Convolutional Neural Network and Optical Flow for the Assessment of Wave and Tide Parameters from Video Analysis (LEUCOTEA): An Innovative Tool for Coastal Monitoring
Abstract
:1. Introduction
2. Geographic Framework
3. Materials and Methods
3.1. Video Dataset Definition
3.2. Field Data
3.3. CNN for the Tide Assessment
3.4. Tracking Waves via Optical Flow
- is the wave break height (m);
- is the wavelength in offshore (m);
- is the water depth with breaker conditions (m);
- m is the bottom slope (radiant).
Coastal Area | Average Bottom Slope m (Radiant) | Wavelength in Deep Water L0 (m) | Water-Depth db at the Breaker Zone (m) | References |
---|---|---|---|---|
Massolivieri | 0.03–0.05 | 30 | 6 | [79,82] |
S.Lucia | 0.05–0.06 | 30 | 6 | [46,79,82] |
Varco 11 | 0.10–0.12 | 30 | 6 | [46,79,82] |
Cova Gala | 0.02–0.05 | 45 | 5.5 | [54,83] |
Costa Nova | 0.02–0.05 | 45 | 5.5 | [3,62,83] |
Nazaré | 0.19–0.05 | 70 | 12 | [78,80,85] |
Coxos | 0.2–0.23 | 70 | 15 | [78,80,85] |
4. Results
4.1. Tide Assessment through CNN Classification Technique
4.2. Wave Flow and Wave Height
4.3. Wave Insights during Storm Events
5. Discussions
Further Developments
6. Conclusions
- the tide phases from video frames.
- the storm surge values during the occurrence of an extreme marine event.
- the wave flow vectors from pixel intensity values converted in m/s units through TLS data.
- the wave height, wave period, and wavelength obtained for each position of wave flow vectors.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statements
Acknowledgments
Conflicts of Interest
References
- Taborda, R.; Silva, A. COSMOS: A Lightweight Coastal Video Monitoring System. Comput. Geosci. 2012, 49, 248–255. [Google Scholar] [CrossRef]
- Callens, A.; Morichon, D.; Liria, P.; Epelde, I.; Liquet, B. Automatic Creation of Storm Impact Database Based on Video Monitoring and Convolutional Neural Networks. Remote Sens. 2021, 13, 1933. [Google Scholar] [CrossRef]
- Andriolo, U.; Sánchez-García, E.; Taborda, R. Operational Use of Surfcam Online Streaming Images for Coastal Morphodynamic Studies. Remote Sens. 2019, 11, 78. [Google Scholar] [CrossRef] [Green Version]
- Ibaceta, R.; Almar, R.; Catalán, P.A.; Blenkinsopp, C.E.; Almeida, L.P.; Cienfuegos, R. Assessing the Performance of a Low-Cost Method for Video-Monitoring the Water Surface and Bed Level in the Swash Zone of Natural Beaches. Remote Sens. 2018, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Goda, Y. Reanalysis of Regular and Random Breaking Wave Statistics. Coast. Eng. J. 2010, 52, 71–106. [Google Scholar] [CrossRef]
- Rattanapitikon, W.; Shibayama, T. Breaking Wave Formulas for Breaking Depth and Orbital to Phase Velocity Ratio. Coast. Eng. J. 2006, 48, 395–416. [Google Scholar] [CrossRef]
- Eadi Stringari, C.; Harris, D.L.; Power, H. A Novel Machine Learning Algorithm for Tracking Remotely Sensed Waves in the Surf Zone. Coast. Eng. 2019, 147, 149–158. [Google Scholar] [CrossRef]
- Aarninkhof, S.G.J.; Ruessink, B.G. Video Observations and Model Predictions of Depth-Induced Wave Dissipation. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2612–2622. [Google Scholar] [CrossRef]
- Pereira, P.; Calliari, L.J.; Holman, R.; Holland, K.; Guedes, R.; Amorin, C.K.; Cavalcanti, P.G. Video and Field Observations of Wave Attenuation in a Muddy Surf Zone. Mar. Geol. 2011, 279, 210–221. [Google Scholar] [CrossRef]
- Chickadel, C.; Holman, R.; Freilich, M. An Optical Technique for the Measurement of Longshore Currents. J. Geophys. Res. 2003, 108, 3364. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Duan, J.; Chen, S.; Ye, Y.; Ai, P.; Yang, Z. Multi-Target Recognition of Bananas and Automatic Positioning for the Inflorescence Axis Cutting Point. Front. Plant Sci. 2021, 12, 705021. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wu, R.; Lin, Y.; Li, C.; Chen, S.; Yuan, Z.; Chen, S.; Zou, X. Plant Disease Recognition Model Based on Improved YOLOv5. Agronomy 2022, 12, 365. [Google Scholar] [CrossRef]
- Tang, Y.; Zhu, M.; Chen, Z.; Wu, C.; Chen, B.; Li, C.; Li, L. Seismic Performance Evaluation of Recycled Aggregate Concrete-Filled Steel Tubular Columns with Field Strain Detected via a Novel Mark-Free Vision Method. Structures 2022, 37, 426–441. [Google Scholar] [CrossRef]
- Beuzen, T.; Splinter, K. Machine Learning and Coastal Processes. In Sandy Beach Morphodynamics; Elsevier: Amsterdam, The Netherlands, 2020; pp. 689–710. ISBN 978-0-08-102927-5. [Google Scholar]
- Calkoen, F.; Luijendijk, A.; Rivero, C.R.; Kras, E.; Baart, F. Traditional vs. Machine-Learning Methods for Forecasting Sandy Shoreline Evolution Using Historic Satellite-Derived Shorelines. Remote Sens. 2021, 13, 934. [Google Scholar] [CrossRef]
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N. Prabhat Deep Learning and Process Understanding for Data-Driven Earth System Science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef]
- Rusk, N. Deep Learning. Nat. Methods 2016, 13, 35. [Google Scholar] [CrossRef]
- Tran, H.-D.; Yang, X.; Manzanas Lopez, D.; Musau, P.; Nguyen, L.V.; Xiang, W.; Bak, S.; Johnson, T.T. NNV: The Neural Network Verification Tool for Deep Neural Networks and Learning-Enabled Cyber-Physical Systems. In Proceedings of the Computer Aided Verification, Los Angeles, CA, USA, 21–24 July 2020; Lahiri, S.K., Wang, C., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 3–17. [Google Scholar]
- Le Cun, Y.; Jackel, L.D.; Boser, B.; Denker, J.S.; Graf, H.P.; Guyon, I.; Henderson, D.; Howard, R.E.; Hubbard, W. Handwritten Digit Recognition: Applications of Neural Net Chips and Automatic Learning. In Proceedings of the Neurocomputing; Soulié, F.F., Hérault, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 303–318. [Google Scholar]
- Hieronymus, M.; Hieronymus, J.; Hieronymus, F. On the Application of Machine Learning Techniques to Regression Problems in Sea Level Studies. J. Atmos. Ocean. Technol. 2019, 36, 1889–1902. [Google Scholar] [CrossRef]
- Garcia-Garin, O.; Monleón-Getino, T.; López-Brosa, P.; Borrell, A.; Aguilar, A.; Borja-Robalino, R.; Cardona, L.; Vighi, M. Automatic Detection and Quantification of Floating Marine Macro-Litter in Aerial Images: Introducing a Novel Deep Learning Approach Connected to a Web Application in R. Environ. Pollut. 2021, 273, 116490. [Google Scholar] [CrossRef]
- Miniello, G.; La Salandra, M. A New Method for Geomorphological Studies and Land Cover Classification Using Machine Learning Techniques. In Proceedings of the International Symposium on Grids & Clouds 2021, Taipei, China, 22–26 March 2021; Volume 378. [Google Scholar]
- Qin, L.; Yu, N.; Zhao, D. Applying the Convolutional Neural Network Deep Learning Technology to Behavioural Recognition in Intelligent Video. Tehnicki Vjesnik 2018, 25, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Sreenu, G.; Saleem Durai, M.A. Intelligent Video Surveillance: A Review through Deep Learning Techniques for Crowd Analysis. J. Big Data 2019, 6, 48. [Google Scholar] [CrossRef]
- Anderson, D.; Bak, A.S.; Brodie, K.L.; Cohn, N.; Holman, R.A.; Stanley, J. Quantifying Optically Derived Two-Dimensional Wave-Averaged Currents in the Surf Zone. Remote Sens. 2021, 13, 690. [Google Scholar] [CrossRef]
- Wu, H.; Zhao, R.; Gan, X.; Ma, X. Measuring Surface Velocity of Water Flow by Dense Optical Flow Method. Water 2019, 11, 2320. [Google Scholar] [CrossRef] [Green Version]
- Ghalenoei, E.; Sharifi, M.A.; Hasanlou, M. Investigation of Optical Flow Techniques for Extracting Non-Rigid Sea Surface Currents. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2014, XL-2/W3, 121–126. [Google Scholar] [CrossRef] [Green Version]
- Philip, S.; Pang, A. Detecting and Visualizing Rip Current Using Optical Flow; The Eurographics Association: Reims, France, 2016; ISBN 978-3-03868-014-7. [Google Scholar]
- Reale, O.; Atlas, R. Tropical Cyclone–Like Vortices in the Extratropics: Observational Evidence and Synoptic Analysis. Weather Forecast. 2001, 16, 7–34. [Google Scholar] [CrossRef]
- Ritchie, E.A.; Elsberry, R.L. Simulations of the Extratropical Transition of Tropical Cyclones: Phasing between the Upper-Level Trough and Tropical Cyclones. Mon. Weather Rev. 2007, 135, 862–876. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson, L.; Hodges, K.I.; Keenlyside, N. Will Extratropical Storms Intensify in a Warmer Climate? J. Clim. 2009, 22, 2276–2301. [Google Scholar] [CrossRef] [Green Version]
- Michaelis, A.C.; Willison, J.; Lackmann, G.M.; Robinson, W.A. Changes in Winter North Atlantic Extratropical Cyclones in High-Resolution Regional Pseudo–Global Warming Simulations. J. Clim. 2017, 30, 6905–6925. [Google Scholar] [CrossRef]
- Anzidei, M.; Scicchitano, G.; Scardino, G.; Bignami, C.; Tolomei, C.; Vecchio, A.; Serpelloni, E.; De Santis, V.; Monaco, C.; Milella, M.; et al. Relative Sea-Level Rise Scenario for 2100 along the Coast of South Eastern Sicily (Italy) by InSAR Data, Satellite Images and High-Resolution Topography. Remote Sens. 2021, 13, 1108. [Google Scholar] [CrossRef]
- Anzidei, M.; Scicchitano, G.; Tarascio, S.; de Guidi, G.; Monaco, C.; Barreca, G.; Mazza, G.; Serpelloni, E.; Vecchio, A. Coastal Retreat and Marine Flooding Scenario for 2100: A Case Study along the Coast of Maddalena Peninsula (Southeastern Sicily). Geogr. Fis. E Din. Quat. 2018, 41, 5–16. [Google Scholar] [CrossRef]
- Scicchitano, G.; Scardino, G.; Monaco, C.; Piscitelli, A.; Milella, M.; De Giosa, F.; Mastronuzzi, G. Comparing Impact Effects of Common Storms and Medicanes along the Coast of South-Eastern Sicily. Mar. Geol. 2021, 439, 106556. [Google Scholar] [CrossRef]
- Scicchitano, G.; Pignatelli, C.; Spampinato, C.R.; Piscitelli, A.; Milella, M.; Monaco, C.; Mastronuzzi, G. Terrestrial Laser Scanner Techniques in the Assessment of Tsunami Impact on the Maddalena Peninsula (South-Eastern Sicily, Italy). Earth Planets Space 2012, 64, 889–903. [Google Scholar] [CrossRef] [Green Version]
- Scicchitano, G.; Monaco, C.; Tortorici, L. Large Boulder Deposits by Tsunami Waves along the Ionian Coast of South-Eastern Sicily (Italy). Mar. Geol. 2007, 238, 75–91. [Google Scholar] [CrossRef]
- Nandasena, N.A.K.; Scicchitano, G.; Scardino, G.; Milella, M.; Piscitelli, A.; Mastronuzzi, G. Boulder Displacements along Rocky Coasts: A New Deterministic and Theoretical Approach to Improve Incipient Motion Formulas. Geomorphology 2022, 407, 108217. [Google Scholar] [CrossRef]
- Scicchitano, G.; Costa, B.; Di Stefano, A.; Longhitano, S.G.; Monaco, C. Tsunami and Storm Deposits Preserved within a Ria-Type Rocky Coastal Setting (Siracusa, SE Sicily). Zeitschrift Geomorphol. Suppl. Issues 2010, 54, 51–77. [Google Scholar] [CrossRef] [Green Version]
- Scardino, G.; Piscitelli, A.; Milella, M.; Sansò, P.; Mastronuzzi, G. Tsunami Fingerprints along the Mediterranean Coasts. Rend. Fis. Acc. Lincei 2020, 31, 319–335. [Google Scholar] [CrossRef]
- Scardino, G.; Rizzo, A.; De Santis, V.; Kyriakoudi, D.; Rovere, A.; Vacchi, M.; Torrisi, S.; Scicchitano, G. Insights on the Origin of Multiple Tsunami Events Affected the Archaeological Site of Ognina (South-Eastern Sicily, Italy). Quat. Int. 2021, 40, 121. [Google Scholar] [CrossRef]
- De Martini, P.M.; Barbano, M.S.; Pantosti, D.; Smedile, A.; Pirrotta, C.; Del Carlo, P.; Pinzi, S. Geological Evidence for Paleotsunamis along Eastern Sicily (Italy): An Overview. Nat. Hazards Earth Syst. Sci. 2012, 12, 2569–2580. [Google Scholar] [CrossRef]
- De Martini, P.M.; Barbano, M.S.; Smedile, A.; Gerardi, F.; Pantosti, D.; Del Carlo, P.; Pirrotta, C. A Unique 4000year Long Geological Record of Multiple Tsunami Inundations in the Augusta Bay (Eastern Sicily, Italy). Mar. Geol. 2010, 276, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Biolchi, S.; Furlani, S.; Antonioli, F.; Baldassini, N.; Causon Deguara, J.; Devoto, S.; Di Stefano, A.; Evans, J.; Gambin, T.; Gauci, R.; et al. Boulder Accumulations Related to Extreme Wave Events on the Eastern Coast of Malta. Nat. Hazards Earth Syst. Sci. 2016, 16, 737–756. [Google Scholar] [CrossRef] [Green Version]
- Biolchi, S.; Furlani, S.; Devoto, S.; Scicchitano, G.; Korbar, T.; Vilibic, I.; Sepic, J. The Origin and Dynamics of Coastal Boulders in a Semi-Enclosed Shallow Basin: A Northern Adriatic Case Study. Mar. Geol. 2019, 411, 62–77. [Google Scholar] [CrossRef]
- Scicchitano, G.; Scardino, G.; Tarascio, S.; Monaco, C.; Barracane, G.; Locuratolo, G.; Milella, M.; Piscitelli, A.; Mazza, G.; Mastronuzzi, G. The First Video Witness of Coastal Boulder Displacements Recorded during the Impact of Medicane “Zorbas” on Southeastern Sicily. Water 2020, 12, 1497. [Google Scholar] [CrossRef]
- Bentley, A.M.; Keyser, D.; Bosart, L.F. A Dynamically Based Climatology of Subtropical Cyclones That Undergo Tropical Transition in the North Atlantic Basin. Mon. Weather Rev. 2016, 144, 2049–2068. [Google Scholar] [CrossRef]
- Flaounas, E.; Davolio, S.; Raveh-Rubin, S.; Pantillon, F.; Miglietta, M.M.; Gaertner, M.A.; Hatzaki, M.; Homar, V.; Khodayar, S.; Korres, G.; et al. Mediterranean Cyclones: Current Knowledge and Open Questions on Dynamics, Prediction, Climatology and Impacts. Weather Clim. Dyn. 2022, 3, 173–208. [Google Scholar] [CrossRef]
- Romera, R.; Gaertner, M.Á.; Sánchez, E.; Domínguez, M.; González-Alemán, J.J.; Miglietta, M.M. Climate Change Projections of Medicanes with a Large Multi-Model Ensemble of Regional Climate Models. Glob. Planet. Chang. 2017, 151, 134–143. [Google Scholar] [CrossRef]
- Dias, J.M.; Pereira, F.; Picado, A.; Lopes, C.L.; Pinheiro, J.P.; Lopes, S.M.; Pinho, P.G. A Comprehensive Estuarine Hydrodynamics-Salinity Study: Impact of Morphologic Changes on Ria de Aveiro (Atlantic Coast of Portugal). J. Mar. Sci. Eng. 2021, 9, 234. [Google Scholar] [CrossRef]
- Carvalho, P.; Bettencourt, J.; Pinto Coelho, I. The Maritime Cultural Landscape of the Ria de Aveiro Lagoon (Portugal) in the Early Modern Period: A First Approach; Ministerio de Educacion Cultura Y Deporte: Madrid, Spain, 2018.
- Pinto, C.A.; Taborda, R.; Andrade, C.; Baptista, P.; Silva, P.A.; Mendes, D.; Pais-Barbosa, J. Morphological Development and Behaviour of a Shoreface Nourishment in the Portuguese Western Coast. J. Mar. Sci. Eng. 2022, 10, 146. [Google Scholar] [CrossRef]
- Ponte Lira, C.; Nobre Silva, A.; Taborda, R.; Freire de Andrade, C. Coastline Evolution of Portuguese Low-Lying Sandy Coast in the Last 50 Years: An Integrated Approach. Earth Syst. Sci. Data 2016, 8, 265–278. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.; Almeida, A.; Ramos, A.; Cunha, L.; Dinis, J. Geomorphology and Coastal Dynamics of the Figueira Da Foz Region. Publicações Da APGEOM 2006, IV, 35–46. [Google Scholar]
- Silva, A.M.A.N.; Taborda, R.P.M. Integration of Beach Hydrodynamic and Morphodynamic Modelling in a GIS Environment. J. Coast. Conserv. 2013, 17, 201–210. [Google Scholar] [CrossRef]
- Costa, P.J.M.; Andrade, C. Field Trip Guide. In Proceedings of the 5th International Tsunami Field Symposium—Field Guide, Lisbon, Portugal, 3–7 September 2017; p. 97. [Google Scholar]
- Carvalho, J.R.; Barcelo, J. Agitacao Marıtima Na Costa Oeste de Portugal Metropolitano-Contribuicao Para o Seu Estudo. Memorias do Laboratorio Nacional de Engenharia Civil Lisbon 1966, 290, 1–34. (In Portuguese) [Google Scholar]
- Costa, M.; Silva, R.; Vitorino, J. Contribuição Para o Estudo Do Clima de Agitação Marítima Na Costa Portuguesa (in Portuguese). In Proceedings of the 2ªs Jornadas Portuguesas de Engenharia Costeira e Portuária, AIPCN/PIANC Secção, Lisboa, Portugal, 17–19 October 2001; pp. 1–20. [Google Scholar]
- Baptista, M.A.; Miranda, J.M. Revision of the Portuguese Catalog of Tsunamis. Nat. Hazards Earth Syst. Sci. 2009, 9, 25–42. [Google Scholar] [CrossRef] [Green Version]
- Andrade, C.; Freitas, M.; Oliveira, M.A.; Costa, P. On the Sedimentological and Historical Evidences of Seismic-Triggered Tsunamis on the Algarve Coast of Portugal. In Plate Boundaries and Natural Hazards; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 219–238. ISBN 978-1-119-05397-2. [Google Scholar]
- Haarsma, R.J.; Hazeleger, W.; Severijns, C.; de Vries, H.; Sterl, A.; Bintanja, R.; van Oldenborgh, G.J.; van den Brink, H.W. More Hurricanes to Hit Western Europe Due to Global Warming. Geophys. Res. Lett. 2013, 40, 1783–1788. [Google Scholar] [CrossRef]
- Feist, L.; Frank, S.; Bellanova, P.; Laermanns, H.; Cämmerer, C.; Mathes-Schmidt, M.; Biermanns, P.; Brill, D.; Costa, P.J.M.; Teichner, F.; et al. The Sedimentological and Environmental Footprint of Extreme Wave Events in Boca Do Rio, Algarve Coast, Portugal. Sediment. Geol. 2019, 389, 147–160. [Google Scholar] [CrossRef]
- Stojanovic, M.; Gonçalves, A.; Sorí, R.; Vázquez, M.; Ramos, A.M.; Nieto, R.; Gimeno, L.; Liberato, M.L.R. Consecutive Extratropical Cyclones Daniel, Elsa and Fabien, and Their Impact on the Hydrological Cycle of Mainland Portugal. Water 2021, 13, 1476. [Google Scholar] [CrossRef]
- IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O.; Roberts, D.C.; Masson-Delmotte, V.; Zhai, P.; Tignor, M.; Poloczanska, E.; Mintenbeck, K.; Alegría, A.; Nicolai, M.; Okem, A.; et al. (Eds.) Working Group II Technical Support Unit; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; p. 765. [Google Scholar]
- IPCC Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; et al. (Eds.) Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 3949. [Google Scholar]
- Yu, Z.; Dong, Y.; Cheng, J.; Sun, M.; Su, F. Research on Face Recognition Classification Based on Improved GoogleNet. Secur. Commun. Netw. 2022, 2022, e7192306. [Google Scholar] [CrossRef]
- Agarap, A.F. Deep Learning Using Rectified Linear Units (ReLU). arXiv 2019, arXiv:1803.08375. [Google Scholar]
- Gholamalinezhad, H.; Khosravi, H. Pooling Methods in Deep Neural Networks, a Review. arXiv 2020, arXiv:2009.07485. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. arXiv 2019, arXiv:1409.4842. [Google Scholar]
- Farnebäck, G. Very High Accuracy Velocity Estimation Using Orientation Tensors Parametric Motion and Simultaneous Segmentation of the Motion Field. In Proceedings of the ICCV, Vancouver, BC, Canada, 7–14 July 2001; pp. 171–177. [Google Scholar]
- Farnebäck, G. Two-Frame Motion Estimation Based on Polynomial Expansion. In Proceedings of the Image Analysis, Halmstad, Sweden, 29 June–2 July 2003; Bigun, J., Gustavsson, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 363–370. [Google Scholar]
- Whitham, G.B. Linear and Nonlinear Waves; Wiley: New York, NY, USA, 1974. [Google Scholar]
- Carter, R.W.G. Coastal Evolution: Late Quaternary Shoreline Morphodynamics; Reprint edizione; Cambridge University Press: Cambridge, UK, 1997; ISBN 978-0-521-59890-3. [Google Scholar]
- Salameh, E.; Frappart, F.; Almar, R.; Baptista, P.; Heygster, G.; Lubac, B.; Raucoules, D.; Almeida, L.P.; Bergsma, E.W.J.; Capo, S.; et al. Monitoring Beach Topography and Nearshore Bathymetry Using Spaceborne Remote Sensing: A Review. Remote Sens. 2019, 11, 2212. [Google Scholar] [CrossRef] [Green Version]
- Yun, M.; Kim, J.; Do, K. Estimation of Wave-Breaking Index by Learning Nonlinear Relation Using Multilayer Neural Network. J. Mar. Sci. Eng. 2022, 10, 50. [Google Scholar] [CrossRef]
- Rattanapitikon, W.; Shibayama, T. Verification and Modification of Breaker Height Formulas. Coast. Eng. J. 2000, 42, 389–406. [Google Scholar] [CrossRef]
- Fernández-Fernández, S.; Ferreira, C.; Silva, P.; Baptista, P.; Romão, S.; Bouzas, Á.; Abreu, T.; Bertin, X. Assessment of Dredging Scenarios for a Tidal Inlet in a High-Energy Coast. J. Mar. Sci. Eng. 2019, 7, 395. [Google Scholar] [CrossRef] [Green Version]
- Cunha, P.; Porto Gouveia, M.M. The Nazaré Coast, the Submarine Canyon and the Giant Waves—A Synthesis; Universidade de Coimbra: Coimbra, Portuga, 2015. [Google Scholar]
- Scicchitano, G.; Berlinghieri, E.F.C.; Antonioli, F.; Spampinato, C.R.; Monaco, C. Sacred Landscapes and Changing Sea Levels: New Interdisciplinary Data from the Early Neolithic to the Present in South-Eastern Sicily. In Under the Sea: Archaeology and Palaeolandscapes of the Continental Shelf; Bailey, G.N., Harff, J., Sakellariou, D., Eds.; Coastal Research Library; Springer International Publishing: Cham, Switzerland, 2016; pp. 233–253. ISBN 978-3-319-53160-1. [Google Scholar]
- Duarte, J.; Taborda, R.; Ribeiro, M.; Cascalho, J.; Silva, A.; Bosnic, I. Evidences of Sediment Bypassing at Nazaré Headland Revealed by a Large Scale Sand Tracer Experiment. Actas Das 3as Jorn. De Eng. Hidrográfica 2014, 1, 289–292. [Google Scholar]
- Prediccion De Oleaje, Nivel Del Mar; Boyas Y Mareografos|Puertos. Es. Available online: https://www.puertos.es/es-es/oceanografia/Paginas/portus.aspx (accessed on 1 June 2022).
- Inghilesi, R.; Corsini, S.; Guiducci, F.; Arseni, A. Statistical Analysis of Extreme Waves on the Italian Coasts from 1989 to 1999. Bollettino di Geofisica Teorica ed Applicata 2000, 41, 315–337. [Google Scholar]
- Andriolo, U.; Mendes, D.; Taborda, R. Breaking Wave Height Estimation from Timex Images: Two Methods for Coastal Video Monitoring Systems. Remote Sens. 2020, 12, 204. [Google Scholar] [CrossRef] [Green Version]
- Coelho, I.B. Nearshore Sedimentary Dynamics in a Wave-Dominated Coast. Ph.D. Thesis, University of Lisbon, Lisbon, Portugal, 2017. [Google Scholar]
- Duarte, J.; Taborda, R.; Ribeiro, M. Evidences of Headland Sediment Bypassing at Nazaré Norte Beach, Portugal. In Proceedings of the International Conference on Coastal Sediments 2019, Tampa/St. Petersburg, FL, USA, 27–31 May 2019; p. 2694. [Google Scholar]
- Grandini, M.; Bagli, E.; Visani, G. Metrics for Multi-Class Classification: An Overview. arXiv 2020, arXiv:2008.05756. [Google Scholar]
- Holman, R.; Haller, M.C. Remote Sensing of the Nearshore. Ann. Rev. Mar. Sci. 2013, 5, 95–113. [Google Scholar] [CrossRef] [Green Version]
- Brodie, K.L.; Palmsten, M.L.; Hesser, T.J.; Dickhudt, P.J.; Raubenheimer, B.; Ladner, H.; Elgar, S. Evaluation of Video-Based Linear Depth Inversion Performance and Applications Using Altimeters and Hydrographic Surveys in a Wide Range of Environmental Conditions. Coast. Eng. 2018, 136, 147–160. [Google Scholar] [CrossRef] [Green Version]
- Buscombe, D.; Carini, R.J. A Data-Driven Approach to Classifying Wave Breaking in Infrared Imagery. Remote Sens. 2019, 11, 859. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, J.; Kim, T.; Huh, D.; Caires, S. Wave-Tracking in the Surf Zone Using Coastal Video Imagery with Deep Neural Networks. Atmosphere 2020, 11, 304. [Google Scholar] [CrossRef] [Green Version]
- Domingo, M.C. Deep Learning and Internet of Things for Beach Monitoring: An Experimental Study of Beach Attendance Prediction at Castelldefels Beach. Appl. Sci. 2021, 11, 10735. [Google Scholar] [CrossRef]
- Ondoa, G.A.; Almar, R.; Castelle, B.; Testut, L.; Léger, F.; Sohou, Z.; Bonou, F.; Bergsma, E.W.J.; Meyssignac, B.; Larson, M. Sea Level at the Coast from Video-Sensed Waves: Comparison to Tidal Gauges and Satellite Altimetry. J. Atmos. Ocean. Technol. 2019, 36, 1591–1603. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A. Estimation of Wave Phase Speed and Nearshore Bathymetry from Video Imagery. J. Geophys. Res. Ocean. 2000, 105, 22015–22033. [Google Scholar] [CrossRef]
- Stockdon, H.F.; Holman, R.A.; Howd, P.A.; Sallenger, A.H. Empirical Parameterization of Setup, Swash, and Runup. Coast. Eng. 2006, 53, 573–588. [Google Scholar] [CrossRef]
- Granata, F.; Di Nunno, F. Artificial Intelligence Models for Prediction of the Tide Level in Venice. Stoch. Environ. Res. Risk Assess. 2021, 35, 2537–2548. [Google Scholar] [CrossRef]
- Guillou, N.; Chapalain, G. Machine Learning Methods Applied to Sea Level Predictions in the Upper Part of a Tidal Estuary. Oceanologia 2021, 63, 531–544. [Google Scholar] [CrossRef]
- Hegde, J.; Rokseth, B. Applications of Machine Learning Methods for Engineering Risk Assessment—A Review. Saf. Sci. 2020, 122, 104492. [Google Scholar] [CrossRef]
- Riazi, A. Accurate Tide Level Estimation: A Deep Learning Approach. Ocean. Eng. 2020, 198, 107013. [Google Scholar] [CrossRef]
- Davidson, M.A.; Aarninkhof, S.G.J.; Van Koningsveld, M.; Holman, R.A. Developing Coastal Video Monitoring Systems in Support of Coastal Zone Management. J. Coast. Res. 2006, 39, 49–56. [Google Scholar]
- Margiotta, S.; Marini, G.; Fay, S.; D’Onghia, F.M.; Liso, I.S.; Parise, M.; Pinna, M. Hydro-Stratigraphic Conditions and Human Activity Leading to Development of a Sinkhole Cluster in a Mediterranean Water Ecosystem. Hydrology 2021, 8, 111. [Google Scholar] [CrossRef]
- Anthony, E.J.; Besset, M.; Zainescu, F.; Sabatier, F. Multi-Decadal Deltaic Land-Surface Changes: Gauging the Vulnerability of a Selection of Mediterranean and Black Sea River Deltas. J. Mar. Sci. Eng. 2021, 9, 512. [Google Scholar] [CrossRef]
- Mattei, G.; Di Luccio, D.; Benassai, G.; Anfuso, G.; Budillon, G.; Aucelli, P. Characteristics and Coastal Effects of a Destructive Marine Storm in the Gulf of Naples (Southern Italy). Nat. Hazards Earth Syst. Sci. 2021, 21, 3809–3825. [Google Scholar] [CrossRef]
- Portmann, R.; González-Alemán, J.J.; Sprenger, M.; Wernli, H. Medicane Zorbas: Origin and Impact of an Uncertain Potential Vorticity Streamer. Weather Clim. Dyn. Discuss. 2019, 1–30. [Google Scholar] [CrossRef]
- Fita, L.; Flaounas, E. Medicanes as Subtropical Cyclones: The December 2005 Case from the Perspective of Surface Pressure Tendency Diagnostics and Atmospheric Water Budget. Q. J. R. Meteorol. Soc. 2018, 144, 1028–1044. [Google Scholar] [CrossRef]
- Hansom, J.; Hall, A. Magnitude and Frequency of Extra-Tropical North Atlantic Cyclones. Quat. Int. 2009, 195, 42–52. [Google Scholar] [CrossRef]
- Bouin, M.-N.; Lebeaupin Brossier, C. Surface Processes in the 7 November 2014 Medicane from Air–Sea Coupled High-Resolution Numerical Modelling. Atmos. Chem. Phys. 2020, 20, 6861–6881. [Google Scholar] [CrossRef]
- Splinter, K.D.; Harley, M.D.; Turner, I.L. Remote Sensing Is Changing Our View of the Coast: Insights from 40 Years of Monitoring at Narrabeen-Collaroy, Australia. Remote Sens. 2018, 10, 1744. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Jiangde, S.; Hong, Z.; Zhang, Y.; Han, Y.; Zhou, R.; Wang, J.; Yang, S.; Tong, X.; Kuc, T. Sea-Land Segmentation Using Deep Learning Techniques for Landsat-8 OLI Imagery. Mar. Geod. 2020, 43, 105–133. [Google Scholar] [CrossRef]
- Aryal, B.; Escarzaga, S.; Vargas Zesati, S.; Velez-Reyes, M.; Fuentes, O.; Tweedie, C. Semi-Automated Semantic Segmentation of Arctic Shorelines Using Very High-Resolution Airborne Imagery, Spectral Indices and Weakly Supervised Machine Learning Approaches. Remote Sens. 2021, 13, 4572. [Google Scholar] [CrossRef]
- Nieves, V.; Radin, C.; Camps-Valls, G. Predicting Regional Coastal Sea Level Changes with Machine Learning. Sci. Rep. 2021, 11, 7650. [Google Scholar] [CrossRef]
- Balogun, A.-L.; Adebisi, N. Sea Level Prediction Using ARIMA, SVR and LSTM Neural Network: Assessing the Impact of Ensemble Ocean-Atmospheric Processes on Models’ Accuracy. Geomat. Nat. Hazards Risk 2021, 12, 653–674. [Google Scholar] [CrossRef]
- Žust, L.; Fettich, A.; Kristan, M.; Ličer, M. HIDRA 1.0: Deep-Learning-Based Ensemble Sea Level Forecasting in the Northern Adriatic. Geosci. Model Dev. 2021, 14, 2057–2074. [Google Scholar] [CrossRef]
- Asthana, T.; Krim, H.; Sun, X.; Roheda, S.; Xie, L. Atlantic Hurricane Activity Prediction: A Machine Learning Approach. Atmosphere 2021, 12, 455. [Google Scholar] [CrossRef]
- Boussioux, L.; Zeng, C.; Guénais, T.; Bertsimas, D. Hurricane Forecasting: A Novel Multimodal Machine Learning Framework. arXiv 2022, arXiv:2011.06125. [Google Scholar] [CrossRef]
Sites | Coastal Type | Acquisition | Tide | Storm Surge | Wave Height—Wave Length—Wave Flow |
---|---|---|---|---|---|
Varco 11—Sicily, Italy | Convex sloping rocky coast | Fixed remote-controlled camera | 15–22 September 2021 | 20 March 2021 14 April 2021 | 15–22 September 2021 |
Santa Lucia—Sicily, Italy | Convex sloping rocky coast | Fixed remote-controlled camera | 4–28 August 2021 15–22 September 2021 | 28 September 2018 20 March 2021 14 April 2021 | 28 September 2018 15–22 September 2021 |
Massolivieri—Sicily, Italy | Convex sloping rocky coast | Fixed remote-controlled camera | 4–28 August 2021 15–22 September 2021 | 20 March 2021 14 April 2021 | 15–22 September 2021 |
Coxos—Lisboa, Portugal | High rocky coast | Action camera | N/A | N/A | 25 January 2022 |
Nazaré—Leiria, Portugal | Sandy coast | Action camera | N/A | N/A | 25 January 2022 |
Costa Nova—Aveiro, Portugal | Sandy coast | Action camera | N/A | N/A | 26 January 2022 |
Cova Gala—Coimbra, Portugal | Sandy coast | Action camera | N/A | N/A | 27 January 2022 |
Layer | Patch Size/Stride | Function |
---|---|---|
Input images of time frames sampled each 10 min | ||
Conv2D | 7 × 7/2 | ReLU |
Max pool | 3 × 3/2 | Normalization |
Conv2D | 3 × 3/1 | ReLU + Normalization |
Max pool | 3 × 3/2 | |
Inception module | ||
Inception module | ||
Max pool | 3 × 3/2 | |
Inception module | ||
Inception module | ||
Inception module | ||
Inception module | ||
Max pool | 3 × 3/2 | |
Inception module | ||
Avg pool | 7 × 7/1 | |
Fully connected | ||
Softmax | ||
Classification—output of tide class |
Storm Surge (m) | Wave Height (m) | Wavelength (m) | Wave Flow (m/s) | |
---|---|---|---|---|
medicane Zorbas (September 2018) | 1.1 ± 0.2 | 3.3 ± 0.4 | 25 ± 0.2 | 5.1 ± 0.5 |
Storm (March 2021) | 0.15 ± 0.05 | 1.1 ± 0.4 | 13 ± 0.5 | 4.2 ± 0.5 |
Storm (April 2021) | 0.4 ± 0.1 | 0.9 ± 0.4 | 13 ± 0.5 | 4.0 ± 0.5 |
medicane Apollo (October 2021) | 0.9 ± 0.2 | 2.5 ± 0.4 | 22 ± 0.2 | 5.1 ± 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scardino, G.; Scicchitano, G.; Chirivì, M.; Costa, P.J.M.; Luparelli, A.; Mastronuzzi, G. Convolutional Neural Network and Optical Flow for the Assessment of Wave and Tide Parameters from Video Analysis (LEUCOTEA): An Innovative Tool for Coastal Monitoring. Remote Sens. 2022, 14, 2994. https://doi.org/10.3390/rs14132994
Scardino G, Scicchitano G, Chirivì M, Costa PJM, Luparelli A, Mastronuzzi G. Convolutional Neural Network and Optical Flow for the Assessment of Wave and Tide Parameters from Video Analysis (LEUCOTEA): An Innovative Tool for Coastal Monitoring. Remote Sensing. 2022; 14(13):2994. https://doi.org/10.3390/rs14132994
Chicago/Turabian StyleScardino, Giovanni, Giovanni Scicchitano, Marco Chirivì, Pedro J. M. Costa, Antonio Luparelli, and Giuseppe Mastronuzzi. 2022. "Convolutional Neural Network and Optical Flow for the Assessment of Wave and Tide Parameters from Video Analysis (LEUCOTEA): An Innovative Tool for Coastal Monitoring" Remote Sensing 14, no. 13: 2994. https://doi.org/10.3390/rs14132994
APA StyleScardino, G., Scicchitano, G., Chirivì, M., Costa, P. J. M., Luparelli, A., & Mastronuzzi, G. (2022). Convolutional Neural Network and Optical Flow for the Assessment of Wave and Tide Parameters from Video Analysis (LEUCOTEA): An Innovative Tool for Coastal Monitoring. Remote Sensing, 14(13), 2994. https://doi.org/10.3390/rs14132994