Examining Impact of Speed Recommendation Algorithm Operating in Autonomous Road Signs on Minimum Distance between Vehicles
Abstract
:1. Introduction
2. Material and Methods
- is recommended safe vehicles velocity on the simulated road fragment,
- denotes deceleration of the vehicle while braking,
- is the reaction time of a driver and the vehicle, and
- is the mean distance between vehicles.
- Vin—the permitted speed, depending on the road class;
- TL(m)—the length of the test section for time measurement, expressed in meters;
- S—distance between variable message traffic signs in meters (assumed to be the same for all signs);
- L(m)—total length of the modeled road sections in meters.
- -
- variant 1: L = 1000 m, S = 100 m, TL = 600 m;
- -
- variant 2: L = 2000 m, S = 200 m, TL = 1600 m;
- -
- variant 3: L = 2000 m, S = 300 m, TL = 1600 m.
3. Results
3.1. Speed Recommendation Involving Traffic Simulator
3.2. Travel Time Measurement Involving Vissim Traffic Simulator
- Road G—the main road;
- Road GP—main road of accelerated traffic;
- Road S—express road;
- W74, W99—driver behavior models (Wiedemann’s models 74 and 99);
- S—the distance between signs;
- L—total length of the test road section;
- TL—length of the driving time measurement section.
4. Discussion
4.1. Speed Recommendation Algorithm
4.2. Implementation Method for Recommended Speed Limits vs. Travel Time
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- European Road Safety Observatory. Annual Accident Report 2020. 2020. Available online: https://ec.europa.eu/transport/road_safety/system/files/2021-07/asr2020.pdf (accessed on 9 April 2022).
- European Parliament Resolution of 13 March 2018 on a European Strategy on Cooperative Intelligent Transport Systems (2017/2067(INI)). Available online: https://op.europa.eu/pl/publication-detail/-/publication/323ad5ec-7b1f-11e9-9f05-01aa75ed71a1/language-en/format-PDF/source-258638371 (accessed on 30 May 2022).
- ERTRAC Connected, Cooperative and Automated Mobility Roadmap. 2022. Available online: https://www.ertrac.org/uploads/documentsearch/id82/ERTRAC%20CCAM%20Roadmap%20V10.pdf (accessed on 30 May 2022).
- CAD Knowledge Base-Projects. Available online: https://www.connectedautomateddriving.eu/projects/findproject/ (accessed on 30 May 2022).
- CAD Knowledge Base–Test-Sities. Available online: https://www.connectedautomateddriving.eu/test-sites/ (accessed on 30 May 2022).
- Intelligent Transportation Systems Joint Program Office. Strategic Plan 2020–2025. Available online: https://www.its.dot.gov/stratplan2020/ITSJPO_StrategicPlan_2020-2025.pdf (accessed on 30 May 2022).
- Cross-Ministerial Strategic Innovation Promotion Program (SIP). Automated Driving for Universal Services. R & D Plan. Available online: https://en.sip-adus.go.jp/sip/file/sip_2020_plan_en_s-1.pdf (accessed on 30 May 2022).
- Xu, W. Policy to Promote Autonomous Driving. Available online: http://english.www.gov.cn/policies/policywatch/202101/05/content_WS5ff39f9fc6d0f725769433b4.html (accessed on 30 May 2022).
- Beijing to Build Pilot Zone for Self-Driving Vehicles. Available online: http://english.www.gov.cn/news/topnews/202009/22/content_WS5f6a06d4c6d0f7257693c7a2.html (accessed on 30 May 2022).
- Kombe, T.; Ele, P.; Florence, O.; Miasse, H.O. Modelling an interactive road signs system, using Petri nets. Transp. Telecommun. 2017, 18, 34. [Google Scholar] [CrossRef]
- Riouali, Y.; Benhlima, L.; Bah, S. Extended batches petri nets based system for road traffic management in WSNs. J. Sens. Actuator Netw. 2017, 6, 30. [Google Scholar] [CrossRef]
- Yang, B.; Hua, Z. A CFAR Algorithm Based on Monte Carlo Method for Millimeter-Wave Radar Road Traffic Target Detection. Remote Sens. 2022, 14, 1779. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, K.; Sen, J.; Lin, W.; Hou, X.; Liu, B.; Qiu, G. Bidirectional long short-term memory network for vehicle behavior recognition. Remote Sens. 2018, 10, 887. [Google Scholar] [CrossRef]
- Pauer, G. Development potentials and strategic objectives of intelligent transport systems improving road safety. Transp. Telecommun. 2017, 18, 15–24. [Google Scholar] [CrossRef]
- Janušová, L.; Silvia, Č. Improving safety of transportation by using intelligent transport systems. In Transbaltica 2015, Proceedings of the 9th International Scientific Conference, Vilnius, Lithuania, 7–8 May 2015; Vilnius Gediminas Technical University: Vilnius, Lithuania, 2015. [Google Scholar]
- Sjöberg, K.; Andres, P.; Buburuzan, T. Cooperative intelligent transport systems in Europe. IEEE Veh. Technol. Mag. 2017, 12, 89–97. [Google Scholar] [CrossRef]
- Yang, D.; Jin, P.; Pu, Y.; Ran, B. Safe distance car-following model including backward-looking and its stability analysis. Eur. Phys. J. B 2013, 86, 92. [Google Scholar] [CrossRef]
- Pan, D.; Zheng, Y.; Qiu, J.; Zhao, L. Synchronous control of vehicle following behavior and distance under the safe and efficient steady-following state: Two case studies of high-speed train following control. IEEE Trans. Intell. Transport. Syst. 2018, 19, 1445–1456. [Google Scholar] [CrossRef]
- Wang, C.; Quddus, M.; Ison, S. The effect of traffic and road characteristics on road safety: A review and future research direction. Saf. Sci. 2013, 57, 264–275. [Google Scholar] [CrossRef]
- Uribe, D. Multi-agent approach to the two-second driving rule. J. Comput. 2018, 13, 168–175. [Google Scholar] [CrossRef]
- Gipps, P. A behavioural car-following model for computer simulation. Transport. Res. Part B Methodol. 1981, 15, 105–111. [Google Scholar] [CrossRef]
- Yang, D.; Zhu, L.-L.; Yu, D.; Yang, F.; Pu, Y. An enhanced safe distance car-following model. J. Shanghai Jiaotong Univ. Sci. 2014, 19, 115–122. [Google Scholar] [CrossRef]
- Treiber, M.; Arne, K. Traffic Flow Dynamics: Data, Models and Simulation; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Aghabayk, K.; Sarvi, M.; Young, W. A state-of-the-art review of car-following models with particular considerations of heavy vehicles. Transp. Rev. 2015, 35, 82–105. [Google Scholar] [CrossRef]
- Kanagaraj, V.; Asaithambi, G.; Kumar, C.; Naveen, S.; Karthik, K.; Sivanandan, R. Evaluation of different vehicle following models under mixed traffic conditions. Procedia-Soc. Behav. Sci. 2013, 104, 390–401. [Google Scholar] [CrossRef]
- Jordanoska, V.; Gjurkov, I.; Danev, D. Comparative analysis of car following models based on driving strategies using simulation approach. Mobil. Veh. Mech. 2018, 44, 1–11. [Google Scholar] [CrossRef]
- Nagahama, A.; Yanagisawa, D.; Nishinari, K. Impact of next-nearest leading vehicles on followers’ driving behaviours and traffic stability in mixed traffic. J. Traffic Transp. Eng. Engl. Ed. 2020, 7, 42–51. [Google Scholar] [CrossRef]
- Chen, C.; Liu, L.; Du, X.; Pei, Q.; Zhao, X. Improving driving safety based on safe distance design in vehicular sensor networks. Int. J. Distrib. Sens. Netw. 2012, 2012, 469067. [Google Scholar] [CrossRef]
- InZnak-Intelligent Road Signs for Adaptative Roat Traffic Control Employing V2X Communication. Available online: http://Multimed.Biz/Inznak/ (accessed on 29 May 2020). (In Polish).
- Kotus, J.; Szwoch, G. Calibration of acoustic vector sensor based on mems microphones for doa estimation. Appl. Acoust. 2018, 141, 307–321. [Google Scholar] [CrossRef]
- Kurowski, A.; Marciniuk, K.; Kostek, B. Separability assessment of selected types of vehicle-associated noise. In Multimedia And Network Information Systems; Zgrzywa, A., Choroś, K., Siemiński, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 113–121. ISBN 978-3-319-43982-2. [Google Scholar]
- Marciniuk, K.; Szczodrak, M.; Czyzewski, A. An application of acoustic sensors for the monitoring of road traffic. In 2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications; SPA: New York, NY, USA, 2018; pp. 208–212. [Google Scholar]
- Kotus, J. Determination of the vehicles speed using acoustic vector sensor. In 2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications; SPA: New York, NY, USA, 2018; pp. 64–69. [Google Scholar]
- Kurowski, A.; Czyżewski, A.; Zaporowski, S. Automatic labeling of traffic sound recordings using autoencoder-derived features. In 2019 Signal Processing: Algorithms, Architectures, Arrangements, and Applications; SPA: New York, NY, USA, 2019; pp. 38–43. [Google Scholar]
- Czyżewski, J.; Kotus, G.S. Estimating traffic intensity employing passive acoustic radar and enhanced microwave Doppler radar sensor. Remote Sens. 2019, 1, 110. [Google Scholar] [CrossRef]
- Czyżewski, A.; Kurowski, A.; Zaporowski, S. Application of autoencoder to traffic noise analysis. In Proceedings of the Meetings on Acoustics, San Diego, CA, USA, 2–6 December 2019; Volume 39, p. 55003. [Google Scholar] [CrossRef]
- Cygert, S.; Czyżewski, A. Style transfer for detecting vehicles with thermal camera. In Proceedings of the 23nd International Conference on Signal Processing Algorithms, Architectures, Arrangements, and Applications SPA, Poznan, Poland, 18–20 September 2019. [Google Scholar] [CrossRef]
- Czyżewski, A.; Cygert, S.; Szwoch, G.; Kotus, J.; Weber, D.; Szczodrak, M.; Koszewski, D.; Jamroz, K.; Kustra, W.; Sroczyński, A.; et al. Comparative study on the effectiveness of various types of road traffic intensity detectors. In Proceedings of the 2019 6th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Krakow, Poland, 5–7 June 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Szwoch, G. Combining road network data from openstreetmap with an authoritative database. J. Transport. Eng. Part A Syst. 2019, 2, 29. [Google Scholar] [CrossRef]
- Grabowski, D.; Czyżewski, A. System for monitoring road slippery based on CCTV cameras and convolutional neural networks. J. Intell. Inform. Syst. 2020, 10, 6. [Google Scholar] [CrossRef]
- Cygert, S.S.; Czyżewski, A. Vehicle detection with self-training for adaptative video processing embedded platform. Appl. Sci. 2020, 10, 5763. [Google Scholar] [CrossRef]
- Czyżewski, A. Comparing traffic intensity estimates employing passive acoustic radar and microwave Doppler radar sensor. J. Acoust. Soc. Am. 2020, 148, 2454. [Google Scholar] [CrossRef]
- Allaby, P.; Hellinga, B.; Bullock, M. Variable speed limits: Safety and operational impacts of a candidate control strategy for freeway applications. IEEE Trans. Intell. Transport. Syst. 2007, 8, 671–680. [Google Scholar] [CrossRef]
- Maciejewski, M. A comparison of microscopic traffic flow simulation. Transp. Probl. 2010, 5, 4. [Google Scholar]
- Song, J.; Wu, Y.; Xu, Z.; Lin, X. Research on car-following model based on sumo. In Proceedings of the 7th IEEE/International Conference on Advanced Infocomm Technology, Fuzhou, China, 14–16 November 2014; pp. 47–55. [Google Scholar]
- Codecá, L.; Härri, J. Towards multimodal mobility simulation of C-Its: The Monaco Sumo Traffic Scenario. In Proceedings of the 2017 IEEE Vehicular Networking Conference (VNC), Torino, Italy, 27–29 November 2017; pp. 97–100, ISBN 2157-9865. [Google Scholar]
- Codeca, L.; Frank, R.; Engel, T. Luxembourg sumo traffic (lust) scenario: 24 hours of mobility for vehicular networking research. In Proceedings of the 2015 IEEE Vehicular Networking Conference (VNC), Kyoto, Japan, 16–18 December 2015; pp. 1–8, ISBN 2157-9865. [Google Scholar]
- Droździel, P.; Tarkowski, S.; Rybicka, I.; Wrona, R. Drivers’ reaction time research in the conditions in the real traffic. Open Eng. 2020, 10, 35–47. [Google Scholar] [CrossRef]
- Jurecki, R.S.; Zdanowicz, P. Driver’s reaction time under emergency braking a car. Transport 2012, 14, 295–301. [Google Scholar]
- Jurecki, R.; Stańczyk, T.; Jaśkiewicz, M. Driver’s reaction time in a simulated, complex road incident. Transport 2017, 32, 44–54. [Google Scholar] [CrossRef]
- Higgs, B.; Montasir, A.; Medina, A. Analysis of the Wiedemann car following model over different speeds using naturalistic data. Procedia RSS Conf. 2011. Available online: https://onlinepubs.trb.org/onlinepubs/conferences/2011/RSS/3/Higgs,B.pdf (accessed on 9 April 2022).
- Chaudhari, A.A.; Karthik, K.; Chilukuri, B.R.; Treiber, M.; Okhrin, O. Calibrating Wiedemann-99 model parameters to trajectory data of mixed vehicular traffic. Transport. Res. Rec. 2022. [Google Scholar] [CrossRef]
- Rahmi, A.; Besley, M. Acceleration and deceleration models. In Proceedings of the 23rd Conference of Australian Institutes of Transport Research (CAITR 2001); Monash University: Melbourne, Australia, 2001; Voume 10. Available online: https://www.researchgate.net/profile/Rahmi-Akcelik/publication/238778191_Acceleration_and_deceleration_models/links/004635328134528aaa000000/Acceleration-and-deceleration-models.pdf (accessed on 9 April 2022).
- Kudarauskas, N. Analysis of emergency braking of a vehicle. Transport 2007, 22, 154–159. [Google Scholar] [CrossRef]
- Dunn, J. On multiple tests and confidence intervals. Commun. Stat. 1974, 3, 101–103. [Google Scholar] [CrossRef]
- Lee, S.; Lee, D. What is the proper way to apply the multiple comparison test? Korean J. Anesthesiol. 2018, 71, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Ragnoli, A.; Corazza, M.V.; Di Mascio, P. Safety ranking definition for infrastructures with high PTW flow. J. Traffic Transport. Eng. 2018, 5, 406–416. [Google Scholar] [CrossRef]
850 ms | 1150 ms | 1500 ms | - | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
400 vph | 800 vph | 1200 vph | 400 vph | 800 vph | 1200 vph | 400 vph | 800 vph | 1200 vph | Ref. | ||
850 ms | 400 vph | - | 0.42 | 0.68 | 0.04 | 0.14 | 0.15 | 0.11 | 0.07 | 0.14 | |
800 vph | 0.42 | - | 0.22 | 0.21 | 0.52 | 0.02 | 0.42 | 0.01 | 0.02 | ||
1200 vph | 0.68 | 0.22 | - | 0.01 | 0.06 | 0.31 | 0.04 | 0.16 | 0.28 | ||
1150 ms | 400 vph | 0.04 | 0.21 | 0.01 | - | 0.55 | 0.66 | ||||
800 vph | 0.14 | 0.52 | 0.06 | 0.55 | - | 0.88 | |||||
1200 vph | 0.15 | 0.02 | 0.31 | - | 0.71 | 0.96 | |||||
1500 sm | 400 vph | 0.11 | 0.42 | 0.04 | 0.66 | 0.88 | - | ||||
800 vph | 0.07 | 0.01 | 0.16 | 0.71 | - | 0.75 | |||||
1200 vph | 0.14 | 0.02 | 0.28 | 0.96 | 0.75 | - | |||||
- | Ref. | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sroczyński, A.; Kurowski, A.; Zaporowski, S.; Czyżewski, A. Examining Impact of Speed Recommendation Algorithm Operating in Autonomous Road Signs on Minimum Distance between Vehicles. Remote Sens. 2022, 14, 2803. https://doi.org/10.3390/rs14122803
Sroczyński A, Kurowski A, Zaporowski S, Czyżewski A. Examining Impact of Speed Recommendation Algorithm Operating in Autonomous Road Signs on Minimum Distance between Vehicles. Remote Sensing. 2022; 14(12):2803. https://doi.org/10.3390/rs14122803
Chicago/Turabian StyleSroczyński, Andrzej, Adam Kurowski, Szymon Zaporowski, and Andrzej Czyżewski. 2022. "Examining Impact of Speed Recommendation Algorithm Operating in Autonomous Road Signs on Minimum Distance between Vehicles" Remote Sensing 14, no. 12: 2803. https://doi.org/10.3390/rs14122803
APA StyleSroczyński, A., Kurowski, A., Zaporowski, S., & Czyżewski, A. (2022). Examining Impact of Speed Recommendation Algorithm Operating in Autonomous Road Signs on Minimum Distance between Vehicles. Remote Sensing, 14(12), 2803. https://doi.org/10.3390/rs14122803