Machine Learning Algorithms for Modeling and Mapping of Groundwater Pollution Risk: A Study to Reach Water Security and Sustainable Development (Sdg) Goals in a Mediterranean Aquifer System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Used and Methodology
2.3. Assessment of Groundwater Vulnerability to Pollution Using DRASTIC Method
2.3.1. DRASTIC Method and Parameters Description
- Depth to groundwater (D)
- Recharge (R)
- Aquifer media (A)
- Soil (S)
- Topography (T)
- Impact of Vadose zone (I)
- Hydraulic conductivity (I)
2.3.2. Frequency Ratio
2.4. Preparation of Nitrate Locations’ Data and Validation
2.5. Algorithm Background and Implementations
2.5.1. Support Vector Machine (SVM)
2.5.2. Random Forest (RF)
2.5.3. Multilayer Perceptron-Neural Network (MLP-NN)
2.6. Validation of Groundwater Vulnerability Models
3. Results
3.1. DRASTIC Vulnerability
3.2. Frequency Ratio
3.3. Groundwater Pollution Risk Maps
3.4. Validation
3.5. Variable Importance
4. Discussion
5. Conclusions
- -
- The results obtained indicate that the most vulnerable areas are located in the west and the center parts of the basin, because of the low depth, low slope, and high hydraulic conductivity, whereas the high depth, low recharge, and low conductivity of the western areas of the Saiss basin mean that this area is considered to be without risk;
- -
- As expected, the locations subject to high vulnerability risk are associated with a high concentration of nitrate;
- -
- The spatial distribution of groundwater pollution risk maps (GPRMs) for the study area show that the west and the center parts of the basin are the most vulnerable areas;
- -
- The results highlight that the hybrid/ensemble machine learning (ML) model outperforms the individual based model.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jesiya, N.P.; Gopinath, G. A Fuzzy Based MCDM–GIS Framework to Evaluate Groundwater Potential Index for Sustainable Groundwater Management—A Case Study in an Urban-Periurban Ensemble, Southern India. Groundw. Sustain. Dev. 2020, 11, 100466. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-Based Groundwater Potential Mapping Using Boosted Regression Tree, Classification and Regression Tree, and Random Forest Machine Learning Models in Iran. Environ. Monit. Assess. 2016, 188, 44. [Google Scholar] [CrossRef] [PubMed]
- Organisation Mondiale de la Santé; UNICEF. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-151289-3. [Google Scholar]
- Omarova, A.; Tussupova, K.; Hjorth, P.; Kalishev, M.; Dosmagambetova, R. Water Supply Challenges in Rural Areas: A Case Study from Central Kazakhstan. Int. J. Environ. Res. Public. Health 2019, 16, 688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kammoun, S.; Trabelsi, R.; Re, V.; Zouari, K.; Henchiri, J. Groundwater Quality Assessment in Semi-Arid Regions Using Integrated Approaches: The Case of Grombalia Aquifer (NE Tunisia). Environ. Monit. Assess. 2018, 190, 87. [Google Scholar] [CrossRef] [PubMed]
- Rahmati, O.; Melesse, A.M. Application of Dempster–Shafer Theory, Spatial Analysis and Remote Sensing for Groundwater Potentiality and Nitrate Pollution Analysis in the Semi-Arid Region of Khuzestan, Iran. Sci. Total Environ. 2016, 568, 1110–1123. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Teng, Y.; Chen, H.; Hu, B.; Yue, W. Groundwater Pollution and Risk Assessment Based on Source Apportionment in a Typical Cold Agricultural Region in Northeastern China. Sci. Total Environ. 2019, 696, 133972. [Google Scholar] [CrossRef] [PubMed]
- Serio, F.; Miglietta, P.P.; Lamastra, L.; Ficocelli, S.; Intini, F.; De Leo, F.; De Donno, A. Groundwater Nitrate Contamination and Agricultural Land Use: A Grey Water Footprint Perspective in Southern Apulia Region (Italy). Sci. Total Environ. 2018, 645, 1425–1431. [Google Scholar] [CrossRef]
- Berni, I.; Menouni, A.; El Ghazi, I.; Godderis, L.; Duca, R.-C.; Jaafari, S.E. Health and Ecological Risk Assessment Based on Pesticide Monitoring in Saïss Plain (Morocco) Groundwater. Environ. Pollut. 2021, 276, 116638. [Google Scholar] [CrossRef]
- Möhring, N.; Dalhaus, T.; Enjolras, G.; Finger, R. Crop Insurance and Pesticide Use in European Agriculture. Agric. Syst. 2020, 184, 102902. [Google Scholar] [CrossRef]
- Sanchezperez, J.; Antiguedad, I.; Arrate, I.; Garcialinares, C.; Morell, I. The Influence of Nitrate Leaching through Unsaturated Soil on Groundwater Pollution in an Agricultural Area of the Basque Country: A Case Study. Sci. Total Environ. 2003, 317, 173–187. [Google Scholar] [CrossRef] [Green Version]
- Biddau, R.; Cidu, R.; Da Pelo, S.; Carletti, A.; Ghiglieri, G.; Pittalis, D. Source and Fate of Nitrate in Contaminated Groundwater Systems: Assessing Spatial and Temporal Variations by Hydrogeochemistry and Multiple Stable Isotope Tools. Sci. Total Environ. 2019, 647, 1121–1136. [Google Scholar] [CrossRef] [PubMed]
- Meng, L.; Zhang, Q.; Liu, P.; He, H.; Xu, W. Influence of Agricultural Irrigation Activity on the Potential Risk of Groundwater Pollution: A Study with Drastic Method in a Semi-Arid Agricultural Region of China. Sustainability 2020, 12, 1954. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, A.; Lopes, A.; Niza, S. Local Climate Zones in Five Southern European Cities: An Improved GIS-Based Classification Method Based on Copernicus Data. Urban Clim. 2020, 33, 100631. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Mendes, M.P.; Garcia-Soldado, M.J.; Chica-Olmo, M.; Ribeiro, L. Predictive Modeling of Groundwater Nitrate Pollution Using Random Forest and Multisource Variables Related to Intrinsic and Specific Vulnerability: A Case Study in an Agricultural Setting (Southern Spain). Sci. Total Environ. 2014, 476–477, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Aller, L.; Lehr, J.H.; Petty, R.; Bennett, T. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings; Robert, S., Ed.; Kerr Environmental Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency: Ada, OK, USA, 1987. [Google Scholar]
- Arya, S.; Subramani, T.; Vennila, G.; Roy, P.D. Groundwater Vulnerability to Pollution in the Semi-Arid Vattamalaikarai River Basin of South India Thorough DRASTIC Index Evaluation. Geochemistry 2020, 80, 125635. [Google Scholar] [CrossRef]
- Sinan, M.; Razack, M. An Extension to the DRASTIC Model to Assess Groundwater Vulnerability to Pollution: Application to the Haouz Aquifer of Marrakech (Morocco). Environ. Geol. 2009, 57, 349–363. [Google Scholar] [CrossRef]
- Arshad, A.; Zhang, Z.; Zhang, W.; Dilawar, A. Mapping Favorable Groundwater Potential Recharge Zones Using a GIS-Based Analytical Hierarchical Process and Probability Frequency Ratio Model: A Case Study from an Agro-Urban Region of Pakistan. Geosci. Front. 2020, 11, 1805–1819. [Google Scholar] [CrossRef]
- Nadiri, A.A.; Sedghi, Z.; Khatibi, R.; Gharekhani, M. Mapping Vulnerability of Multiple Aquifers Using Multiple Models and Fuzzy Logic to Objectively Derive Model Structures. Sci. Total Environ. 2017, 593–594, 75–90. [Google Scholar] [CrossRef]
- Khosravi, K.; Sartaj, M.; Tsai, F.T.-C.; Singh, V.P.; Kazakis, N.; Melesse, A.M.; Prakash, I.; Tien Bui, D.; Pham, B.T. A Comparison Study of DRASTIC Methods with Various Objective Methods for Groundwater Vulnerability Assessment. Sci. Total Environ. 2018, 642, 1032–1049. [Google Scholar] [CrossRef]
- Sarkar, T.; Mishra, M. Soil Erosion Susceptibility Mapping with the Application of Logistic Regression and Artificial Neural Network. J. Geovisualization Spat. Anal. 2018, 2, 8. [Google Scholar] [CrossRef]
- Neshat, A.; Pradhan, B. An Integrated DRASTIC Model Using Frequency Ratio and Two New Hybrid Methods for Groundwater Vulnerability Assessment. Nat. Hazards 2015, 76, 543–563. [Google Scholar] [CrossRef] [Green Version]
- Fijani, E.; Nadiri, A.A.; Asghari Moghaddam, A.; Tsai, F.T.-C.; Dixon, B. Optimization of DRASTIC Method by Supervised Committee Machine Artificial Intelligence to Assess Groundwater Vulnerability for Maragheh–Bonab Plain Aquifer, Iran. J. Hydrol. 2013, 503, 89–100. [Google Scholar] [CrossRef]
- Asfaw, D.; Mengistu, D. Modeling Megech Watershed Aquifer Vulnerability to Pollution Using Modified DRASTIC Model for Sustainable Groundwater Management, Northwestern Ethiopia. Groundw. Sustain. Dev. 2020, 11, 100375. [Google Scholar] [CrossRef]
- Hosseini, F.S.; Choubin, B.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Darabi, H.; Haghighi, A.T. Flash-Flood Hazard Assessment Using Ensembles and Bayesian-Based Machine Learning Models: Application of the Simulated Annealing Feature Selection Method. Sci. Total Environ. 2020, 711, 135161. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Feng, L.; Li, S.; Ren, F.; Du, Q. A Hybrid Model Considering Spatial Heterogeneity for Landslide Susceptibility Mapping in Zhejiang Province, China. CATENA 2020, 188, 104425. [Google Scholar] [CrossRef]
- Chapi, K.; Singh, V.P.; Shirzadi, A.; Shahabi, H.; Bui, D.T.; Pham, B.T.; Khosravi, K. A Novel Hybrid Artificial Intelligence Approach for Flood Susceptibility Assessment. Environ. Model. Softw. 2017, 95, 229–245. [Google Scholar] [CrossRef]
- Costache, R. Flash-Flood Potential Assessment in the Upper and Middle Sector of Prahova River Catchment (Romania). A Comparative Approach between Four Hybrid Models. Sci. Total Environ. 2019, 659, 1115–1134. [Google Scholar] [CrossRef]
- Pham, B.T.; Prakash, I.; Singh, S.K.; Shirzadi, A.; Shahabi, H.; Tran, T.-T.-T.; Bui, D.T. Landslide Susceptibility Modeling Using Reduced Error Pruning Trees and Different Ensemble Techniques: Hybrid Machine Learning Approaches. CATENA 2019, 175, 203–218. [Google Scholar] [CrossRef]
- Pham, B.T.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. Hybrid Integration of Multilayer Perceptron Neural Networks and Machine Learning Ensembles for Landslide Susceptibility Assessment at Himalayan Area (India) Using GIS. CATENA 2017, 149, 52–63. [Google Scholar] [CrossRef]
- Tien Bui, D.; Bui, Q.-T.; Nguyen, Q.-P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A Hybrid Artificial Intelligence Approach Using GIS-Based Neural-Fuzzy Inference System and Particle Swarm Optimization for Forest Fire Susceptibility Modeling at a Tropical Area. Agric. For. Meteorol. 2017, 233, 32–44. [Google Scholar] [CrossRef]
- Yadav, B.; Gupta, P.K.; Patidar, N.; Himanshu, S.K. Ensemble Modelling Framework for Groundwater Level Prediction in Urban Areas of India. Sci. Total Environ. 2020, 712, 135539. [Google Scholar] [CrossRef] [PubMed]
- Sadkaoui, N.; Boukrim, S.; Bourak, A.; Lakhili, F.; Mesrar, L.; Chaouni, A.-A.; Lahrach, A.; Jabrane, R.; Akdim, B. Groundwater pollution of SAÏS basin (Morocco), vulnerability mapping by drastic, god and PRK methods, involving geographic information system (GIS). Present Environ. Sustain. Dev. 2013, 7, 298–308. [Google Scholar]
- Lahjouj, A.; El Hmaidi, A.; Bouhafa, K.; Boufala, M. Mapping Specific Groundwater Vulnerability to Nitrate Using Random Forest: Case of Sais Basin, Morocco. Model. Earth Syst. Environ. 2020, 6, 1451–1466. [Google Scholar] [CrossRef]
- Margat, J. Hydrogeological Map of the Meknes-Fes Basin; Edition of the Office of Irrigation: Rabat, Morocco, 1960. [Google Scholar]
- Essahlaoui, A.; Sahbi, H.; Bahi, L.; El-Yamine, N. Reconnaissance de la structure géologique du bassin de saïss occidental, Maroc, par sondages électriques. J. Afr. Earth Sci. 2001, 32, 777–789. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing Appropriate Techniques for Quantifying Groundwater Recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Khosravi, K.; Sartaj, M.; Karimi, M.; Levison, J.; Lotfi, A. A GIS-Based Groundwater Pollution Potential Using DRASTIC, Modified DRASTIC, and Bivariate Statistical Models. Environ. Sci. Pollut. Res. 2021, 28, 50525–50541. [Google Scholar] [CrossRef]
- Tehrany, M.S.; Jones, S.; Shabani, F.; Martínez-Álvarez, F.; Tien Bui, D. A Novel Ensemble Modeling Approach for the Spatial Prediction of Tropical Forest Fire Susceptibility Using LogitBoost Machine Learning Classifier and Multi-Source Geospatial Data. Theor. Appl. Climatol. 2019, 137, 637–653. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S. Landslide Risk Analysis Using Artificial Neural Network Model Focussing on Different Training Sites. Int. J. Phys. Sci. 2009, 4, 1–15. [Google Scholar]
- Guyon, I.; Weston, J.; Barnhill, S. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers | Proceedings of the Fifth Annual Workshop on Computational Learning Theory. Available online: https://dl.acm.org/doi/abs/10.1145/130385.130401 (accessed on 6 May 2022).
- Naghibi, S.A.; Ahmadi, K.; Daneshi, A. Application of Support Vector Machine, Random Forest, and Genetic Algorithm Optimized Random Forest Models in Groundwater Potential Mapping. Water Resour. Manag. 2017, 31, 2761–2775. [Google Scholar] [CrossRef]
- Yousefi, S.; Sadhasivam, N.; Pourghasemi, H.R.; Ghaffari Nazarlou, H.; Golkar, F.; Tavangar, S.; Santosh, M. Groundwater Spring Potential Assessment Using New Ensemble Data Mining Techniques. Measurement 2020, 157, 107652. [Google Scholar] [CrossRef]
- Han, H.; Shi, B.; Zhang, L. Prediction of Landslide Sharp Increase Displacement by SVM with Considering Hysteresis of Groundwater Change. Eng. Geol. 2021, 280, 105876. [Google Scholar] [CrossRef]
- Costache, R.; Hong, H.; Pham, Q.B. Comparative Assessment of the Flash-Flood Potential within Small Mountain Catchments Using Bivariate Statistics and Their Novel Hybrid Integration with Machine Learning Models. Sci. Total Environ. 2020, 711, 134514. [Google Scholar] [CrossRef] [PubMed]
- Tehrany, M.S.; Pradhan, B.; Jebur, M.N. Flood Susceptibility Analysis and Its Verification Using a Novel Ensemble Support Vector Machine and Frequency Ratio Method. Stoch. Environ. Res. Risk Assess. 2015, 29, 1149–1165. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Colkesen, I. A Kernel Functions Analysis for Support Vector Machines for Land Cover Classification. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 352–359. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Jirandeh, A.G.; Pradhan, B.; Xu, C.; Gokceoglu, C. Landslide Susceptibility Mapping Using Support Vector Machine and GIS at the Golestan Province, Iran. J. Earth Syst. Sci. 2013, 122, 349–369. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. Available online: https://link.springer.com/article/10.1023/A:1010933404324 (accessed on 17 April 2021). [CrossRef] [Green Version]
- Rahmati, O.; Choubin, B.; Fathabadi, A.; Coulon, F.; Soltani, E.; Shahabi, H.; Mollaefar, E.; Tiefenbacher, J.; Cipullo, S.; Ahmad, B.B.; et al. Predicting Uncertainty of Machine Learning Models for Modelling Nitrate Pollution of Groundwater Using Quantile Regression and UNEEC Methods. Sci. Total Environ. 2019, 688, 855–866. [Google Scholar] [CrossRef]
- Mohajane, M.; Costache, R.; Karimi, F.; Bao Pham, Q.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of Remote Sensing and Machine Learning Algorithms for Forest Fire Mapping in a Mediterranean Area. Ecol. Indic. 2021, 129, 107869. [Google Scholar] [CrossRef]
- Jiang, T.; Gradus, J.L.; Lash, T.L.; Fox, M.P. Addressing Measurement Error in Random Forests Using Quantitative Bias Analysis. Am. J. Epidemiol. 2021, 190, 1830–1840. [Google Scholar] [CrossRef]
- Chen, W.; Li, Y.; Xue, W.; Shahabi, H.; Li, S.; Hong, H.; Wang, X.; Bian, H.; Zhang, S.; Pradhan, B.; et al. Modeling Flood Susceptibility Using Data-Driven Approaches of Naïve Bayes Tree, Alternating Decision Tree, and Random Forest Methods. Sci. Total Environ. 2020, 701, 134979. [Google Scholar] [CrossRef] [PubMed]
- Schoppa, L.; Disse, M.; Bachmair, S. Evaluating the Performance of Random Forest for Large-Scale Flood Discharge Simulation. J. Hydrol. 2020, 590, 125531. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Mather, P.M. The Use of Backpropagating Artificial Neural Networks in Land Cover Classification. Int. J. Remote Sens. 2003, 24, 4907–4938. [Google Scholar] [CrossRef]
- Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basheer, I.A.; Hajmeer, M. Artificial Neural Networks: Fundamentals, Computing, Design, and Application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef]
- Fausett, L. Fundamentals Of Neural Networks: Architectures, Algorithms, and Applications; Prenctice-Hall: Hoboken, NJ, USA, 1994. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2017, arXiv:1412.6980. [Google Scholar]
- Yen, H.P.H.; Pham, B.T.; Phong, T.V.; Ha, D.H.; Costache, R.; Le, H.V.; Nguyen, H.D.; Amiri, M.; Tao, N.V.; Prakash, I. Locally Weighted Learning Based Hybrid Intelligence Models for Groundwater Potential Mapping and Modeling: A Case Study at Gia Lai Province, Vietnam. Geosci. Front. 2021, 12, 101154. [Google Scholar] [CrossRef]
- Costache, R.; Bui, D.T. Spatial prediction of flood potential using new ensembles of bivariate statistics and artificial intelligence: A case study at the Putna river catchment of Romania. Sci. Total Environ. 2019, 691, 1098–1118. [Google Scholar] [CrossRef]
- Pham, B.T.; Jaafari, A.; Prakash, I.; Singh, S.K.; Quoc, N.K.; Bui, D.T. Hybrid Computational Intelligence Models for Groundwater Potential Mapping. CATENA 2019, 182, 104101. [Google Scholar] [CrossRef]
- Costache, R.; Popa, M.C.; Tien Bui, D.; Diaconu, D.C.; Ciubotaru, N.; Minea, G.; Pham, Q.B. Spatial Predicting of Flood Potential Areas Using Novel Hybridizations of Fuzzy Decision-Making, Bivariate Statistics, and Machine Learning. J. Hydrol. 2020, 585, 124808. [Google Scholar] [CrossRef]
- Hong, H.; Pourghasemi, H.R.; Pourtaghi, Z.S. Landslide Susceptibility Assessment in Lianhua County (China): A Comparison between a Random Forest Data Mining Technique and Bivariate and Multivariate Statistical Models. Geomorphology 2016, 259, 105–118. [Google Scholar] [CrossRef]
- Bera, A.; Mukhopadhyay, B.P.; Chowdhury, P.; Ghosh, A.; Biswas, S. Groundwater Vulnerability Assessment Using GIS-Based DRASTIC Model in Nangasai River Basin, India with Special Emphasis on Agricultural Contamination. Ecotoxicol. Environ. Saf. 2021, 214, 112085. [Google Scholar] [CrossRef] [PubMed]
- Baghapour, M.A.; Fadaei Nobandegani, A.; Talebbeydokhti, N.; Bagherzadeh, S.; Nadiri, A.A.; Gharekhani, M.; Chitsazan, N. Optimization of DRASTIC Method by Artificial Neural Network, Nitrate Vulnerability Index, and Composite DRASTIC Models to Assess Groundwater Vulnerability for Unconfined Aquifer of Shiraz Plain, Iran. J. Environ. Health Sci. Eng. 2016, 14, 13. [Google Scholar] [CrossRef] [Green Version]
- Knoll, L.; Breuer, L.; Bach, M. Large Scale Prediction of Groundwater Nitrate Concentrations from Spatial Data Using Machine Learning. Sci. Total Environ. 2019, 668, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- El Hafyani, M.; Essahlaoui, A.; Van Rompaey, A.; Mohajane, M.; El Hmaidi, A.; El Ouali, A.; Moudden, F.; Serrhini, N.-E. Assessing Regional Scale Water Balances through Remote Sensing Techniques: A Case Study of Boufakrane River Watershed, Meknes Region, Morocco. Water 2020, 12, 320. [Google Scholar] [CrossRef] [Green Version]
- Brouziyne, Y.; Abouabdillah, A.; Bouabid, R.; Benaabidate, L. SWAT Streamflow Modeling for Hydrological Components’ Understanding within an Agro—Sylvo—Pastoral Watershed in Morocco. J. Mater. Environ. Sci. 2018, 9, 128–138. [Google Scholar] [CrossRef]
- Laraichi, S.; Hammani, A. How Can Information and Communication Effects on Small Farmers’ Engagement in Groundwater Management: Case of SAISS Aquifers, Morocco. Groundw. Sustain. Dev. 2018, 7, 109–120. [Google Scholar] [CrossRef]
- Benaabidate, L.; Cholli, M. Groundwater stress and vulnerability to pollution of SAISS basin shallow aquifer, Morocco. In Proceedings of the Fifteenth International Water Technology Conference, Alexandria, Egypt, 28–30 May 2011. [Google Scholar]
DRASTIC Factors | Class | Weight | No of Nitrate Point | No. of Pixels in Class | FR |
---|---|---|---|---|---|
D: Depth to water table (m) | >31 | 5 | 11 | 684,246 | 0.20 |
23–31 | 3 | 509,395 | 0.07 | ||
15–23 | 15 | 1,051,753 | 0.18 | ||
9–15 | 11 | 468,340 | 0.29 | ||
4.5–9 | 3 | 139,093 | 0.27 | ||
1.5–4.5 | 0 | 13,853 | 0 | ||
0–1.5 | 0 | 994 | 0 | ||
R: Net Recharge (mm) | 0–50 | 4 | 4 | 303,233 | 0.09 |
50–100 | 38 | 2,371,682 | 0.88 | ||
100–180 | 1 | 191,799 | 0.02 | ||
A: Aquifer media | Limestone | 3 | 34 | 2,497,029 | 0.79 |
Conglomerate | 1 | 67,596 | 0. 02 | ||
Sand and gravel | 8 | 302,011 | 0.19 | ||
S: Soil | Clay | 2 | 15 | 915,874 | 0.35 |
Clay loam | 26 | 1,712,526 | 0.60 | ||
Sand | 2 | 239,594 | 0.05 | ||
T: Slope (°) | >18 | 1 | 1 | 220,003 | 0.08 |
12–18 | 2 | 267,960 | 0.14 | ||
6–12 | 16 | 940,573 | 0.31 | ||
2–6 | 22 | 1,148,493 | 0.35 | ||
0–2 | 2 | 290,069 | 0.13 | ||
I: Impact of vadose zone | Alluvium | 5 | 7 | 361,430 | 0.27 |
Vindobonion clays | 1 | 282,347 | 0.05 | ||
Limestone | 24 | 1,693,703 | 0.20 | ||
Sandstone and Conglomerates | 10 | 484,631 | 0.28 | ||
Basalt | 1 | 67,932 | 0.20 | ||
C: Hydraulic conductivity (m/day) | 0.04–4 | 3 | 21 | 1,182,660 | 0.49 |
4–12 | 14 | 1,255,673 | 0.33 | ||
12–29 | 8 | 361,236 | 0.19 | ||
29–41 | 0 | 1459 | 0 |
Models | Sample | Accuracy | Precision | Sensitivity | Specificity |
---|---|---|---|---|---|
DRASTIC-SVM | Training | 0.743 | 0.718 | 0.800 | 0.686 |
Validation | 0.733 | 0.706 | 0.800 | 0.667 | |
DRASTIC-MLP | Training | 0.786 | 0.750 | 0.857 | 0.733 |
Validation | 0.767 | 0.750 | 0.800 | 0.681 | |
DRASTIC-RF | Training | 0.886 | 0.865 | 0.914 | 0.875 |
Validation | 0.871 | 0.857 | 0.875 | 0.867 | |
DRASTIC-RF-SVM | Training | 0.914 | 0.892 | 0.943 | 0.886 |
Validation | 0.900 | 0.933 | 0.875 | 0.929 | |
DRASTIC-RF-MLP | Training | 0.957 | 0.943 | 0.971 | 0.944 |
Validation | 0.952 | 0.969 | 0.939 | 0.966 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ijlil, S.; Essahlaoui, A.; Mohajane, M.; Essahlaoui, N.; Mili, E.M.; Van Rompaey, A. Machine Learning Algorithms for Modeling and Mapping of Groundwater Pollution Risk: A Study to Reach Water Security and Sustainable Development (Sdg) Goals in a Mediterranean Aquifer System. Remote Sens. 2022, 14, 2379. https://doi.org/10.3390/rs14102379
Ijlil S, Essahlaoui A, Mohajane M, Essahlaoui N, Mili EM, Van Rompaey A. Machine Learning Algorithms for Modeling and Mapping of Groundwater Pollution Risk: A Study to Reach Water Security and Sustainable Development (Sdg) Goals in a Mediterranean Aquifer System. Remote Sensing. 2022; 14(10):2379. https://doi.org/10.3390/rs14102379
Chicago/Turabian StyleIjlil, Safae, Ali Essahlaoui, Meriame Mohajane, Narjisse Essahlaoui, El Mostafa Mili, and Anton Van Rompaey. 2022. "Machine Learning Algorithms for Modeling and Mapping of Groundwater Pollution Risk: A Study to Reach Water Security and Sustainable Development (Sdg) Goals in a Mediterranean Aquifer System" Remote Sensing 14, no. 10: 2379. https://doi.org/10.3390/rs14102379
APA StyleIjlil, S., Essahlaoui, A., Mohajane, M., Essahlaoui, N., Mili, E. M., & Van Rompaey, A. (2022). Machine Learning Algorithms for Modeling and Mapping of Groundwater Pollution Risk: A Study to Reach Water Security and Sustainable Development (Sdg) Goals in a Mediterranean Aquifer System. Remote Sensing, 14(10), 2379. https://doi.org/10.3390/rs14102379