The Multi-Satellite Environmental and Socioeconomic Predictors of Vector-Borne Diseases in African Cities: Malaria as an Example
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preparation and Selection
2.1.1. Malaria Prevalence Data
2.1.2. Predictor Data
Geospatial Dataset | Variables | Spatial Resolution (m) | Type | Source |
---|---|---|---|---|
Pseudo-climate variables (CCLM) | Average specific humidity at two meters—QV2M | 1000 | Direct extraction | CCLM model derived [38] |
Average relative humidity at two meters—RH2M Average temperature at surface—TS | ||||
Average temperature at two meters—T2M Minimum precipitation | ||||
Maximum precipitation | ||||
Mean precipitation Temperature suitability index—TSI Temperature suitability index relative humidity—TSI-RH | ||||
Local climate zones (LCZ) | Compact built areas | 100 | Distances & Proportions within 1 km buffer | Derived from Landsat, USGS and Sentinel imagery [19] and available from the LCZ generator [41] |
Sparsely built areas Open built areas Wetlands Water bodies Lowlands Trees Informal settlements Industrial areas Mineral areas | ||||
Land cover (LC) | Bare ground Building Low vegetation (humid, riparian, grasses, bushes) Tall vegetation Water | 0.5 | Proportions within 1 km buffer | Derived from Pleiades imagery [33] |
Land use (LU) | Administrative Commercial Service (ACS) | 20 | Proportions within 1 km buffer | Derived from LC maps and OSM [34] |
Wetlands, streams, marshes, rivers (mixed class) Planned residential Informal residential |
2.2. Random Forest Modelling
- ‘Base model’ that only includes NDVI, NDWI and the elevation (Base);
- Model including the variables from the Base model and LCZ variables (Base + LCZ);
- Model corresponding to the second model with the addition of CCLM climate variables (Base + LCZ + CCLM);
- Model corresponding to the second model with the addition of LULC variables (Base + LCZ + LULC);
- Model including all datasets (Base + LCZ + CCLM + LULC).
3. Results
3.1. Comparison of the Geospatial Datasets
3.2. Model Performance Assessment and Predictive Maps
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Snow, R.W.; Sartorius, B.; Kyalo, D.; Maina, J.; Amratia, P.; Mundia, C.W.; Bejon, P.; Noor, A.M. The prevalence of Plasmodium falciparum in sub-Saharan Africa since 1900. Nature 2017, 550, 515–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rowe, A.K. Assessing the Health Impact of Malaria Control Interventions in the MDG/Sustainable Development Goal Era: A New Generation of Impact Evaluations. Am. J. Trop. Med. Hyg. 2017, 97, 6–8. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. World Malaria Report 2021; World Health Organization: Geneva, Switzerland, 2021. [Google Scholar]
- Sinka, M.E.; Bangs, M.J.; Manguin, S.; Coetzee, M.; Mbogo, C.M.; Hemingway, J.; Patil, A.P.; Temperley, W.H.; Gething, P.W.; Kabaria, C.W.; et al. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: Occurrence data, distribution maps and bionomic précis. Parasites Vectors 2010, 3, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinka, M.E.; Bangs, M.J.; Manguin, S.; Rubio-Palis, Y.; Chareonviriyaphap, T.; Coetzee, M.; Mbogo, C.M.; Hemingway, J.; Patil, A.P.; Temperley, W.H.; et al. A global map of dominant malaria vectors. Parasites Vectors 2012, 5, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huh, O.K.; Malone, J.B. New tools: Potential medical applications of data from new and old environmental satellites. Acta Trop. 2001, 79, 35–47. [Google Scholar] [CrossRef]
- Hay, S.I.; Tatem, A.J.; Graham, A.J.; Goetz, S.J.; Rogers, D.J. Global environmental data for mapping infectious disease distribution. Adv. Parasitol. 2006, 62, 37–77. [Google Scholar] [PubMed] [Green Version]
- Rogers, D.J.; Randolph, S.E. Studying the global distribution of infectious diseases using GIS and RS. Nat. Rev. Microbiol. 2003, 1, 231–237. [Google Scholar] [CrossRef]
- Kabaria, C.W.; Molteni, F.; Mandike, R.; Chacky, F.; Noor, A.M.; Snow, R.W.; Linard, C. Mapping intra-urban malaria risk using high resolution satellite imagery: A case study of Dar es Salaam. Int. J. Health Geogr. 2016, 15, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hay, S.I.; Snow, R.W. The Malaria Atlas Project: Developing Global Maps of Malaria Risk. PLoS Med. 2006, 3, e473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraemer, M.U.G.; Reiner, R.C.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Gething, P.W.; Van Boeckel, T.P.; Smith, D.L.; Guerra, C.A.; Patil, A.P.; Snow, R.W.; Hay, S.I. Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasites Vectors 2011, 4, 92. [Google Scholar] [CrossRef] [Green Version]
- Hay, S.I.; Guerra, C.A.; Gething, P.W.; Patil, A.P.; Tatem, A.J.; Noor, A.M.; Kabaria, C.W.; Manh, B.H.; Elyazar, I.R.; Brooker, S.; et al. A World Malaria Map: Plasmodium falciparum Endemicity in 2007. PLoS Med. 2009, 6, e1000048. [Google Scholar] [CrossRef]
- Gething, P.W.; Patil, A.P.; Smith, D.L.; Guerra, C.A.; Elyazar, I.R.F.; Johnston, G.L.; Tatem, A.J.; Hay, S.I. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar. J. 2011, 10, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malaria Atlas Project. Welcome to the Malaria Atlas Project—MAP [Interent]. 2022. Available online: https://malariaatlas.org/ (accessed on 15 February 2022).
- Mathanga, D.P.; Tembo, A.K.; Mzilahowa, T.; Bauleni, A.; Mtimaukenena, K.; Taylor, T.E.; Valim, C.; Walker, E.D.; Wilson, M.L. Patterns and determinants of malaria risk in urban and peri-urban areas of Blantyre, Malawi. Malar. J. 2016, 15, 590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, B.J.; Manescu, P.; Przybylski, A.A.; Caccioli, F.; Oyinloye, G.; Elmi, M.; Shaw, M.J.; Pawar, V.; Claveau, R.; Shawe-Taylor, J.; et al. Data-driven malaria prevalence prediction in large densely populated urban holoendemic sub-Saharan West Africa. Sci. Rep. 2020, 10, 15918. [Google Scholar] [CrossRef] [PubMed]
- Georganos, S.; Brousse, O.; Dujardin, S.; Linard, C.; Casey, D.; Milliones, M.; Parmentier, B.; van Lipzig, N.P.M.; Demuzere, M.; Grippa, T.; et al. Modelling and mapping the intra-urban spatial distribution of Plasmodium falciparum parasite rate using very-high-resolution satellite derived indicators. Int. J. Health Geogr. 2020, 19, 38. [Google Scholar] [CrossRef] [PubMed]
- Brousse, O.; Georganos, S.; Demuzere, M.; Dujardin, S.; Lennert, M.; Linard, C.; Snow, R.W.; Thiery, W.; van Lipzig, N.P.M. Can we use local climate zones for predicting malaria prevalence across sub-Saharan African cities? Environ. Res. Lett. 2020, 15, 124051. [Google Scholar] [CrossRef] [PubMed]
- Kienberger, S.; Hagenlocher, M. Spatial-explicit modeling of social vulnerability to malaria in East Africa. Int. J. Health Geogr. 2014, 13, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyce, M.R.; Katz, R.; Standley, C.J. Risk Factors for Infectious Diseases in Urban Environments of Sub-Saharan Africa: A Systematic Review and Critical Appraisal of Evidence. Trop. Med. Infect. Dis. 2019, 4, 123. [Google Scholar] [CrossRef] [PubMed]
- McMahon, A.; Mihretie, A.; Ahmed, A.A.; Lake, M.; Awoke, W.; Wimberly, M.C. Remote sensing of environmental risk factors for malaria in different geographic contexts. Int. J. Health Geogr. 2021, 20, 28. [Google Scholar] [CrossRef] [PubMed]
- Noor, A.M.; Mutheu, J.J.; Tatem, A.J.; Hay, S.I.; Snow, R.W. Insecticide-treated net coverage in Africa: Mapping progress in 2000-07. Lancet 2009, 373, 58–67. [Google Scholar] [CrossRef] [Green Version]
- Buckee, C.O.; Wesolowski, A.; Eagle, N.N.; Hansen, E.; Snow, R.W. Mobile phones and malaria: Modeling human and parasite travel. Travel Med. Infect. Dis. 2013, 11, 15–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wesolowski, A.; Eagle, N.; Tatem, A.J.; Smith, D.L.; Noor, A.M.; Snow, R.W.; Buckee, C.O. Quantifying the Impact of Human Mobility on Malaria. Science 2012, 338, 267–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Georganos, S.; Gadiaga, A.N.; Linard, C.; Grippa, T.; Vanhuysse, S.; Mboga, N.; Wolff, E.; Dujardin, S.; Lennert, M. Modelling the Wealth Index of Demographic and Health Surveys within Cities Using Very High-Resolution Remotely Sensed Information. Remote Sens. 2019, 11, 2543. [Google Scholar] [CrossRef] [Green Version]
- Corsi, D.J.; Neuman, M.; Finlay, J.E.; Subramanian, S. Demographic and health surveys: A profile. Int. J. Epidemiol. 2012, 41, 1602–1613. [Google Scholar] [CrossRef]
- Ozodiegwu, I.D.; Ambrose, M.; Battle, K.E.; Bever, C.; Diallo, O.; Galatas, B.; Runge, M.; Gerardin, J. Beyond national indicators: Adapting the Demographic and Health Surveys’ sampling strategies and questions to better inform subnational malaria intervention policy. Malar. J. 2021, 20, 122. [Google Scholar] [CrossRef]
- Burgert, C.R.; Colston, J.M.; Roy, T.; Zachary, B. (Eds.) Geographic displacement procedure and georeferenced data release policy for the Demographic and Health Surveys. In DHS Spatial Analysis Reports No 7; ICF International: Calverton, MD, USA, 2013. [Google Scholar]
- Gething, P.W.; Tatem, A.J.; Bird, T.J.; Burgert-Brucker, C.R. (Eds.) Creating spatial interpolation surfaces with DHS data. In DHS Spatial Analysis Reports No 11; ICF International: Rockville, MD, USA, 2015. [Google Scholar]
- Snow, R.W. The Prevalence of Plasmodium Falciparum in Sub Saharan Africa Since 1900, V1 ed.; Harvard Dataverse: Cambridge, MA, USA, 2017. [Google Scholar]
- Smith, D.L.; Guerra, C.A.; Snow, R.W.; Hay, S.I. Standardizing estimates of the Plasmodium falciparum parasite rate. Malar. J. 2007, 6, 131. [Google Scholar] [CrossRef]
- Grippa, T.; Lennert, M.; Beaumont, B.; Vanhuysse, S.; Stephenne, N.; Wolff, E. An Open-Source Semi-Automated Processing Chain for Urban Object-Based Classification. Remote Sens. 2017, 9, 358. [Google Scholar] [CrossRef] [Green Version]
- Grippa, T.; Georganos, S.; Zarougui, S.; Bognounou, P.; Diboulo, E.; Forget, Y.; Lennert, M.; Vanhuysse, S.; Mboga, N.; Wolff, E. Mapping Urban Land Use at Street Block Level Using OpenStreetMap, Remote Sensing Data, and Spatial Metrics. ISPRS Int. J. Geo-Inf. 2018, 7, 246. [Google Scholar] [CrossRef] [Green Version]
- Buchhorn, M.; Smets, B.; Bertels, L.; De Roo, B.; Lesiv, M.; Tsendbazar, N.-E.; Li, L.; Tarko, A. Copernicus Global Land Service: Land Cover 100m: Version 3 Globe 2015-2019: Product User Manual (Dataset v3.0, Doc Issue 3.3); Zenodo: Geneva, Switzerland, 2020. [Google Scholar]
- Rockel, B.; Will, A.; Hense, A. The regional climate model COSMO-CLM (CCLM). Meteorol. Z. 2008, 17, 347–348. [Google Scholar] [CrossRef]
- Brousse, O.; Georganos, S.; Demuzere, M.; Vanhuysse, S.; Wouters, H.; Wolff, E.; Linard, C.; van Lipzig, N.P.M.; Dujardin, S. Using Local Climate Zones in Sub-Saharan Africa to tackle urban health issues. Urban Clim. 2019, 27, 227–242. [Google Scholar] [CrossRef] [Green Version]
- Brousse, O.; Wouters, H.; Demuzere, M.; Thiery, W.; Van de Walle, J.; van Lipzig, N.P.M. The local climate impact of an African city during clear-sky conditions—Implications of the recent urbanization in Kampala (Uganda). Int. J. Climatol. 2020, 40, 4586–4608. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Demuzere, M.; Kittner, J.; Bechtel, B. LCZ Generator: A Web Application to Create Local Climate Zone Maps. Front. Environ. Sci. 2021, 9, 637455. [Google Scholar] [CrossRef]
- Kapwata, T.; Gebreslasie, M.T. Random forest variable selection in spatial malaria transmission modelling in Mpumalanga Province, South Africa. Geospat. Health 2016, 11, 434. [Google Scholar] [CrossRef] [Green Version]
- Lovelace, R.; Nowosad, J.; Muenchow, J. Chapter 14 Ecology in: Geocomputation with R; Chapman and Hall/CRC: New York, NY, USA, 2019. [Google Scholar]
- Wright, M.N.; Ziegler, A. ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R. arXiv 2015, arXiv:1508.04409. [Google Scholar] [CrossRef] [Green Version]
- Bischl, B.; Lang, M.; Kotthoff, L.; Schiffner, J.; Richter, J.; Studerus, E.; Casalicchio, G.; Jones, Z.M. mlr: Machine Learning in R. J. Mach. Learn. Res. 2016, 17, 5938–5942. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 2017, 27, 659–678. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Mourou, J.-R.; Coffinet, T.; Jarjaval, F.; Cotteaux, C.; Pradines, E.; Godefroy, L.; Kombila, M.; Pagès, F. Malaria transmission in Libreville: Results of a one year survey. Malar. J. 2012, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Lengeler, C.; Smith, T.A.; Vounatsou, P.; Akogbeto, M.; Tanner, M. Rapid Urban Malaria Appraisal (RUMA) IV: Epidemiology of urban malaria in Cotonou (Benin). Malar. J. 2006, 5, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Giudice, M. The Prediction-Explanation Fallacy: A Pervasive Problem in Scientific Applications of Machine Learning. PsyArXiv 2021. [Google Scholar] [CrossRef]
- Georganos, S.; Grippa, T. Dar Es Salaam Very-High-Resolution Land Cover Map; Zenodo: Geneva, Switzerland, 2020. [Google Scholar]
- Georganos, S.; Grippa, T. Kampala Very-High-Resolution Land Cover Map; Zenodo: Geneva, Switzerland, 2020. [Google Scholar]
- Georganos, S. Malaria in High-Resolution: Modelling and Mapping Plasmodium falciparum Parasite Rate using Very-High-Resolution Satellite Derived Indicators in Sub-Saharan African Cities; Zenodo: Geneva, Switzerland, 2020. [Google Scholar]
(a) | |||||||
Model | Covariates | Mean R2 | Median R2 | Mean RMSE | Median RMSE | Mean MAE | Median MAE |
Base | NDVI, NDWI, Elevation | 0.16 ±0.02 | 0.16 | 7.32 ±0.54 | 7.02 | 5.92 ±0.30 | 5.87 |
Base + LCZ + CCLM | NDVI, NDWI, SRTM, CCLM_QV2M, CCLM_RH2M, CCLM_T2M, CCLM_TS, CCLM_pp_avg, CCLM_pp_max, CCLM_pp_min, CCLM_TSI, LCZprop_compact, LCZprop_indu, LCZprop_informal, LCZprop_mineral, LCZprop_open, LCZdist_compact, LCZdist_indu, LCZdist_informal, LCZdist_lowland, LCZdist_mineral, LCZdist_open, LCZdist _sparse, LCZdist_trees, LCZdist_water, LCZdist _wetlands | 0.18 ±0.02 | 0.18 | 7.02 ±0.52 | 7.17 | 5.76 ±0.29 | 5.92 |
Base + LCZ + LULC | LCZdist _compact, LC_bare_ground, LC_tall_veg, LC_water, LU_ACS | 0.32 ±0.03 | 0.29 | 6.01 ±0.58 | 6.21 | 5.00 ±0.50 | 5.02 |
Base + LCZ + CCLM + LULC | LC_bare_ground, LC_tall_veg, LC_water, LU_ACS, LCZdist_compact | 0.33 ±0.03 | 0.29 | 6.14 ±0.46 | 6.17 | 5.01 ±0.41 | 4.82 |
(b) | |||||||
Model | Covariates | Mean R2 | Median R2 | Mean RMSE | Median RMSE | Mean MAE | Median MAE |
Base | NDVI, NDWI, Elevation | −0.10 ±0.02 | −0.11 | 6.67 ±0.58 | 6.67 | 5.59 ±0.51 | 5.17 |
Base + LCZ | LCZprop_open, LCZdist_compact, LCZdist_open, LCZdist_trees, LCZdist_water | 0.05 ±0.04 | 0.08 | 6.19 ±0.49 | 6.03 | 4.86 ±0.33 | 4.82 |
Base + LCZ + CCLM | CCLM_ RH2M, CCLM_ TS, CCLM_ TSI, LCZdist_water | 0.16 ±0.05 | 0.19 | 6.43 ±0.55 | 6.01 | 5.15 ±0.52 | 4.48 |
Base + LCZ + LULC | LCZprop_open, LCZdist_compact, LCZdist_indu, LCZdist_lowland, LCZdist_open, LCZdist_trees, LCZdist_water, LC_bare_ground, LC_tall_veg, LU_Planned, LU_Informal | 0.11 ±0.04 | 0.16 | 6.36 ±0.38 | 6.16 | 5.10 ±0.29 | 5.14 |
Base + LCZ + CCLM + LULC | LU_Informal, CCLM_RH2M, CCLM_TSI, LCZdist_water | 0.21 ±0.05 | 0.29 | 6.11 ±0.34 | 6.01 | 4.82 ±0.31 | 4.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morlighem, C.; Chaiban, C.; Georganos, S.; Brousse, O.; Van de Walle, J.; van Lipzig, N.P.M.; Wolff, E.; Dujardin, S.; Linard, C. The Multi-Satellite Environmental and Socioeconomic Predictors of Vector-Borne Diseases in African Cities: Malaria as an Example. Remote Sens. 2022, 14, 5381. https://doi.org/10.3390/rs14215381
Morlighem C, Chaiban C, Georganos S, Brousse O, Van de Walle J, van Lipzig NPM, Wolff E, Dujardin S, Linard C. The Multi-Satellite Environmental and Socioeconomic Predictors of Vector-Borne Diseases in African Cities: Malaria as an Example. Remote Sensing. 2022; 14(21):5381. https://doi.org/10.3390/rs14215381
Chicago/Turabian StyleMorlighem, Camille, Celia Chaiban, Stefanos Georganos, Oscar Brousse, Jonas Van de Walle, Nicole P. M. van Lipzig, Eléonore Wolff, Sébastien Dujardin, and Catherine Linard. 2022. "The Multi-Satellite Environmental and Socioeconomic Predictors of Vector-Borne Diseases in African Cities: Malaria as an Example" Remote Sensing 14, no. 21: 5381. https://doi.org/10.3390/rs14215381
APA StyleMorlighem, C., Chaiban, C., Georganos, S., Brousse, O., Van de Walle, J., van Lipzig, N. P. M., Wolff, E., Dujardin, S., & Linard, C. (2022). The Multi-Satellite Environmental and Socioeconomic Predictors of Vector-Borne Diseases in African Cities: Malaria as an Example. Remote Sensing, 14(21), 5381. https://doi.org/10.3390/rs14215381