is presented, and there is also a dipole pattern around 
the tropical Indian Ocean (IO), indicating that DORS accurately captures the leading pat-
tern of ocean temperature anomaly. There is a positive anomaly pattern and a negative 
anomaly pattern coexisting in the North Atlantic Ocean. The first PC shows strong inter-
annual variability with a relatively stable trend for the time series temporal coefficient, 
which may be related to ENSO variability. The second mode demonstrates distinctive 
boundary currents and Antarctic Circumpolar Current (ACC) variations, and there are 
some pattern inconsistencies between DORS and Argo, with more prominent differences 
in the Atlantic Ocean and the Southern Ocean (SO), but the overall trends of temporal 
coefficients are similar with a slight increase trend (Figure 10b). In general, the ENSO var-
iability and large-scale ocean circulations dominate the spatiotemporal pattern of the 
global subsurface temperature anomaly. 

 
Figure 10. Comparative EOF analysis of the average temperature anomaly in the upper 2000 m from 
2005 to 2019 based on DORS and Argo data (baseline: 2005–2015). (a) The first spatial mode and 
respective temporal coefficient (PC1 for DORS and Argo); (b) the second spatial mode and respec-
tive temporal coefficient (PC2 for DORS and Argo). The lines in the figure were smoothed by run-
ning a mean filter for 12 months. 

4.3.2. Subsurface Temperature Evolution Related to ENSO 
El Niño–Southern Oscillation (ENSO) is the dominant mode of air-sea interaction in 

the climate system. The spatial pattern of ocean temperature is greatly modulated by 
ENSO (Figure 10). To examine the subsurface temperature evolution related to ENSO, we 
calculated the subsurface temperature tendency (STT) using the central difference method 

Figure 10. Comparative EOF analysis of the average temperature anomaly in the upper 2000 m from
2005 to 2019 based on DORS and Argo data (baseline: 2005–2015). (a) The first spatial mode and
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temporal coefficient (PC2 for DORS and Argo). The lines in the figure were smoothed by running a
mean filter for 12 months.
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Figure 12. A Hovmöller diagram of the STT obtained by meridional averaging over the 25◦S–25◦N
tropics based on the DORS dataset, along with the evolution of the NINO 3.4 index (green) (peaks
of El Niño events since 1993 are marked with vertical dashed lines). The lines in the figure were
smoothed by running a mean filter for 12 months.

4.3.3. Subsurface Temperature Anomaly and Ocean Warming Trends

Based on the DORS dataset subtracts, the subsurface temperature anomaly (STA)
and the spatiotemporal trends of ST in the global ocean and ocean basins are calculated
(the time series is from 1993 to 2020, and the climatological baseline is from 1993 to 2012).
Figure 13 shows the long-term STA evolution in the upper 2000 m of the global ocean
based on DORS and IAP datasets. The linear trends for the global ocean ST at different
layers and ocean basins from 1993 to 2020 are shown in Table 3. The ocean has warmed
significantly since 1993, and the trends of STA for the upper 2000 m from 1993 to 2020
for the DORS and IAP datasets are 0.063 and 0.046 ◦C/decade, respectively (Figure 13).
Although there are some differences in terms of trend, both trends are generally consistent
and have the same order of magnitude. Some discrepancies in the trends are inevitable and
acceptable because the existing gridded datasets based on optimal interpolation still have
some uncertainties (interpolation error caused by the XBT systematic error and observation
sparseness and unevenness), and the remote sensing projection and AI perspective for our
DORS reconstruction are completely different from the existing gridded datasets.

There was a slight warming in ocean temperature at the end of the 20th century,
from 1993 to 2000. The global ocean temperature increased slowly before the 21st century
(0.047 ◦C/decade), and the warming rate accelerated greatly after 2000 (0.064 ◦C/decade),
especially in the deep ocean (0–700 m) with a direct transition from cooling to warming
(0.127 ◦C/decade) (Figure 14d,g,i). The spatial distribution of the warming trend of the
0–700 m layer is close to that of the 0–2000 m layer, and the overall warming rate of the
0–700 m layer is higher than that of the 700–2000 m layer. The warming area of the global
ocean temperature from 1993 to 2000 is predominantly focused on the equatorial western
PO and part of the North Atlantic Ocean, as can be observed from the spatial distribution
(Figure 14d). In the equatorial eastern Pacific Ocean and high-latitude waters of the SO,
there is a relatively strong cooling phenomenon, and the ocean temperature change at the
end of the 20th century was mainly affected by the 0–700 m layers (Figure 14d,e), while the
700–2000 m layers had little effect on the trend of ST (Figure 14f). After 2000, the global
ocean showed a continuous warming trend, and the cooling trend was scattered in the
high-latitude waters of the SO and the North Atlantic Ocean (Figure 14g,h,i). The global
ocean boundary currents and the Antarctic Circumpolar Current show significant warming
trends for the upper 2000 m (Figure 14j,h,l). Undoubtedly, the global ocean has been in



Remote Sens. 2022, 14, 3198 16 of 21

a long-term warming trend since the start of the 21st century (Figure 14j), and the global
ocean temperature is setting new records in recent years [7].
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Table 3. Warming rates of the global ocean ST at different layers and ocean basins from 1993–2020 in
×◦C/decade.

Depths Global Global (1993 to 1999) Global (2000 to 2020) AO PO IO SO

0–700 m 0.123 0.089 0.127 0.144 0.138 0.137 0.036
700–2000 m 0.017 0.016 0.017 0.022 0.013 0.025 0.014
0–2000 m 0.063 0.047 0.064 0.074 0.068 0.073 0.024

The temperature evolution trends at the ocean basin scale show significant spatial
heterogeneity. The warming rates of the AO and the IO are similar at the 0–2000 m lay-
ers (Figure 14a), and the AO is in a state of rapid warming throughout the time series
(0.074 ◦C/decade). The warming rate of the SO slowed down from 2005 to 2010; mean-
while, other ocean basins were on an accelerating warming trend. At the 0–700 m layer
(Figure 14b), the overall warming rate of the AO was fast, and the rate of PO was higher
than that of the IO. The warming rate of each ocean basin increased after 2000. In 2015,
the IO showed a brief warming slowdown trend and then recovered quickly, possibly due
to the influence of El Niño events. The PO was warming slowly (0.013 ◦C/decade) from
700 to 2000 m, which is lower than in the AO (0.022 ◦C/decade), the IO (0.025 ◦C/decade),
and the SO (0.014 ◦C/decade). After 2005, the IO warming was considerably accelerated,
while that in the SO fluctuated greatly. The warming rate of the SO was not fast, was
relatively stable, and was in a state of warming most of the time, and the warming rate of
deep ocean water greatly accelerated from 2010 to 2015 (Figure 14c).

The vertical long-term evolution of global ocean temperature was examined to inves-
tigate the tendency of the global ocean temperature anomaly from a vertical perspective.
The global ocean surface showed an alternation of cooling and warming from 1993 to 2020,
primarily due to the ENSO event as illustrated in Figure 15a, and the surface warming
became more and more significant with time. Ocean warming gradually progressed from
the ocean surface to the deep layer after 2005. The warming trend of the deep ocean was
not significant before 2005, but after 2005, excepting the surface, a warming trend in the
100–2000 m layer was observed. The results showed that the interior of the ocean is in a state
of continuous warming, and global ocean warming gradually extends to the deep ocean.
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Figure 14. (a–c) Long-term time series trends of the global ocean and ocean-basin-scale subsurface
temperature anomaly ((a) 0–2000 m, (b) 0–700 m, (c) 700–2000 m). (d–i) Spatial distribution patterns
of global ocean temperature variation trends at different layers in the late 20th century and since
the 21st century. (j–l) Spatial distribution patterns of global ocean temperature variation trends at
different layers from 1993 to 2020. The lines in the figure were smoothed by running a mean filter for
12 months.

We divide the global profile into the meridional and zonal directions (Figure 15b,c) to
investigate the variation trend of ocean temperature in the meridional and latitudinal
directions, with a profile depth of 0–2000 m. Using the zonal average of the global ocean to
obtain a meridional profile, it can be found that the DORS dataset can well demonstrate
the trend of global ocean warming from the surface to the deep ocean. Above 1000 m, the
seawater at almost all longitudes in the world is in a warming trend, and below 1000 m,
there are also warming signals near the IO and the AO, which is consistent with previous
studies (Figure 15b). Similarly, to obtain a zonal profile, the global ocean is averaged in
the meridional direction, and the variation trend of ocean temperature in the zonal profile
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is analyzed (Figure 15c). From the profile distribution displayed by DORS STA, it is not
difficult to see that the deep warming in the Southern Hemisphere is more pronounced in
high latitudes than in low latitudes, especially in the SO, and there is a slight cooling trend
of ST in the high latitudes of the Northern Hemisphere.
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5. Conclusions

In this study, we established a time series reconstruction model of global ocean ST
and produced a new global ocean ST product (DORS) based on the ConvLSTM algorithm.
The network model makes up for the insufficiency of LSTM in processing spatiotemporal
data, and can effectively learn the spatiotemporal variation characteristics of marine data.
Moreover, we also adopted an advanced ensemble learning LighGBM for model compar-
ison; the results demonstrated that the ConvLSTM model outperformed the LighGBM
model for the data reconstruction. This study quantitatively evaluates the reconstruction
accuracy of the DORS dataset from multiple perspectives. Based on the DORS dataset, we
effectively track the global ocean warming in the upper 2000 m for about three decades
from 1993 to 2020 and carry out spatiotemporal analysis of global ocean temperature to
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examine and understand the spatial patterns, evolution trends, and vertical characteristics
of global ST changes.

The results suggest that: (1) the reconstructed DORS dataset based on the ConvL-
STM model has a high correlation with well-used international ocean datasets. The R2

with Argo, IAP, EN4, Ishii, and ARMOR3D is 0.99/0.98/0.98/0.99/0.98, and the RMSE is
0.34 ◦C/0.46 ◦C/0.53 ◦C/0.44 ◦C/0.57 ◦C. The average R2 and NRMSE validated by the
EN4-Profile dataset over time series are 0.94/0.05 ◦C, suggesting that our DORS dataset
is reliable with high accuracy. In terms of 3D spatial morphology and distribution pat-
tern, the DORS temperature structure matches well with the Argo data. It proves that
the ConvLSTM network can, indeed, successfully capture and learn the spatiotemporal
features of ocean observation data. (2) The ST spatiotemporal modes from the EOF analysis
indicate that DORS correctly captures the leading mode of ocean temperature. The STT
is negatively correlated with the NINO 3.4 index, and there is significant heat transfer in
the tropics. The spatial pattern of global STT is greatly influenced by the ENSO variability.
(3) There are significant differences in ocean temperature evolution trends between the
end of the 20th century and the first two decades of the 21st century. Compared to the
warming rate before 2000 (0.047 ◦C/decade), the warming rate after 2000 was greatly
increased (0.064 ◦C/decade). There are also some differences for the warming trends in
different ocean basins and depth layers, and the warming signal in the subsurface and
deeper ocean (300–2000 m) has become more significant, which suggests that the subsurface
and deeper ocean plays a more and more important role in heat uptake and storage. There
is a distinctive and continuous warming process within the ocean, and the warming signal
prominently extends from the upper layer to the subsurface and deeper layer during recent
global warming.

Overall, from a remote sensing perspective, the DORS product can well fill the gap
in the pre-Argo era and provide new and robust data support for ocean interior process
and climate change studies. The time series reconstruction of the global ocean ST struc-
ture above 2000 m is currently limited to 1◦ × 1◦ due to the limitation of the Argo data
resolution. However, with the development of artificial intelligence technology and the
gradual enrichment of observation methods in the ocean, it will be possible to reconstruct
the 3D temperature structure of higher resolution, deeper layers, and longer time series.
The establishment of the DORS product is not only a supplement to the ocean datasets.
Based on the DORS product, we further examine and understand the spatial patterns,
evolution trends, and vertical characteristics of global ST changes. In the future, the DORS
product will continue to be supported for global ocean temperature anomaly and ocean
heat content change analysis, and other marine climate change and variability studies, and
provide valuable and promising data support for ocean dynamic process, global warming,
and Sustainable Development Goals (SDGs).
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