Verification of Satellite Railway Track Position Measurements Making Use of Standard Coordinate Determination Techniques
Abstract
:1. Introduction
- Tacheometric measurements—determining track axis co-ordinates in relation to the railway control network (static or making use of trolleys and robotic devices) [32].
- Additionally, the following groups of methods are being developed now:
2. Materials and Methods
2.1. Mobile Satellite Measurements of Railway Tracks
2.2. Characteristic of the Test Segment
2.3. Measuring Campaigns
2.4. Characteristic of the Test Segment
- Leica Viva GS-18;
- Trimble R10;
- Trimble Alloy.
- Track gauge Graw TEC 1435 with a tripod for envelope measurement;
- GNSS receiver Trimble R10 or Leica Viva GS-16 installed on the tripod;
- Surveying prism Leica GPR121 installed on the tripod.
- A horizontal measuring bar made of aluminum profiles and a small table for mounting a GNSS receiver or a surveying prism;
- GNSS receiver Leica Viva GS-16 installed on the table;
- Surveying prism Leica GPR121 installed on the table.
- Leica Viva GS-16;
- Leica GS07—2 pieces;
- Leica ATX1230+.
3. Results
3.1. Limitations of the Methodology Used
- The appearance of repeatable measurement errors when passing the Powałki passenger stop;
- Incorrect determination of KOS co-ordinates.
- Up to 1.5 m for 1 Hz measurements on the manually pushed track gauge;
- From 0.14 m to 0.76 m for 20 Hz measurements;
- From 0.05 m to 0.19 m for 100 Hz measurements.
3.2. Determining Uncertainty of Track Axis Position Measurement
4. Analysis of Differences and Assessment of Trajectory Measurement Uncertainty
4.1. Assessing the Uncertainty of GNSS Trajectory Measurement
- 10 mm for very good quality of GNSS signal;
- 20 mm (most often recorded) for medium quality of GNSS signal;
- 40 mm for poor quality of GNSS signal (especially for track section km 10 + 250–10 + 400).
4.2. Analysis of Differences in the Reconstructed Track Axis Position
- GNSS 07.2019: 20 Hz—green;
- GNSS 17.12.2019: 20 Hz—purple;
- GNSS 10.03.2020: 100 Hz—red.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brtnický, M.; Pecina, V.; Baltazár, T.; Galiová, M.V.; Baláková, L.; Bes, A.; Radziemska, M. Environmental impact assessment of potentially toxic elements in soils near the runway at the international airport in Central Europe. Sustainability 2020, 12, 7244. [Google Scholar] [CrossRef]
- Szmagliński, J.; Nawrot, N.; Pazdro, K.; Walkusz-Miotk, J.; Wojciechowska, E. The fate and contamination of trace metals in soils exposed to a railroad used by Diesel Multiple Units: Assessment of the railroad contribution with multi-tool source tracking. Sci. Total Environ. 2021, 798, 149300. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Mao, L.; Liu, S.; Mao, Y.; Ye, H.; Huang, T.; Li, F.; Chen, L. Enrichment and sources of trace metals in roadside soils in Shanghai, China: A case study of two urban/rural roads. Sci. Total Environ. 2018, 631–632, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Budzynski, M.; Szmaglinski, J.; Jamroz, K.; Birr, K.; Grulkowski, S.; Wachnicka, J. Assessing tram infrastructure safety using the example of the City of Gdansk. J. KONBiN 2019, 49, 293–322. [Google Scholar] [CrossRef] [Green Version]
- Jamroz, K.; Budzynski, M.; Romanowska, A.; Zukowska, J.; Oskarbski, J.; Kustra, W. Experiences and challenges in fatality reduction on polish roads. Sustainability 2019, 11, 959. [Google Scholar] [CrossRef] [Green Version]
- Esveld, C. Modern Railway Track; MRT Productions: Zaltbommel, The Netherlands, 2001; pp. 35–53, 107–170. [Google Scholar]
- Kardas-Cinal, E. Selected problems in railway vehicle dynamics related to running safety. Arch. Transp. 2014, 31, 37–45. [Google Scholar] [CrossRef]
- Su, M.; Luan, W.; Yuan, L.; Zhang, R.; Zhang, Z. Sustainability Development of High-Speed Rail and Airline—Understanding Passengers’ Preferences: A Case Study of the Beijing–Shanghai Corridor. Sustainability 2019, 11, 1352. [Google Scholar] [CrossRef] [Green Version]
- Loulova, M.; Suchanek, A.; Harusinec, J. Evaluation of the Parameters Affecting Passenger Riding Comfort of a Rail Vehicle. Manuf. Technol. 2017, 17, 224–231. [Google Scholar] [CrossRef]
- Domenico Gattuso, D.; Restuccia, A. A Tool for Railway Transport Cost Evaluation. Proc.-Soc. Behav. Sci. 2014, 111, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Macchi, M.; Garetti, M.; Centrone, D.; Fumagalli, L.; Pavirani, G.P. Maintenance management of railway infrastructures based on reliability analysis. Reliab. Eng. Syst. Saf. 2012, 104, 71–83. [Google Scholar] [CrossRef]
- Odolinski, K.; Boysen, H.E. Railway line capacity utilisation and its impact on maintenance costs. J. Rail Transp. Plan. Manag. 2019, 9, 22–33. [Google Scholar] [CrossRef]
- Kasraei, A.; Zakreri, J.A. Effective time interval for railway track geometry inspection. Arch. Transp. 2020, 53, 53–65. [Google Scholar] [CrossRef]
- Lenda, G. Determining the Geometrical Parameters of Exploited Rail Track Using Approximating Spline Functions. Arch. Civ. Eng. 2014, 60, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Khosravi, M.; Soleimanmeigouni, I.; Ahmadi, A.; Nissen, A. Reducing the positional errors of railway track geometry measurements using alignment methods: A comparative case study. Measurement 2021, 178, 109383. [Google Scholar] [CrossRef]
- 883.2000; DB_REF-Festpunktfeld; German Railway Standard. DB Netz AG: Frankfurt, Germany, 2016.
- 883.9010; Begriffe und Definitionen, Richtlinie, Version 7.0; German Railway Standard. DB Netz AG: Frankfurt, Germany, 2018.
- Meinck, M. Die neue Vermessungsrichtlinie Ril 883.2000 DB_REF-Festpunktfeld. In Proceedings of the Seminar Gleisbau 2017—Planung Und Vermessung, Berlin, Germany, 3–4 March 2017. [Google Scholar]
- NR/L2/TRK/3201; Network Rail—Management of Tight Clearances and Track Position; British Railway Standard. Network Rail: London, UK, 2010.
- NR/L3/TRK/0030; NR_Reinstatement of Absolute Track Geometry (WCRL Routes); British Railway Standard. Network Rail: London, UK, 2008.
- Bitterer, L.; Hodas, S. Geodetic Surveying of Railway Objects. WIT Trans. Built Environ. 1998, 34, 3–12. [Google Scholar] [CrossRef]
- Ig-6; Polish Railway Standard, Wytyczne dla Osadzania Znaków Regulacji Osi Toru na Konstrukcjach Wsporczych (Słupach) Sieci Trakcyjnej. PKP Polskie Linie Kolejowe S.A.: Warsaw, Poland, 2011.
- Ig-7; Polish Railway Standard, Standard Techniczny Określający Zasady i Dokładności Pomiarów Geodezyjnych dla Zakładania Wielofunkcyjnych Znaków Regulacji Osi Toru. PKP Polskie Linie Kolejowe S.A.: Warsaw, Poland, 2012.
- THRTR13000ST; Australian Railway Standard, Standard Railway Surveying. State of NSW: Sydney, NSW, Australia, 2016.
- EN 13848-2; CEN (European Committee for Standardization). Railway Applications–Track–Track Geometry Quality–Part 2: Measuring Systems–Track Recording Vehicles. CEN: Brussels, Belgium, 2008.
- EN 13848-4; CEN (European Committee for Standardization). Railway Applications–Track–Track Geometry Quality–Part 4: Measuring Systems–Manual and Lightweight Devices. CEN: Brussels, Belgium, 2011.
- Glaus, R. The Swiss Trolley: A Modular System for Track Surveying; Schweizerische Geodätische Kommission: Zürich, Switzerland, 2006. [Google Scholar]
- Yoshimura, A.; Naganuma, Y. A new method to reconstruct the track geometry from versine data measured in the curved track using the Monte Carlo Particle Filter. In Proceedings of the 12th International Conference and Exhibition Railway Engineering, London, UK, 10–11 July 2013. [Google Scholar]
- Odashima, M.; Azami, S.; Naganuma, Y.; Mori, H.; Tsanashima, H. Track geometry estimation of a conventional railway from car-body acceleration measurement. Mech. Eng. J. 2017, 4, 16–29. [Google Scholar] [CrossRef] [Green Version]
- Mori, H.; Tsanashima, H.; Kojima, T.; Matsumoto, A.; Mizuma, T. Condition Monitoring of Railway Track Using In-service Vehicle. J. Mech. Syst. Tran. Log. 2010, 3, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Weston, P.F.; Ling, C.S.; Goodman, C.J.; Roberts, C.; Li, P.; Goodall, R.M. Monitoring lateral track irregularity from in-service railway vehicles. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2007, 221, 89–100. [Google Scholar] [CrossRef]
- Izvoltova, J.; Villim, A.; Kozák, P. Determination of Geometrical Track Position by Robotic Total Station. Procedia Eng. 2014, 91, 322–327. [Google Scholar] [CrossRef] [Green Version]
- Koc, W.; Chrostowski, P.; Specht, C. Finding Deformation of the Straight Rail Track by GNSS Measurements. Annu. Navig. 2012, 19, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Koc, W.; Specht, C.; Chrostowski, P.; Palikowska, K. The accuracy assessment of determining the axis of railway track basing on the satellite surveying. Arch. Transp. 2012, 24, 307–320. [Google Scholar] [CrossRef]
- Beugin, J.; Marais, J. Simulation-Based evaluation of dependability and safety properties of satellite technologies for railway localization. Transp. Res. Part C Emerg. Technol. 2012, 22, 42–57. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Landau, H.; Vollath, U. New Tools for Network RTK Integrity Monitoring. In Proceedings of the 6th International Technical Meeting of the Satellite Division of The Institute of Navigation, Portland, OR, USA, 9–12 September 2003. [Google Scholar]
- Zhang, S.; Wang, C.; Yang, Z.; Chen, Y.; Li, J. Automatic railway power line extraction using mobile laser scanning data. ISPRS–Int. Arch. Phot. Rem. Sens. Spat. Inf. Sci. 2016, 41, 615–619. [Google Scholar] [CrossRef] [Green Version]
- Qingquan, L.; Zhipeng, C.; Qingwu, H.; Liang, Z. Laser-Aided INS and Odometer Navigation System for Subway Track Irregularity Measurement. J. Surv. Eng. 2017, 143, 04017014. [Google Scholar] [CrossRef]
- Akpinar, B.; Gülal, E. Multisensor Railway Track Geometry Surveying System. IEEE Trans. Instrum. Meas. 2011, 61, 190–197. [Google Scholar] [CrossRef]
- Crespillo, O.G.; Heirich, O.; Lehner, A. Bayesian GNSS/IMU tight integration for precise railway navigation on track map. In Proceedings of the IEEE/ION PLANS 2014, Monterey, CA, USA, 5–8 May 2014. [Google Scholar] [CrossRef]
- Zhu, F.; Zhou, W.; Zhang, Y.; Duan, R.; Lv, X.; Zhang, X. Attitude variometric approach using DGNSS/INS integration to detect deformation in railway track irregularity measuring. J. Geod. 2019, 93, 1571–1587. [Google Scholar] [CrossRef]
- Shankar, S.; Roth, M.; Schubert, L.A.; Verstegen, J.A. Automatic Mapping of Center Line of Railway Tracks using Global Navigation Satellite System, Inertial Measurement Unit and Laser Scanner. Remote Sens. 2020, 12, 411. [Google Scholar] [CrossRef] [Green Version]
- Data from the First Week without Selective Availability. Available online: https://www.gps.gov/systems/gps/modernization/sa/data/ (accessed on 7 January 2022).
- Hofmann-Wellenhof, B.; Lichtenegger, H.; Wasle, E. GNSS–Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More; Springer: Wien, Austria; New York, NY, USA, 2008. [Google Scholar]
- Teunissen, P.J.G.; Montenbruck, O. (Eds.) Springer Handbook of Global Navigation Satellite Systems; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Wielgosz, P.; Kashani, I.; Grejner-Brzezinska, D. Analysis of long-range network RTK during a severe ionospheric storm. J. Geod. 2005, 79, 524–531. [Google Scholar] [CrossRef]
- Kaplan, E.D.; Hegarty, C.J. Understanding GPS: Principles and Applications, 2nd ed.; Artech House Inc.: London, UK, 2006. [Google Scholar]
- Hernández-Pajares, M.; Juan, J.M.; Sanz, J.; Orús, R. Second-order ionospheric term in GPS: Implementation and impact on geodetic estimates. J. Geophys. Res. 2007, 112, B08417. [Google Scholar] [CrossRef]
- Zhou, F.; Li, X.; Li, W.; Chen, W.; Dong, D.; Wickert, J.; Schuh, H. The Impact of Estimating High-Resolution Tropospheric Gradients on Multi-GNSS Precise Positioning. Sensors 2017, 17, 756. [Google Scholar] [CrossRef]
- Poniatowski, M.; Nykiel, G. Degradation of Kinematic PPP of GNSS Stations in Central Europe Caused by Medium-Scale Traveling Ionospheric Disturbances During the St. Patrick’s Day 2015 Geomagnetic Storm. Remote Sens. 2020, 12, 3582. [Google Scholar] [CrossRef]
- Szwilski, T.B. Determining rail track movement trajectories and alignment using HADGPS. In Proceedings of the AREMA Conference, Chicago, IL, USA, 9–12 September 2003. [Google Scholar]
- Specht, C.; Koc, W.; Chrostowski, P.; Szmaglinski, J. Accuracy Assessment of Mobile Satellite Measurements Relation to the Geometrical Layout of Rail Tracks. Metrol. Meas. Syst. 2019, 26, 309–321. [Google Scholar] [CrossRef]
- Specht, C.; Koc, W.; Chrostowski, P.; Szmagliński, J. The Analysis of Tram Tracks Geometric Layout Based on Mobile Satellite Measurements. Urban Rail Transit 2017, 3, 214–226. [Google Scholar] [CrossRef] [Green Version]
- Wilk, A.; Koc, W.; Specht, C.; Skibicki, J.; Judek, S.; Karwowski, K.; Chrostowski, P.; Szmagliński, J.; Dąbrowski, P.; Czaplewski, K.; et al. Innovative mobile method to determine railway track axis position in global coordinate system using position measurements performed with GNSS and fixed base of the measuring vehicle. Measurement 2021, 175, 109016. [Google Scholar] [CrossRef]
- Specht, M.; Specht, C.; Wilk, A.; Koc, W.; Smolarek, L.; Czaplewski, K.; Karwowski, K.; Dąbrowski, P.S.; Skibicki, J.; Chrostowski, P.; et al. Testing the Positioning Accuracy of GNSS Solutions during the Tramway Track Mobile Satellite Measurements in Diverse Urban Signal Reception Conditions. Energies 2020, 13, 3646. [Google Scholar] [CrossRef]
- Wilk, A.; Specht, C.; Koc, W.; Karwowski, K.; Skibicki, J.; Szmagliński, J.; Chrostowski, P.; Dabrowski, P.; Specht, M.; Zienkiewicz, M.; et al. Evaluation of the Possibility of Identifying a Complex Polygonal Tram Track Layout Using Multiple Satellite Measurements. Sensors 2020, 20, 4408. [Google Scholar] [CrossRef]
- Specht, C.; Wilk, A.; Koc, W.; Karwowski, K.; Dąbrowski, P.; Specht, M.; Grulkowski, S.; Chrostowski, P.; Szmagliński, J.; Czaplewski, K.; et al. Verification of GNSS Measurements of the Railway Track Using Standard Techniques for Determining Coordinates. Remote Sens. 2020, 12, 2874. [Google Scholar] [CrossRef]
Measuring Campaign | MED Horizontal [mm] | STD Horizontal [mm] | MED Vertical [mm] | STD Vertical [mm] |
---|---|---|---|---|
Campaign I July 2019 | 1.2 | 7.0 | 2.5 | 10.7 |
1.5 | 5.5 | −2.2 | 6.6 | |
4.7 | 6.7 | −4.8 | 14.5 | |
−11.3 | 10.1 | 19.5 | 12.9 | |
−6.2 | 6.8 | −6.8 | 17.4 | |
−3.8 | 9.9 | 3.6 | 6.1 | |
Campaign II December 2019 | −13.6 | 9.4 | 7.2 | 7.4 |
−9.1 | 11.8 | 5.8 | 16.2 | |
−11.5 | 9.6 | 1.2 | 15.3 | |
−4.2 | 9.7 | −6.5 | 6.0 | |
−2.8 | 10.1 | 5.4 | 5.3 | |
−3.2 | 8.4 | −7.9 | 15.0 | |
Campaign III March 2020 | −2.9 | 7.0 | 20.0 | 10.9 |
4.7 | 7.7 | 16.6 | 13.3 | |
−5.7 | 7.9 | 23.4 | 14.2 | |
−5.8 | 7.3 | 44.1 | 10.3 | |
−1.6 | 7.9 | 32.0 | 8.7 | |
1.1 | 7.5 | 25.3 | 4.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szmagliński, J.; Wilk, A.; Koc, W.; Karwowski, K.; Chrostowski, P.; Skibicki, J.; Grulkowski, S.; Judek, S.; Licow, R.; Makowska-Jarosik, K.; et al. Verification of Satellite Railway Track Position Measurements Making Use of Standard Coordinate Determination Techniques. Remote Sens. 2022, 14, 1855. https://doi.org/10.3390/rs14081855
Szmagliński J, Wilk A, Koc W, Karwowski K, Chrostowski P, Skibicki J, Grulkowski S, Judek S, Licow R, Makowska-Jarosik K, et al. Verification of Satellite Railway Track Position Measurements Making Use of Standard Coordinate Determination Techniques. Remote Sensing. 2022; 14(8):1855. https://doi.org/10.3390/rs14081855
Chicago/Turabian StyleSzmagliński, Jacek, Andrzej Wilk, Władysław Koc, Krzysztof Karwowski, Piotr Chrostowski, Jacek Skibicki, Sławomir Grulkowski, Sławomir Judek, Roksana Licow, Karolina Makowska-Jarosik, and et al. 2022. "Verification of Satellite Railway Track Position Measurements Making Use of Standard Coordinate Determination Techniques" Remote Sensing 14, no. 8: 1855. https://doi.org/10.3390/rs14081855
APA StyleSzmagliński, J., Wilk, A., Koc, W., Karwowski, K., Chrostowski, P., Skibicki, J., Grulkowski, S., Judek, S., Licow, R., Makowska-Jarosik, K., Michna, M., & Widerski, T. (2022). Verification of Satellite Railway Track Position Measurements Making Use of Standard Coordinate Determination Techniques. Remote Sensing, 14(8), 1855. https://doi.org/10.3390/rs14081855