Sensitivity Testing of Microwave Temperature Sounder-II Onboard the Fengyun-3 Satellite to Sea Surface Barometric Pressure Based on Deep Neural Network
Abstract
:1. Introduction
2. Data Description
2.1. MWTS-II Characteristics and Data Description
2.2. Atmospheric Data Description and Pre-Processing
3. Theoretical Principle
3.1. Principle of Measuring SSP by Satellite-Based Microwave Radiometer
3.2. Theoretical Analysis
4. Model and Method
4.1. The Deep Neural Network Algorithm
4.2. The DNN-Based Model for MWTS-II Simulations
4.3. The DNN-Based Test Method for the Sensitivity of MWTS-II to SSP
5. Experimental Design
6. Experimental Results
6.1. Results of the DNN-Based Model for MWTS-II Simulations
6.2. The Sensitivity Test Results of MWTS-II to SSP Based on MWTS-II Simulated Brightness Temperature
6.3. The Retrieval Results of SSP Based on MWTS-II Simulated Brightness Temperatures
6.4. The Retrieval Results of SSP Based on MWTS-II Observed Brightness Temperatures
6.5. Evaluation of Algorithm Stability
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lorenc, A.C. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 2010, 112, 1177–1194. [Google Scholar] [CrossRef]
- Holton, J.R.; Hakim, G.J. An Introduction to Dynamic Meteorology; Academic Press: New York, NY, USA, 2013. [Google Scholar]
- Min, Q.; Gong, W.; Lin, B.; Hu, Y. Application of surface pressure measurements from O2-band differential absorption radar system in three-dimensional data assimilation on hurricane: Part I. An observing system simulation experiments study. J. Quant. Spectrosc. Radiat. Transf. 2011, 150, 148–165. [Google Scholar] [CrossRef] [Green Version]
- Min, Q.; Gong, W.; Lin, B.; Hu, Y. Application of surface pressure measurements from O2-band differential absorption radar system in three-dimensional data assimilation on hurricane: Part II. A quasi-observational study. J. Quant. Spectrosc. Radiat. Transf. 2015, 150, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z. Remote sounding of atmospheric pressure profile from space, part 1: Principle. J. Appl. Remote Sens. 2010, 4, 2840–2849. [Google Scholar] [CrossRef]
- Millán, L.; Lebsock, M.; Livesey, N.; Tanelli, S.; Stephens, G. Differential absorption radar techniques: Surface pressure. Atmos. Meas. Tech. 2014, 7, 3959–3970. [Google Scholar] [CrossRef] [Green Version]
- Rosenkranz, P.W. Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2429–2435. [Google Scholar] [CrossRef]
- Purna Chand, C.; Rao, M.V.; Ramana, I.V.; Ali, M.M.; Patoux, J.; Bourassa, M.A. Estimation of sea level pressure fields during Cyclone Nilam from Oceansat-2 scatterometer winds. Atmos. Sci. Lett. 2014, 15, 65–71. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, X.; Liu, L.; He, J. Retrieval of barometric pressure from satellite passive microwave observations over the oceans. J. Geophys. Res. 2018, 123, 4360–4372. [Google Scholar] [CrossRef]
- Zhang, Z. Study on the Retrieval Theory and Method of Sea Surface Pressure Basing on Passive Microwave Observations. Ph.D. Thesis, Chinese Academy of Science, Beijing, China, 2019. [Google Scholar]
- Elachi, C.; van Zyl, J. Introduction to the Physics and Techniques of Remote Sensing; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Rodgers, C.D. Retrieval of atmospheric temperature and composition from remote measurements of thermal radiation. Rev. Geophys. 1976, 14, 609–624. [Google Scholar] [CrossRef]
- Klein, M.; Gasiewski, A.J. Nadir sensitivity of passive millimeter and submillimeter wave channels to clear air temperature and water vapor variations. J. Geophys. Res. Atmos. 2000, 105, 17481–17511. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Gasiewski, A.J. Multiband Simulations of Multistream Polarimetric Microwave Radiances Over Aspherical Hydrometeors. J. Geophys. Res. Atmos. 2018, 123, 12738–12761. [Google Scholar] [CrossRef]
- Guo, Y.; Lu, N.; Gu, S. Simulation of the radiometric characteristics of 118 GHz and 183 GHz channels for FY-3C new microwave radiometer sounder. J. Infrared Millim. Waves 2014, 33, 481. [Google Scholar] [CrossRef]
- Hong, G.; Heygster, G.; Miao, J.; Kunzi, K. Sensitivity of microwave brightness temperatures to hydrometeors in a tropical deep convective cloud system at 89–190 GHz. Radio Sci. 2005, 40, RS4003. [Google Scholar] [CrossRef] [Green Version]
- Weng, F.; Zou, X.; Qin, Z. Uncertainty of AMSU-A derived temperature trends in relationship with clouds and precipitation over ocean. Clim. Dyn. 2014, 43, 1439–1448. [Google Scholar] [CrossRef]
- Moradi, I.; Ferraro, R.R.; Soden, B.J.; Eriksson, P.; Arkin, P. Retrieving Layer-Averaged Tropospheric Humidity from Advanced Technology Microwave Sounder Water Vapor Channels. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6675–6688. [Google Scholar] [CrossRef] [Green Version]
- Navas-Guzmán, F.; Stähli, O.; Kämpfer, N. An integrated approach toward the incorporation of clouds in the temperature retrievals from microwave measurements. Atmos. Meas. Tech. 2014, 7, 1619–1628. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Wang, Z.; Li, J. Fusion Retrieval of Sea Surface Barometric Pressure from the Microwave Humidity and Temperature Sounder and Microwave Temperature Sounder-II Onboard the Fengyun-3 Satellite. Remote Sens. 2022, 14, 276. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Rundle, D.; Rayer, P.; Matricardi, M.; Geer, A.; Lupu, C.; Brunel, P.; Vidot, J. RTTOV-11 Science and Validation Report; NWP-SAF Report; Met Office: Exeter, UK, 2013; pp. 1–62.
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Van Delst, P.; Liu, Q.H.; Weng, F.Z.; Yan, B.; Treadon, R.; Derber, J. Community Radiative Transfer Model (CRTM), Version 1; NOAA Technical Report 122; Department of Commerce/NOAA/NESDIS: Washington, DC, USA, 2006.
- Buehler, S.A.; Mendrok, J.; Eriksson, P.; Perrin, A.; Larsson, R.; Lemke, O. ARTS, the Atmospheric Radiative Transfer Simulator—version 2.2, the planetary toolbox edition. Geosci. Model Dev. 2018, 11, 1537–1556. [Google Scholar] [CrossRef] [Green Version]
- He, Q.; Wang, Z.; He, J. Bias correction for retrieval of atmospheric parameters from the Microwave Humidity and Temperature Sounder onboard the Fengyun-3C satellite. Atmosphere 2016, 7, 156. [Google Scholar] [CrossRef] [Green Version]
- Auligné, T.; McNally, A.P.; Dee, D.P. Adaptive bias correction for satellite data in a numerical weather prediction system. Q. J. R. Meteorol. Soc. 2007, 133, 631–642. [Google Scholar] [CrossRef]
- Zhu, Y.; Derber, J.; Collard, A.; Dee, D.; Treason, R.; Gayno, G.; Jung, J.A. Enhanced radiance bias correction in the National Centers for Environmental Prediction’s Gridpoint Statistical Interpolation data assimilation system. Q. J. R. Meteorol. Soc. 2014, 140, 1479–1492. [Google Scholar] [CrossRef]
- Yan, X.; Liang, C.; Jiang, Y.; Luo, N.; Zang, Z.; Li, Z. A deep learning approach to improve the retrieval of temperature and humidity profiles from a ground-based microwave radiometer. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8427–8437. [Google Scholar] [CrossRef]
- Zhou, Y.; Grasstotti, C. Development of a machine learning-based radiometric bias correction for NOAA’s Microwave integrated retrieval system (MIRS). Remote Sens. 2020, 12, 3160. [Google Scholar] [CrossRef]
- He, Q.; Wang, Z.; Li, J. Application of the Deep Neural Network in Retrieving the Atmospheric Temperature and Humidity Profiles from the Microwave Humidity and Temperature Sounder Onboard the Feng-Yun-3 Satellite. Sensors 2021, 21, 4673. [Google Scholar] [CrossRef]
- Dueben, P.; Modigliani, U.; Geer, A.; Siemen, S.; Pappenberger, F.; Bauer, P.; Brown, A.; Palkovič, M.; Raoult, B.; Wedi, N.; et al. Machine Learning at ECMWF: A Roadmap for the Next 10 Years; Technical Report, Number 878; European Centre for Medium-Range Weather Forecasts: Reading, UK, 2021; pp. 1–18. [Google Scholar] [CrossRef]
- Aires, F.; Weston, P.; Rosnay, P.; Fairbairn, D. Statistical approaches to assimilate ASCAT soil moisture information: Part I Methodologies and first assessment. Q. J. R. Meteorol. Soc. 2021, 147, 1823–1825. [Google Scholar] [CrossRef]
- Blackwell, W.J.; Chen, F.W. Neural Networks in Atmospheric Remote Sensing; Artech House: Norwood, MA, USA, 2009. [Google Scholar]
- Yuan, B.; Ma, G.; Zhang, P.; Xi, S.; Wang, T. A Precipitation Detection Method for MWTS-Ⅱ Radiance Assimilation in Typhoon Simulation. J. Trop. Meteorol. 2020, 26, 150–160. [Google Scholar] [CrossRef]
- Niu, Z.; Zhang, L.; Dong, P.; Weng, F.; Huang, W. Impact of Assimilating FY-3D MWTS-2 Upper Air Sounding Data on Forecasting Typhoon Lekima. Remote Sens. 2021, 13, 1841. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; He, J.; Zhang, S.; Gu, S.; Li, Y.; Guo, Y.; He, B. Performance analysis of Microwave Humidity and Temperature Sounder onboard the FY-3D satellite from prelaunch multiangle calibration data in thermal/vacuum test. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1664–1683. [Google Scholar] [CrossRef]
- Xia, X.; Zou, X. Combining FY-3D MWTS-2 with AMSU-A data for inter-decadal diurnal correction and climate trends of atmospheric temperature. Remote Sens. 2021, 13, 3148. [Google Scholar] [CrossRef]
- Su, X.; Jiang, G. Intercalibration of FY-3D MWTS against S-NPP ATMS based on microwave radiative transfer model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 8427–8435. [Google Scholar] [CrossRef]
- Lu, Q.; Hu, J.; Wu, C.; Qi, C.; Wu, S.; Xu, N.; Sun, L.; Li, X.; Liu, H.; Guo, Y.; et al. Monitoring the performance of the Fengyun satellite instruments using radiative transfer models and NWP fields. J. Quant. Spectrosc. Radiat. Transf. 2020, 225, 107239. [Google Scholar] [CrossRef]
- Li, J.; Liu, G. Direct assimilation of Chinese FY-3C Microwave Temperature Sounder-2 radiances in the global GRAPES system. Atmos. Meas. Tech. 2016, 9, 3095–3113. [Google Scholar] [CrossRef] [Green Version]
- Carminati, F.; Migliorini, S. All-sky data assimilation of MWTS-2 and MWHS-2 in the Met Office Global NWP System. Adv. Atmos. Sci. 2021, 38, 1682–1694. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Berrisford, P.; Dee, D.; Poli, P.; Brugge, R.; Fielding, K.; Fuentes, M.; Kallberg, P.; Kobayashi, S. The ERA-Interim Archive Version 2.0; ERA Report Series 1; ECMWF: Reading, UK, 2011. [Google Scholar]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive; Addison-Wesley: Reading, MA, USA, 1981. [Google Scholar]
- Boukabara, S.A.; Garrett, K.; Chen, W.; Iturbide-Sanchez, F.; Grassotti, C.; Kongoli, C.; Chen, R.; Liu, Q.; Yan, B.; Weng, F.; et al. MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3249–3272. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural net-works from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Lee, Y.; Han, D.; Ahn, M.H.; Im, J.; Lee, S.J. Retrieval of total precipitable water from Himawari-8 AHI data: A comparison of random forest, extreme gradient boosting, and deep neural network. Remote Sens. 2019, 11, 1741. [Google Scholar] [CrossRef] [Green Version]
Channel | Frequency (GHz) | Sensitivity Requirements (K) | On-Orbit Sensitivity (K) | Peak WF Height (hPa) |
---|---|---|---|---|
1 | 53.30 | 1.5 | 0.26 | surface |
2 | 51.760 | 0.9 | 0.20 | surface |
3 | 52.800 | 0.9 | 0.21 | 950 |
4 | 53.596 | 0.9 | 0.18 | 700 |
5 | 54.400 | 0.9 | 0.19 | 400 |
6 | 54.940 | 0.9 | 0.19 | 250 |
7 | 55.500 | 0.9 | 0.23 | 180 |
8 | 57.290 (f0) | 0.9 | 0.74 | 90 |
9 | f0 ± 0.217 | 1.5 | 0.66 | 50 |
10 | f0 ± 0.322 ± 0.048 | 1.5 | 0.49 | 25 |
11 | f0 ± 0.322 ± 0.022 | 2.3 | 0.53 | 10 |
12 | f0 ± 0.322 ± 0.010 | 3.0 | 0.93 | 6 |
13 | f0 ± 0.322 ± 0.005 | 4.5 | 2.11 | 3 |
Correlation Coefficients | ||||||||
---|---|---|---|---|---|---|---|---|
Channel | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
1 | –0.532 | –0.561 | –0.091 | 0.195 | 0.351 | 0.485 | 0.361 | 0.181 |
2 | –0.513 | –0.661 | –0.225 | 0.131 | 0.370 | 0.440 | 0.386 | 0.251 |
3 | 0.035 | –0.470 | –0.509 | –0.101 | 0.129 | 0.353 | 0.381 | 0.387 |
4 | 0.632 | 0.002 | –0.427 | –0.271 | –0.078 | –0.007 | 0.058 | 0.146 |
5 | 0.880 | 0.369 | –0.180 | –0.146 | –0.185 | –0.182 | –0.042 | 0.067 |
Removed Channel | Correlation | Bias (hPa) | RMSE (hPa) | Removed Channel | Correlation | Bias (hPa) | RMSE (hPa) |
---|---|---|---|---|---|---|---|
1 | 0.9487 | –0.064 | 2.281 | 8 | 0.9482 | –0.388 | 2.323 |
2 | 0.9476 | –0.107 | 2.305 | 9 | 0.9489 | –0.036 | 2.276 |
3 | 0.9518 | –0.445 | 2.257 | 10 | 0.9494 | 0.205 | 2.273 |
4 | 0.9454 | 0.181 | 2.358 | 11 | 0.9461 | –0.348 | 2.362 |
5 | 0.9435 | 0.069 | 2.393 | 12 | 0.9467 | 0.616 | 2.402 |
6 | 0.9510 | –0.317 | 2.251 | 13 | 0.9352 | –0.088 | 2.555 |
7 | 0.9460 | 0.055 | 2.339 |
Removed Channel | Correlation | Bias (hPa) | RMSE (hPa) | Removed Channel | Correlation | Bias (hPa) | RMSE (hPa) |
---|---|---|---|---|---|---|---|
1 | 0.9062 | –0.145 | 3.051 | 8 | 0.9037 | 0.002 | 3.087 |
2 | 0.9061 | –0.492 | 3.091 | 9 | 0.9098 | 0.407 | 3.020 |
3 | 0.9060 | 0.258 | 3.066 | 10 | 0.9070 | 0.445 | 3.068 |
4 | 0.9013 | –0.019 | 3.122 | 11 | 0.9083 | –0.050 | 3.021 |
5 | 0.9045 | 0.030 | 3.075 | 12 | 0.9065 | 0.391 | 3.077 |
6 | 0.9062 | 0.269 | 3.078 | 13 | 0.9031 | –0.039 | 3.097 |
7 | 0.9057 | 0.005 | 3.058 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Wang, Z.; Li, J.; Wang, W. Sensitivity Testing of Microwave Temperature Sounder-II Onboard the Fengyun-3 Satellite to Sea Surface Barometric Pressure Based on Deep Neural Network. Remote Sens. 2022, 14, 2839. https://doi.org/10.3390/rs14122839
He Q, Wang Z, Li J, Wang W. Sensitivity Testing of Microwave Temperature Sounder-II Onboard the Fengyun-3 Satellite to Sea Surface Barometric Pressure Based on Deep Neural Network. Remote Sensing. 2022; 14(12):2839. https://doi.org/10.3390/rs14122839
Chicago/Turabian StyleHe, Qiurui, Zhenzhan Wang, Jiaoyang Li, and Wenyu Wang. 2022. "Sensitivity Testing of Microwave Temperature Sounder-II Onboard the Fengyun-3 Satellite to Sea Surface Barometric Pressure Based on Deep Neural Network" Remote Sensing 14, no. 12: 2839. https://doi.org/10.3390/rs14122839
APA StyleHe, Q., Wang, Z., Li, J., & Wang, W. (2022). Sensitivity Testing of Microwave Temperature Sounder-II Onboard the Fengyun-3 Satellite to Sea Surface Barometric Pressure Based on Deep Neural Network. Remote Sensing, 14(12), 2839. https://doi.org/10.3390/rs14122839