Noise Analysis and Combination of Hydrology Loading-Induced Displacements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Fusion with Principal Components Analysis (PCA)
2.2. Overlapping Hadamard Variance
3. Modeling Hydrology Loading Displacements
4. Results
4.1. Noise Analysis
4.2. Data Combining and Analysis
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- van Dam, T.; Wahr, J.; Milly, P.C.D.; Shmakin, A.B.; Blewitt, G.; Lavallée, D.; Larson, K.M. Crustal displacements due to continental water loading. Geophys. Res. Lett. 2001, 28, 651–654. [Google Scholar] [CrossRef] [Green Version]
- van Dam, T.; Collilieux, X.; Wuite, J.; Altamimi, Z.; Ray, J. Nontidal ocean loading: Amplitudes and potential effects in GPS height time series. J. Geod. 2012, 86, 1043–1057. [Google Scholar] [CrossRef] [Green Version]
- Mémin, A.; Boy, J.-P.; Santamaría-Gómez, A. Correcting GPS measurements for non-tidal loading. GPS Solut. 2020, 24, 45. [Google Scholar] [CrossRef]
- Nicolas, J.; Verdun, J.; Boy, J.-P.; Bonhomme, L.; Asri, A.; Corbeau, A.; Berthier, A.; Durand, F.; Clarke, P. Improved Hydrological Loading Models in South America: Analysis of GPS Displacements Using M-SSA. Remote Sens. 2021, 13, 1605. [Google Scholar] [CrossRef]
- Michel, A.; Santamaría-Gómez, A.; Boy, J.-P.; Perosanz, F.; Loyer, S. Analysis of GNSS Displacements in Europe and Their Comparison with Hydrological Loading Models. Remote Sens. 2021, 13, 4523. [Google Scholar] [CrossRef]
- Van Dam, T.; Plag, H.P.; Francis, O.; Gegout, P. GGFC Special Bureau for Loading: Current status and plans. IERS Tech. Note 2003, 30, 180–198. [Google Scholar]
- Li, Y. Solid Earth Response to Environmental Variation. Ph.D. Thesis, Wuhan University, Wuhan, China, 2003. [Google Scholar]
- Petrov, L.; Boy, J.P. Study of the atmospheric pressure loading signal in VLBI observations. J. Geophys. Res. 2004, 109, B03405. [Google Scholar]
- Ray, J.; Altamimi, Z.; van Dam, T.; Herring, T. Principles for conventional contributions to modeled station displacements. In Proceedings of the IERS Conventions Workshop-Position Paper for Sessions 2 & 5, Paris, French, 22–23 September 2007; Available online: http://www.bipm.org/utils/en/events/iers/Conv_PP1.txt (accessed on 30 December 2018).
- Dach, R.; Böhm, J.; Lutz, S.; Steigenberger, P.; Beutler, G. Evaluation of the impact of atmospheric pressure loading modeling on GNSS data analysis. J. Geod. 2011, 85, 75–91. [Google Scholar] [CrossRef] [Green Version]
- Xu, C. Investigating Mass Loading Contributors of Seasonal Oscillations in GPS Observations Using Wavelet Analysis. Pure Appl. Geophys. 2016, 173, 2767–2775. [Google Scholar] [CrossRef]
- Xu, C. Evaluating mass loading products by comparison to GPS array daily solutions. Geophys. J. Int. 2017, 208, 24–35. [Google Scholar] [CrossRef]
- Li, W.; van Dam, T.; Li, Z.; Shen, Y. Annual variation detected by GPS, GRACE and loading models. Studia Geophys. Geod. 2016, 60, 608–621. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Z.; van Dam, T.; Ding, W. Comparative analysis of different environmental loading methods and their impacts on the GPS height time series. J. Geod. 2013, 87, 687–703. [Google Scholar] [CrossRef]
- Dill, R.; Dobslaw, H. Numerical simulations of global-scale high-resolution hydrological crustal deformations. J. Geophys. Res. Solid Earth 2013, 118, 5008–5017. [Google Scholar] [CrossRef]
- Li, Z.; van Dam, T.; Collilieux, X.; Altamimi, Z.; Rebischung, P.; Nahmani, S. Quality Evaluation of the Weekly Vertical Loading Effects Induced from Continental Water Storage Models. In International Association of Geodesy Symposia; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Dong, D.; Fang, P.; Bock, Y.; Cheng, M.; Miyazaki, S. Anatomy of apparent seasonal variations from GPS-derived site position time series. J. Geophys. Res. Solid Earth 2002, 107, 2075. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Chen, W.; Zhu, Y.; Zhang, W.; Zhong, M. Contributions of thermal expansion of monuments and nearby bedrock to observed GPS height changes. Geophys. Res. Lett. 2009, 36, L13301. [Google Scholar] [CrossRef] [Green Version]
- Xiong, F.; Zhu, W. Land deformation monitoring by GPS in the Yangtze Delta and the measurements analysis. Chin. J. Geophys. 2007, 50, 1719–1730. [Google Scholar] [CrossRef]
- Collilieux, X.; Dam, T.; Ray, J.; Coulot, D.; Métivier, L.; Altamimi, Z. Strategies to mitigate aliasing of loading signals while estimating GPS frame parameters. J. Geod. 2012, 86, 1–14. [Google Scholar] [CrossRef]
- Koot, L.; Viron, O.d.; Dehant, V. Atmospheric Angular Momentum Time-Series: Characterization of their Internal Noise and Creation of a Combined Series. J. Geod. 2006, 79, 663–674. [Google Scholar] [CrossRef]
- Ferreira, V.G.; Montecino, H.; Yakubu, C.I.; Heck, B. Uncertainties of the Gravity Recovery and Climate Experiment time-variable gravity-field solutions based on three-cornered hat method. J. Appl. Remote Sens. 2016, 10, 015015. [Google Scholar] [CrossRef]
- Premoli, A.; Tavella, P. A revisited three-cornered hat method for estimating frequency standard instability. IEEE Trans. Instrum. Meas. 1993, 42, 7–13. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002; p. 488. [Google Scholar]
- Cadima, J.; Jolliffe, I.T. Loadings and correlations in the interpretation of principal components. J. Appl. Stat. 1995, 22, 203–214. [Google Scholar] [CrossRef]
- Riley, W.J. Handbook of Frequency Stability Analysis; National Institute of Standards and Technology Special Publication 1065; U.S. Department of Commerce: Washington, DC, USA, 2008; 136p.
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, R. File Specification for GEOS-5 FP-IT (Forward Processing for Instrument Teams). 2013. Available online: https://ntrs.nasa.gov/citations/20150001438 (accessed on 15 April 2022).
- Reichle, R.H.; Koster, R.D.; De Lannoy, G.J.M.; Forman, B.A.; Liu, Q.; Mahanama, S.P.P.; Touré, A. Assessment and Enhancement of MERRA Land Surface Hydrology Estimates. J. Clim. 2011, 24, 6322–6338. [Google Scholar] [CrossRef] [Green Version]
- Roads, J.O.; Chen, S.C.; Kanamitsu, M.; Juang, H. Surface water characteristics in NCEP global spectral model and reanalysis. J. Geophys. Res. Atmos. 1999, 104, 19307–19328. [Google Scholar] [CrossRef]
- Petrov, L. The International Mass Loading Service. arXiv 2015, arXiv:1503.00191. [Google Scholar]
- Farrell, W. Deformation of the Earth by surface loads. Rev. Geophys. 1972, 10, 761–797. [Google Scholar] [CrossRef]
- Dziewonski, A.M.; Anderson, D.L. Preliminary reference Earth model. Phys. Earth Planet. Int. 1981, 25, 297–356. [Google Scholar] [CrossRef]
- Zhong, D.; Wang, S.; Li, J. A Self-Calibration Variance Component Model for Spatial Downscaling of GRACE Observations Using Land Surface Model Outputs. Water Resour. Res. 2020, 57, e2020WR028944. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Zhang, Z.; Save, H.; Sun, A.Y.; Schmied, H.M.; Beek, L.V.; Wiese, D.N.; Wada, Y.; Long, D.; Reedy, R.C. Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proc. Natl. Acad. Sci. USA 2018, 115, E1080–E1089. [Google Scholar] [CrossRef] [Green Version]
- Rowlands, D.D.; Luthcke, S.B.; Klosko, S.M.; Lemoine, F.G.R.; Chinn, D.S.; McCarthy, J.J.; Cox, C.M.; Anderson, O.B. Resolving mass flux at high spatial and temporal resolution using GRACE intersatellite measurements. Geophys. Res. Lett. 2005, 32, L04310. [Google Scholar] [CrossRef]
- Blewitt, G.; Lavallée, D. Effect of annual signals on geodetic velocity. J. Geophys. Res. Solid Earth 2002, 107, ETG 9-1–ETG 9-11. [Google Scholar] [CrossRef] [Green Version]
- Akaike, H. Factor analysis and AIC. Psychometrika 1987, 52, 317–332. [Google Scholar] [CrossRef]
- Bos, M.; Fernandes, R.; Williams, S.; Bastos, L. Fast error analysis of continuous GNSS observations with missing data. J. Geod. 2013, 87, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I: A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Rienecker, M.M.; Suarez, M.J.; Gelaro, R.; Todling, R.; Bacmeister, J.; Liu, E.; Bosilovich, M.G.; Schubert, S.D.; Takacs, L.; Kim, G.K.; et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 2011, 24, 3624–3648. [Google Scholar] [CrossRef]
- Decker, M.; Brunke, M.A.; Wang, Z.; Sakaguchi, K.; Zeng, X.; Bosilovich, M.G. Evaluation of the Reanalysis Products from GSFC, NCEP, and ECMWF Using Flux Tower Observations. J. Clim. 2010, 25, 1916–1944. [Google Scholar] [CrossRef]
- Wunsch, C.; Heimbach, P.; Ponte, R.M.; Fukumori, I. The Global General Circulation of the Ocean Estimated by the ECCO-Consortium. Oceanography 2009, 22, 88–103. [Google Scholar] [CrossRef]
- Pawlowicz, R. M_Map: A Mapping Package for Matlab. [Computer Software] 2020. Available online: www.eoas.ubc.ca/~rich/map.html (accessed on 30 December 2020).
Characteristic | Temporal Resolution | Spatial Resolution | Environmental Input Data | |
---|---|---|---|---|
HYLD Model | ||||
ERA interim | 6 h | 0.7° × 0.7° | soil-moisture and snow | |
GLDAS/Noah | 3 h | 0.25° × 0.25° | soil-moisture, snow, and canopy water | |
GEOS-FPIT | 1 h | 0.5° × 0.625° | soil-moisture, snow, and canopy water | |
MERRA | 1 h | 1/2° × 2/3° | soil-moisture, snow, and canopy water |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Yao, X.; He, X. Noise Analysis and Combination of Hydrology Loading-Induced Displacements. Remote Sens. 2022, 14, 2840. https://doi.org/10.3390/rs14122840
Xu C, Yao X, He X. Noise Analysis and Combination of Hydrology Loading-Induced Displacements. Remote Sensing. 2022; 14(12):2840. https://doi.org/10.3390/rs14122840
Chicago/Turabian StyleXu, Chang, Xin Yao, and Xiaoxing He. 2022. "Noise Analysis and Combination of Hydrology Loading-Induced Displacements" Remote Sensing 14, no. 12: 2840. https://doi.org/10.3390/rs14122840
APA StyleXu, C., Yao, X., & He, X. (2022). Noise Analysis and Combination of Hydrology Loading-Induced Displacements. Remote Sensing, 14(12), 2840. https://doi.org/10.3390/rs14122840