Can Mangrove Silviculture Be Carbon Neutral?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Analysis
2.2.1. Primary Source Information
2.2.2. Vegetation Carbon Stock
2.2.3. Soil Carbon
2.2.4. Carbon Emission through Charcoal and Pole Production
2.2.5. Comparison between Carbon Content and Carbon Emission
3. Results
3.1. Carbon Stock in the MMFR
3.2. Carbon Emissions Factors from Charcoal and Pole Production
3.2.1. Carbon Emission from the Areas Assigned to One Contractor
3.2.2. Carbon Emission from the Total Areas of Pole and Charcoal Production
3.2.3. Carbon Loss from Soil after Clear-Felling
3.3. Carbon Stock Versus Carbon Emission
4. Discussion
4.1. Vegetation Biomass and Soil Carbon Stock
4.2. Charcoal and Pole Production Chains: Carbon Emissions
4.3. Vegetation Carbon Stock Versus Carbon Emissions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sivakumar, M.V.K.; Stefanski, R. Climate Change in South Asia. In Climate Change and Food Security in South Asia; Lal, R., Sivakumar, M.V.K., Faiz, S.M.A., Mustafizur Rahman, A.H.M., Islam, K.R., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 13–30. [Google Scholar] [CrossRef]
- Satyanarayana, B.; Van der Stocken, T.; Rans, G.; Kodikara, K.A.S.; Ronsmans, G.; Jayatissa, L.P.; Husain, M.-L.; Koedam, N.; Dahdouh-Guebas, F. Island-wide coastal vulnerability assessment of Sri Lanka reveals that sand dunes, planted trees and natural vegetation may play a role as potential barriers against ocean surges. Glob. Ecol. Conserv. 2017, 12, 144–157. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Midgley, B.M. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Pearson, T.R.H.; Brown, S.; Casarim, F.M. Carbon emissions from tropical forest degradation caused by logging. Environ. Res. Lett. 2014, 9, 034017. [Google Scholar] [CrossRef]
- Ahmed, N.; Glaser, M. Coastal aquaculture, mangrove deforestation and blue carbon emissions: Is REDD+ a solution? Mar. Policy 2016, 66, 58–66. [Google Scholar] [CrossRef]
- Twilley, R.R.; Chen, R.H.; Hargis, T. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water Air Soil Pollut. 1992, 64, 265–288. [Google Scholar] [CrossRef]
- Bouillon, S.; Borges, A.V.; Castaneda, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.Y.; Marchand, C.; Middelburg, J.; et al. Mangrove production and carbon sinks: A revision of global budget estimates. Glob. Biogeochem. Cycles 2008, 22, 2. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Anton, A.; Raven, J.A.; Beaumont, N.; Connolly, R.M.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Kuwae, T.; Lavery, P.S.; et al. The future of Blue Carbon science. Nat. Commun. 2019, 10, 3998. [Google Scholar] [CrossRef]
- Du Pont, Y.R.; Jeffery, M.L.; Gütschow, J.; Rogelj, J.; Christoff, P.; Meinshausen, M. Equitable mitigation to achieve the Paris Agreement goals. Nat. Clim. Chang. 2017, 7, 38–43. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Friess, D.A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Chang. 2018, 8, 240–244. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Costa, M.D.P.; Atwood, T.B.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Lovelock, C.E.; Serrano, O.; Duarte, C.M. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2021, 2, 826–839. [Google Scholar] [CrossRef]
- Aziz, A.A.; Thomas, S.; Dargusch, P.; Phinn, S. Assessing the potential of REDD+ in a production mangrove forest in Malaysia using stakeholder analysis and ecosystem services mapping. Mar. Policy 2016, 74, 6–17. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Rovai, A.S.; Twilley, R.R.; Castaneda, E.; Riul, P.; Cifuentes-Jara, M.; Manrow-Villalobos, M.; Horta, P.A.; Simonassi, J.C.; Fonseca, A.L.D.O.; Pagliosa, P. Global controls on carbon storage in mangrove soils. Nat. Clim. Chang. 2018, 8, 534–538. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D.; et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 2018, 13, 055002. [Google Scholar] [CrossRef]
- Simard, M.; Fatoyinbo, L.; Smetanka, C.; Rivera-Monroy, V.H.; Castañeda-Moya, E.; Thomas, N.; Van Der Stocken, T. Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nat. Geosci. 2019, 12, 40–45. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Adame, M.F.; Arifanti, V.B.; Schile-Beers, L.M.; Bernardino, A.F.; Bhomia, R.K.; Donato, D.C.; Feller, I.C.; Ferreira, T.O.; Garcia, M.D.C.J.; et al. Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecol. Monogr. 2020, 90, e01405. [Google Scholar] [CrossRef]
- Sasmito, S.D.; Taillardat, P.; Clendenning, J.N.; Cameron, C.; Friess, D.A.; Murdiyarso, D.; Hutley, L.B. Effect of land-use and land-cover change on mangrove blue carbon: A systematic review. Glob. Chang. Biol. 2019, 25, 4291–4302. [Google Scholar] [CrossRef]
- Adame, M.F.; Connolly, R.M.; Turschwell, M.P.; Lovelock, C.E.; Fatoyinbo, T.; Lagomasino, D.; Goldberg, L.A.; Holdorf, J.; Friess, D.A.; Sasmito, S.D.; et al. Future carbon emissions from global mangrove forest loss. Glob. Chang. Biol. 2021, 27, 2856–2866. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef]
- Chatting, M.; Al-Maslamani, I.; Walton, M.; Skov, M.W.; Kennedy, H.; Husrevoglu, Y.S.; Le Vay, L. Future Mangrove Carbon Storage Under Climate Change and Deforestation. Front. Mar. Sci. 2022, 9, 781876. [Google Scholar] [CrossRef]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. USA 2010, 107, 8650–8655. [Google Scholar] [CrossRef]
- Zhila, H.; Mahmood, H.; Rozainah, M.Z. Biodiversity and biomass of a natural and degraded mangrove forest of Peninsular Malaysia. Environ. Earth Sci. 2014, 71, 4629–4635. [Google Scholar] [CrossRef]
- Gopalakrishnan, L.; Satyanarayana, B.; Chen, D.; Wolswijk, G.; Amir, A.A.; Vandegehuchte, M.B.; Muslim, A.B.; Koedam, N.; Dahdouh-Guebas, F. Using Historical Archives and Landsat Imagery to Explore Changes in the Mangrove Cover of Peninsular Malaysia between 1853 and 2018. Remote Sens. 2021, 13, 3403. [Google Scholar] [CrossRef]
- Noakes, D.S.P. A Working plan for the Matang Mangrove Forest Reserve Perak; Forest Department, Federation of Malaya: Kuala Lumpur, Malaysia, 1952; p. 173. [Google Scholar]
- Arifin, R.; Mustafa, N.M.S.N. A Working Plan for the Matang Mangrove Forest Reserve, Perak, 6th ed.; State Forestry Department: Ipoh, Malaysia, 2013. [Google Scholar]
- Satyanarayana, B.; Quispe-Zuniga, M.R.; Hugé, J.; Sulong, I.; Mohd-Lokman, H.; Dahdouh-Guebas, F. Mangroves Fueling Livelihoods: A Socio-Economic Stakeholder Analysis of the Charcoal and Pole Production Systems in the World’s Longest Managed Mangrove Forest. Front. Ecol. Evol. 2021, 9, 621721. [Google Scholar] [CrossRef]
- Ong, J.E.; Gong, W.K.; Wong, C.H. Seven Years of Productivity Studies in a Malaysian Managed Mangrove Forest then What. Coasts and Tidal Wetlands of the Australian Monsoon Region; Australian National University: Canberra, ACT, Australia, 1985; pp. 213–223. [Google Scholar]
- Putz, F.E.; Chan, H.T. Tree growth, dynamics, and productivity in a mature mangrove forest in Malaysia. For. Ecol. Manag. 1986, 17, 211–230. [Google Scholar] [CrossRef]
- Goessens, A.; Satyanarayana, B.; Van der Stocken, T.; Quispe-Zuniga, M.R.; Mohd-Lokman, H.; Sulong, I.; Dahdouh-Guebas, F. Is Matang Mangrove Forest in Malaysia Sustainably Rejuvenating after More than a Century of Conservation and Harvesting Management? PLoS ONE 2014, 9, e105069. [Google Scholar] [CrossRef]
- Otero, V.; Van De Kerchove, R.; Satyanarayana, B.; Martínez-Espinosa, C.; Fisol, M.A.B.; Ibrahim, M.R.B.; Sulong, I.; Mohd-Lokman, H.; Lucas, R.; Dahdouh-Guebas, F. Managing mangrove forests from the sky: Forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia. For. Ecol. Manag. 2018, 411, 35–45. [Google Scholar] [CrossRef]
- Ong, J.E.; Gong, W.K.; Wong, C.H. Allometry and partitioning of the mangrove, Rhizophora apiculata. For. Ecol. Manag. 2005, 188, 395–408. [Google Scholar] [CrossRef]
- Komiyama, A.; Poungparn, S.; Kato, S. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 2005, 21, 471–477. [Google Scholar] [CrossRef]
- Komiyama, A.; Ong, J.E.; Poungparn, S. Allometry, biomass, and productivity of mangrove forests: A review. Aquat. Bot. 2008, 89, 128–137. [Google Scholar] [CrossRef]
- Adame, M.; Zakaria, R.; Fry, B.; Chong, V.; Then, Y.; Brown, C.; Lee, S.Y. Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean Coast. Manag. 2018, 161, 117–126. [Google Scholar] [CrossRef]
- Otero, V.; Van De Kerchove, R.; Satyanarayana, B.; Mohd-Lokman, H.; Lucas, R.; Dahdouh-Guebas, F. An Analysis of the Early Regeneration of Mangrove Forests using Landsat Time Series in the Matang Mangrove Forest Reserve, Peninsular Malaysia. Remote Sens. 2019, 11, 774. [Google Scholar] [CrossRef]
- Lucas, R.; Van De Kerchove, R.; Otero, V.; Lagomasino, D.; Fatoyinbo, L.; Omar, H.; Satyanarayana, B.; Dahdouh-Guebas, F. Structural characterisation of mangrove forests achieved through combining multiple sources of remote sensing data. Remote Sens. Environ. 2020, 237, 111543. [Google Scholar] [CrossRef]
- Lucas, R.; Otero, V.; Van De Kerchove, R.; Lagomasino, D.; Satyanarayana, B.; Fatoyinbo, T.; Dahdouh-Guebas, F. Monitoring Matang’s Mangroves in Peninsular Malaysia through Earth observations: A globally relevant approach. Land Degrad. Dev. 2021, 32, 354–373. [Google Scholar] [CrossRef]
- Feldpausch, T.R.; Jirka, S.; Passos, C.A.; Jasper, F.; Riha, S.J. When big trees fall: Damage and carbon export by reduced impact logging in southern Amazonia. For. Ecol. Manag. 2005, 219, 199–215. [Google Scholar] [CrossRef]
- Medjibe, V.P.; Putz, F.E.; Starkey, M.P.; Ndouna, A.A.; Memiaghe, H.R. Impacts of selective logging on above-ground forest biomass in the Monts de Cristal in Gabon. For. Ecol. Manag. 2011, 262, 1799–1806. [Google Scholar] [CrossRef]
- Lacaux, J.-P.; Brocard, D.; Lacaux, C.; Delmas, R.; Brou, A.; Yoboué, V.; Koffi, M. Traditional charcoal making: An important source of atmospheric pollution in the African Tropics. Atmos. Res. 1994, 35, 71–76. [Google Scholar] [CrossRef]
- Pennise, D.M.; Smith, K.R.; Kithinji, J.P.; Rezende, M.E.; Raad, T.J.; Zhang, J.; Fan, C. Emissions of greenhouse gases and other airborne pollutants from charcoal making in Kenya and Brazil. J. Geophys. Res. Earth Surf. 2001, 106, 24143–24155. [Google Scholar] [CrossRef]
- Kridiborworn, P.; Chidthaisong, A.; Yuttitham, M.; Tripetchkul, S. Carbon sequestration by mangrove forest planted specifically for charcoal production in Yeesarn, Samut Songkram. J. Sustain. Energy Environ. 2012, 3, 87–92. [Google Scholar]
- Bailis, R.; Rujanavech, C.; Dwivedi, P.; Vilela, A.D.O.; Chang, H.; de Miranda, R.C. Innovation in charcoal production: A comparative life-cycle assessment of two kiln technologies in Brazil. Energy Sustain. Dev. 2013, 17, 189–200. [Google Scholar] [CrossRef]
- Muda, A.; Mustafa, N.M.S.N. A Working Plan for the Matang Mangrove Forest Reserve, Perak, 5th ed.; State Forestry Department: Ipoh, Malaysia, 2003. [Google Scholar]
- Aziz, A.A.; Dargusch, P.; Phinn, S.; Ward, A. Using REDD+ to balance timber production with conservation objectives in a mangrove forest in Malaysia. Ecol. Econ. 2015, 120, 108–116. [Google Scholar] [CrossRef]
- Fatoyinbo, T.; Feliciano, E.A.; Lagomasino, D.; Lee, S.K.; Trettin, C. Estimating mangrove aboveground biomass from airborne LiDAR data: A case study from the Zambezi River delta. Environ. Res. Lett. 2017, 13, 025012. [Google Scholar] [CrossRef]
- Njana, M.A.; Eid, T.; Zahabu, E.; Malimbwi, R. Procedures for quantification of belowground biomass of three mangrove tree species. Wetl. Ecol. Manag. 2015, 23, 749–764. [Google Scholar] [CrossRef]
- Chave, J.; Andalo, C.; Brown, S.; Cairns, M.A.; Chambers, J.Q.; Eamus, D.; Fölster, H.; Fromard, F.; Higuchi, N.; Kira, T.; et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 2005, 145, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, J.B.; Donato, D. Protocols for the Measurement, Monitoring and Reporting of Structure, Biomass and Carbon Stocks in Mangrove Forests; No. CIFOR Working Paper no. 86, p. 40p; Center for International Forestry Research (CIFOR): Bogor, Indonesia, 2012; 40p. [Google Scholar]
- IPCC—Intergovernmental Panel on Climate Change. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- IPCC—Intergovernmental Panel on Climate Change. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Bouillon, S. Storage beneath mangroves. Nat. Geosci. 2011, 4, 282. [Google Scholar] [CrossRef]
- Alongi, D.M. Carbon Cycling and Storage in Mangrove Forests. Annu. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Heider, C.; Cole, T.G.; Dwire, K.A.; Donato, D.C. Ecosystem Carbon Stocks of Micronesian Mangrove Forests. Wetlands 2011, 31, 343–352. [Google Scholar] [CrossRef]
- Castillo, J.A.A.; Apan, A.A.; Maraseni, T.N.; Salmo, S.G. Soil C quantities of mangrove forests, their competing land uses, and their spatial distribution in the coast of Honda Bay, Philippines. Geoderma 2017, 293, 82–90. [Google Scholar] [CrossRef]
- Alongi, D.M. Global Significance of Mangrove Blue Carbon in Climate Change Mitigation. Science 2020, 2, 67. [Google Scholar] [CrossRef]
- Sparrevik, M.; Adam, C.; Martinsen, V.; Jubaedah; Cornelissen, G. Emissions of gases and particles from charcoal/biochar production in rural areas using medium-sized traditional and improved “retort” kilns. Biomass-Bioenergy 2015, 72, 65–73. [Google Scholar] [CrossRef]
- Ammar, A.A.; Dargusch, P.; Shamsudin, I. Can the Matang Mangrove Forest Reserve provide perfect teething ground for a blue carbon based REDD+ pilot project? J. Trop. For. Sci. 2014, 26, 371–381. Available online: https://www.jstor.org/stable/43150919 (accessed on 1 February 2020).
- Hamdan, O.; Khairunnisa, M.R.; Ammar, A.A.; Hasmadi, I.M.; Aziz, H.K. Mangrove carbon stock as-sessment by optical satellite imagery. J. Trop. For. Sci. 2013, 554–565. Available online: https://www.jstor.org/stable/23616997 (accessed on 2 February 2016).
- Husqvarna. Japan. 2017. Available online: http://www.husqvarna.com/jp/ (accessed on 1 February 2020).
- Yanmar. Sailboat and Small Craft Engines. 2017. Available online: http://www.yanmarmarine.com/Products/Sailboat-and-small-craft-eng (accessed on 1 February 2020).
- Gencat. Guia pràctica per al càlcul d’emissions de gasos amb efecte d’hivernacle (GEH) Versio 2016.3. Generalitat de Catalunya, Oficina del canvi climàtic. 2017. Available online: http://canviclimatic.gencat.cat/web/.content/home (accessed on 1 February 2020).
- Distance Calculator. 2017. Available online: https://www.distancecalculator.net/ (accessed on 1 February 2020).
- Sea Rates. 2017. Available online: https://www.searates.com/reference/portdistance/? (accessed on 1 February 2020).
- OOCL. Environmental Care. OOCL Carbon Calculator. 2017. Available online: http://www.oocl.com/eng/aboutoocl/Environmentalcare/ooclcarboncalculator/Pages/default.Aspx (accessed on 1 February 2020).
- Cefic. Guidelines for measuring and managing CO2 emissions from Freight Transport Operations. 2011. Available online: http://www.cefic.org/Industry-support/Responsible-CaretoolsSMEs/5-Environment/Guidelines-for-managing-CO2-emissions-fromtransportoperations/redueix_emissions/guia_de_calcul_demissions_de_co2/160411_Guia-practica-calcul-emissions_sensecanvis_CA.pdf (accessed on 1 February 2020).
- Sea-Distances. Online Tool for Calculation Distance between Sea Ports. 2017. Available online: https://sea-distances.org (accessed on 1 February 2020).
- Huang, H.L.; Lee, W.M.G.; Wu, F.S. Emissions of air pollutants from indoor charcoal barbecue. J. Hazard. Mater. 2016, 302, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Buhaug, Ø.; Corbett, J.J.; Endresen, O.; Eyring, V.; Faber, J.; Hanayama, S.; Lee, D.; Lindstad, H.; Mjelde, A.; Palsson, C.; et al. Second IMO Greenhouse Gas Study; International Maritime Organization: London, UK, 2009. [Google Scholar]
- McKinnon, A.C.; Piecyk, M.I. Measurement of CO2 emissions from road freight transport: A review of UK experience. Energy Policy 2009, 37, 3733–3742. [Google Scholar] [CrossRef]
Activity | Equation |
---|---|
Tree cutting | Equation (2) |
Logs transport by small boat | Equation (3) |
Conversion of wood into charcoal in kiln | Equation (4) |
Charcoal transport by truck | Equation (5) |
Charcoal transport by Cargo ship for exportation | Equation (6) |
Tree cutters transport by boat | Equation (3) |
Workers and contractors transport by moped | Equation (7) |
Workers and contractors transport by car | Equation (8) |
Barbecue | Equation (9) |
Area (ha) | Total C AGB (Mg) | Total C BGB (Mg) | Total C Soil (Mg) | |
---|---|---|---|---|
Productive forest | ||||
Age 0–15 | 15,170.2 | 552,151.6 | 193,253.1 | 6,624,517.1 |
Age 15–20 | 4435.2 | 384,578.1 | 134,602.3 | 2,158,387.3 |
Age 20–30 | 8786.5 | 465,915.5 | 163,070.4 | 3,900,523.9 |
TOTAL | 28,391.9 | 1,402,645.3 | 490,925.8 | 12,683,428.4 |
Restrictive productive forest | 2068.0 | 93,147.4 | 32,601.6 | 910,401.2 |
Protective forest | 11,661.8 | 1,202,539.0 | 420,888.7 | 5,801,745.5 |
TOTAL MMFR | 42,121.7 | 2,698,331.7 | 944,416.1 | 19,395,575.1 |
Average Carbon Emissions Factors | ||||
---|---|---|---|---|
Type of Activity | Material Used | Units | Charcoal Production Chain | Poles Production Chain |
Boat driving | Small boat | g C Km−1 | 1.14 | 1.16 |
Tree cutting | Chainsaw | g C kWh | 350.00 | - |
Wood burning | Kiln | g C Kg−1 | 702.03 | - |
Log transportation | Container truck | g C Km−1 | 220.37 | - |
General truck | g C Km−1 | - | 167.45 | |
Worker’s transportation | car | g C Km−1 | 42.83 | 42.83 |
moped | g C Km−1 | 18.01 | 18.01 | |
Cargo shipping | Cargo ship | g C t-Km−1 | 4.16 | - |
Charcoal burning | barbecue | g C Kg−1 | 139.78 | - |
Biomass Carbon Stock (Mg) | Carbon Emissions (Mg) | |||
---|---|---|---|---|
Licenced * Area | Allocated * Area | Licenced Area | Allocated Area | |
Thinning I | 1713.64 | 626,978.35 | 11.82 | 4324.63 |
Thinning II | 1996.63 | 687,449.73 | 11.82 | 4069.68 |
Clear-felling | 226.86 | 1,195,446.97 | 336.17 | 1,771,463.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolswijk, G.; Barrios Trullols, A.; Hugé, J.; Otero, V.; Satyanarayana, B.; Lucas, R.; Dahdouh-Guebas, F. Can Mangrove Silviculture Be Carbon Neutral? Remote Sens. 2022, 14, 2920. https://doi.org/10.3390/rs14122920
Wolswijk G, Barrios Trullols A, Hugé J, Otero V, Satyanarayana B, Lucas R, Dahdouh-Guebas F. Can Mangrove Silviculture Be Carbon Neutral? Remote Sensing. 2022; 14(12):2920. https://doi.org/10.3390/rs14122920
Chicago/Turabian StyleWolswijk, Giovanna, Africa Barrios Trullols, Jean Hugé, Viviana Otero, Behara Satyanarayana, Richard Lucas, and Farid Dahdouh-Guebas. 2022. "Can Mangrove Silviculture Be Carbon Neutral?" Remote Sensing 14, no. 12: 2920. https://doi.org/10.3390/rs14122920
APA StyleWolswijk, G., Barrios Trullols, A., Hugé, J., Otero, V., Satyanarayana, B., Lucas, R., & Dahdouh-Guebas, F. (2022). Can Mangrove Silviculture Be Carbon Neutral? Remote Sensing, 14(12), 2920. https://doi.org/10.3390/rs14122920