Effect of the Partitioning of Diffuse and Direct APAR on GPP Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. FLUXNET Data
2.2. EBR FAPAR Product
2.3. LAI Product
2.4. Clumping Index Product
2.5. EC-LUE Model
2.6. Diffuse and Direct APAR (DDA)-Based Method for Half-Hourly GPP Estimation
2.7. Validation Plan for GPP Estimated by the Diffuse and Direct APAR (DDA)-Based Method
3. Results
3.1. Temporal Variations of LUE at FLUXNET Sites
3.2. Half-Hourly GPP Responses to Diffuse and Direct APAR at FLUXNET Sites
3.3. Half-Hourly GPP Estimation by Diffuse and Direct APAR (DDA)-Based Method
4. Discussion
4.1. Limitations of the Big Leaf Models
4.2. Uncertainties from LUE Simplifications
4.3. Scale Difference between Remote Sensing Data and In Situ Data
4.4. Uncertainties of the Remote Sensing Data
4.5. Contribution of Diffuse Radiation to GPP Estimations
5. Conclusions
- (1)
- LUE increased with increasing diffuse fraction for all vegetation types, which showed the enhancement effect of diffuse radiation on LUE. Moreover, a diurnal co-variation of LUE and diffuse fraction was observed for all vegetation types at FLUXNET sites, which further demonstrated the necessity of partitioning diffuse and direct APAR in half-hourly GPP estimations.
- (2)
- Half-hourly GPP increased with increasing diffuse and direct APAR but at different rates. Half-hourly GPP presented higher growth rates under diffuse conditions, with obvious increase of slope values (the variation coefficient of slope is up to 203.125%), which indicated the significant contribution of diffuse radiation to the process of vegetation photosynthesis.
- (3)
- Half-hourly GPP estimated using the DDA-based method showed higher R2, lower RMSE and RMSE* values (R2 varied from 0.565 to 0.682, RMSE ranged from 3.219 to 12.405 and RMSE* were within the range of 2.785 to 8.395) against the FLUXENET GPP than the GPP_TA (R2 varied from 0.558 to 0.653, RMSE ranged from 3.407 to 13.081 and RMSE* were within the range of 3.321 to 9.625), which suggested a better performance by partitioning the diffuse and direct APAR in half-hourly GPP estimations when using big leaf models.
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Canadell, J.G.; Le Quéré, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Conway, T.J.; Gillett, N.P.; Houghton, R.; Marland, G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Mo, G.; Pisek, J.; Liu, J.; Deng, F.; Ishizawa, M.; Chan, D. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Glob. Biogeochem. Cycles 2012, 26, 26. [Google Scholar] [CrossRef]
- Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 1998, 281, 237–240. [Google Scholar] [CrossRef] [Green Version]
- Field, C.B.; Barros, V.; Stocker, T.F.; Qin, D.; Dokken, D.J.; Ebi, K.L.; Midgley, P. Special Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2012. [Google Scholar]
- Potter, C.S.; Randerson, J.T.; Field, C.B.; Matson, P.A.; Vitousek, P.M.; Mooney, H.A.; Klooster, S.A. Terrestrial ecosystem production: A process model based on global satellite and surface data. Glob. Biogeochem. Cycles 1993, 7, 811–841. [Google Scholar] [CrossRef]
- Running, S.W.; Thornton, P.E.; Nemani, R.; Glassy, J.M. Global Terrestrial Gross and Net Primary Productivity from the Earth Observing System; Springer: New York, NY, USA, 2000. [Google Scholar]
- Xiao, X.; Hollinger, D.; Aber, J.; Goltz, M.; Davidson, E.A.; Zhang, Q.; Moore, B., III. Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 2004, 89, 519–534. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B., III; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Zhou, G.; Zhou, G.; Tieszen, L.L.; Baldocchi, D.; Bernhofer, C.; Gholz, H.; Goldstein, A.H.; Goulden, M.L. Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric. For. Meteorol. 2007, 143, 189–207. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Zhang, Y.; Zhang, Y.; Chen, J.M. Correcting clear-sky bias in gross primary production modeling from satellite solar-induced chlorophyll fluorescence data. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005822. [Google Scholar] [CrossRef]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R. Fluxnet: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Turner, D.P.; Ritts, W.D.; Cohen, W.B.; Gower, S.T.; Zhao, M.; Running, S.W.; Wofsy, S.C.; Urbanski, S.; Dunn, A.L.; Munger, J. Scaling gross primary production (gpp) over boreal and deciduous forest landscapes in support of modis gpp product validation. Remote Sens. Environ. 2003, 88, 256–270. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Heinsch, F.A.; Nemani, R.R.; Running, S.W. Improvements of the modis terrestrial gross and net primary production global data set. Remote Sens. Environ. 2005, 95, 164–176. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W.; Nemani, R.R. Sensitivity of moderate resolution imaging spectroradiometer (modis) terrestrial primary production to the accuracy of meteorological reanalyses. J. Geophys. Res. Biogeosci. 2006, 111, G1. [Google Scholar] [CrossRef] [Green Version]
- Heinsch, F.A.; Zhao, M.; Running, S.W.; Kimball, J.S.; Nemani, R.R.; Davis, K.J.; Bolstad, P.V.; Cook, B.D.; Desai, A.R.; Ricciuto, D.M. Evaluation of remote sensing based terrestrial productivity from modis using regional tower eddy flux network observations. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1908–1925. [Google Scholar] [CrossRef] [Green Version]
- Nightingale, J.; Coops, N.; Waring, R.; Hargrove, W. Comparison of modis gross primary production estimates for forests across the USA with those generated by a simple process model, 3-pgs. Remote Sens. Environ. 2007, 109, 500–509. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Woodcock, C.E.; Buermann, W.; Stenberg, P.; Voipio, P.; Smolander, H.; Häme, T.; Tian, Y.; Hu, J.; Knyazikhin, Y. Evaluation of the modis lai algorithm at a coniferous forest site in finland. Remote Sens. Environ. 2004, 91, 114–127. [Google Scholar] [CrossRef]
- Hill, M.J.; Senarath, U.; Lee, A.; Zeppel, M.; Nightingale, J.M.; Williams, R.D.J.; McVicar, T.R. Assessment of the modis lai product for australian ecosystems. Remote Sens. Environ. 2006, 101, 495–518. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, Q.; Jiang, J.; Tang, Y. Calibration of terra/modis gross primary production over an irrigated cropland on the North China plain and an alpine meadow on the tibetan plateau. Glob. Chang. Biol. 2008, 14, 757–767. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 2004, 54, 547–560. [Google Scholar] [CrossRef]
- Roderick, M.L.; Farquhar, G.D.; Berry, S.L.; Noble, I.R. On the direct effect of clouds and atmospheric particles on the productivity and structure of vegetation. Oecologia 2001, 129, 21–30. [Google Scholar] [CrossRef]
- Mercado, L.M.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P.M. Impact of changes in diffuse radiation on the global land carbon sink. Nature 2009, 458, 1014–1017. [Google Scholar] [CrossRef] [Green Version]
- Oliphant, A.; Dragoni, D.; Deng, B.; Grimmond, C.; Schmid, H.-P.; Scott, S. The role of sky conditions on gross primary production in a mixed deciduous forest. Agric. For. Meteorol. 2011, 151, 781–791. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, G.-R.; Zhuang, J.; Gentry, R.; Fu, Y.-L.; Sun, X.-M.; Zhang, L.-M.; Wen, X.-F.; Wang, Q.-F.; Han, S.-J. Effects of cloudiness change on net ecosystem exchange, light use efficiency, and water use efficiency in typical ecosystems of China. Agric. For. Meteorol. 2011, 151, 803–816. [Google Scholar] [CrossRef]
- Propastin, P.; Ibrom, A.; Knohl, A.; Erasmi, S. Effects of canopy photosynthesis saturation on the estimation of gross primary productivity from modis data in a tropical forest. Remote Sens. Environ. 2012, 121, 252–260. [Google Scholar] [CrossRef]
- Gu, L.; Baldocchi, D.; Verma, S.B.; Black, T.A.; Vesala, T.; Falge, E.M.; Dowty, P.R. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res. Atmos. 2002, 107, ACL 2. [Google Scholar] [CrossRef] [Green Version]
- Knohl, A.; Baldocchi, D.D. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J. Geophys. Res. Biogeosci. 2015, 113, 143–144. [Google Scholar] [CrossRef]
- Alton, P.; North, P.; Los, S. The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Glob. Chang. Biol. 2007, 13, 776–787. [Google Scholar] [CrossRef]
- Choudhury, B.J. Estimating gross photosynthesis using satellite and ancillary data: Approach and preliminary results. Remote Sens. Environ. 2001, 75, 1–21. [Google Scholar] [CrossRef]
- Agarwal, D.A.; Humphrey, M.; Beekwilder, N.F.; Jackson, K.R.; Goode, M.M.; van Ingen, C. A data-centered collaboration portal to support global carbon-flux analysis. Concurr. Comput. Pract. Exp. 2010, 22, 2323–2334. [Google Scholar] [CrossRef] [Green Version]
- Mccree, K.J. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meteorol. 1972, 10, 443–453. [Google Scholar] [CrossRef]
- Zheng, Y.; Shen, R.; Wang, Y.; Li, X.; Liu, S.; Liang, S.; Chen, J.M.; Ju, W.; Zhang, L.; Yuan, W. Improved estimate of global gross primary production for reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 2020, 12, 2725–2746. [Google Scholar] [CrossRef]
- Monteith, J.L. Vegetation and the Atmosphere. Case Studies; Academic Press: Cambridge, MA, USA, 1976; Volume 2. [Google Scholar]
- Sellers, P.; Dickinson, R.; Randall, D.; Betts, A.; Hall, F.; Berry, J.; Collatz, G.; Denning, A.; Mooney, H.; Nobre, C. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science 1997, 275, 502–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knyazikhin, Y.; Martonchik, J.V.; Myneni, R.B.; Diner, D.J.; Running, S.W. Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from modis and misr data. J. Geophys. Res. Atmos. 1998, 103, 32257–32275. [Google Scholar] [CrossRef] [Green Version]
- Gobron, N.; Pinty, B.; Aussedat, O.; Chen, J.M.; Cohen, W.B.; Fensholt, R.; Gond, V.; Huemmrich, K.F.; Lavergne, T.; Mélin, F. Evaluation of fraction of absorbed photosynthetically active radiation products for different canopy radiation transfer regimes: Methodology and results using joint research center products derived from seawifs against ground-based estimations. J. Geophys. Res. Atmos. 2006, 111, D13. [Google Scholar] [CrossRef]
- Gobron, N.; Pinty, B.; Verstraete, M.; Govaerts, Y. The meris global vegetation index (mgvi): Description and preliminary application. Int. J. Remote Sens. 1999, 20, 1917–1927. [Google Scholar] [CrossRef]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus global land cover layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Zhang, X.; Xie, S.; Liu, X.; Peng, D. Global white-sky and black-sky fapar retrieval using the energy balance residual method: Algorithm and validation. Remote Sens. 2019, 11, 1004. [Google Scholar] [CrossRef] [Green Version]
- Frederic, B.; Weiss, M.; Allard, D.; Garrigue, S.; Vintila, R. Valeri: A network of sites and methodology for the validation of medium spatial resolution land products. Remote Sens. Environ. 2005, 76, 36–39. [Google Scholar]
- Myneni, R.; Knyazikhin, Y.; Park, T. Mcd15a2h Modis/Terra+ Aqua Leaf Area Index/fpar 8-Day l4 Global 500 m sin Grid v006 [Data Set]. 2015. Available online: https://data.tpdc.ac.cn/zh-hans/data/literature/682841a1-f889-4e63-aac3-2991097d00df/ (accessed on 19 December 2021).
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G. Global products of vegetation leaf area and fraction absorbed par from year one of modis data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M.; Menges, C.H.; Leblanc, S.G. Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 2005, 97, 447–457. [Google Scholar] [CrossRef]
- Jiao, Z.; Dong, Y.; Schaaf, C.B.; Chen, J.M.; Román, M.; Wang, Z.; Zhang, H.; Ding, A.; Erb, A.; Hill, M.J. An algorithm for the retrieval of the clumping index (ci) from the modis brdf product using an adjusted version of the kernel-driven brdf model. Remote Sens. Environ. 2018, 209, 594–611. [Google Scholar] [CrossRef]
- Farquhar, G.D.; von Caemmerer, S.V.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of c 3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collatz, G.J. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agri. For. Met. 1991, 54, 107–136. [Google Scholar] [CrossRef]
- Prentice, I.C.; Dong, N.; Gleason, S.M.; Maire, V.; Wright, I.J. Balancing the costs of carbon gain and water transport: Testing a new theoretical framework for plant functional ecology. Ecol. Lett. 2014, 17, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Keenan, T.F.; Prentice, I.C.; Canadell, J.G.; Williams, C.A.; Wang, H.; Raupach, M.; Collatz, G.J. Recent pause in the growth rate of atmospheric co 2 due to enhanced terrestrial carbon uptake. Nat. Commun. 2016, 7, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Korson, L.; Drost-Hansen, W.; Millero, F.J. Viscosity of water at various temperatures. J. Phys. Chem. 1969, 73, 34–39. [Google Scholar] [CrossRef]
- Raich, J.; Rastetter, E.; Melillo, J.M.; Kicklighter, D.W.; Steudler, P.; Peterson, B.; Grace, A.; Moore, B., III; Vorosmarty, C.J. Potential net primary productivity in south america: Application of a global model. Ecol. Appl. 1991, 1, 399–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef] [Green Version]
- Monteith, J. Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 1972, 9, 747–766. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F. Global estimates of evapotranspiration and gross primary production based on modis and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.M. Canopy architecture and remote sensing of the fraction of photosynthetically active radiation absorbed by boreal conifer forests. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1353–1368. [Google Scholar] [CrossRef]
- Nilson, T. A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 1971, 8, 25–38. [Google Scholar] [CrossRef]
- Nilson, T. Inversion of gap frequency data in forest stands. Agric. For. Meteorol. 1999, 98, 437–448. [Google Scholar] [CrossRef]
- Majasalmi, T.; Bright, R.M. Evaluation of leaf-level optical properties employed in land surface models-example with CLM 5.0. Geosci. Model Dev. 2019, 12, 3923–3938. [Google Scholar] [CrossRef] [Green Version]
- Goel, N.S.; Thompson, R.L. Inversion of vegetation canopy reflectance models for estimating agronomic variables. V. Estimation of leaf area index and average leaf angle using measured canopy reflectances. Remote Sens. Environ. 1984, 16, 69–85. [Google Scholar] [CrossRef]
- Wilson, J.W. Inclined point quadrats. New Phytol. 1960, 59, 1–7. [Google Scholar] [CrossRef]
- Wilson, J.W. Stand structure and light penetration. III. Sunlit foliage area. J. Appl. Ecol. 1967, 4, 159. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F. Prospect: A model of leaf optical properties spectra. Remote Sens. Environ. 1990, 34, 75–91. [Google Scholar] [CrossRef]
- Hosgood, B.; Jacquemoud, S.; Andreoli, G.; Verdebout, J.; Pedrini, G.; Schmuck, G. Leaf optical properties experiment 93. Jt. Res. Cent. Eur. Comm. Inst. Remote Sens. ApJacquemoud 1995, 75–91. Available online: https://data.ecosis.org/dataset/13aef0ce-dd6f-4b35-91d9-28932e506c41/resource/4029b5d3-2b84-46e3-8fd8-c801d86cf6f1/download/leaf-optical-properties-experiment-93-lopex93.pdf (accessed on 19 December 2021).
- Feret, J.-B.; François, C.; Asner, G.P.; Gitelson, A.A.; Martin, R.E.; Bidel, L.P.; Ustin, S.L.; Le Maire, G.; Jacquemoud, S. Prospect-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens. Environ. 2008, 112, 3030–3043. [Google Scholar] [CrossRef]
- Zhou, H.; Yue, X.; Lei, Y.; Zhang, T.; Cao, Y. Responses of gross primary productivity to diffuse radiation at global fluxnet sites. Atmos. Environ. 2021, 244, 117905. [Google Scholar] [CrossRef]
- Yue, X.; Unger, N. Fire air pollution reduces global terrestrial productivity. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- De Pury, D.; Farquhar, G. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell Environ. 1997, 20, 537–557. [Google Scholar] [CrossRef]
- Wang, Y.-P.; Leuning, R. A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: Model description and comparison with a multi-layered model. Agric. For. Meteorol. 1998, 91, 89–111. [Google Scholar] [CrossRef]
- Chen, J.; Liu, J.; Cihlar, J.; Goulden, M. Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol. Model. 1999, 124, 99–119. [Google Scholar] [CrossRef] [Green Version]
- Urban, O.; Janouš, D.; Acosta, M.; Czerný, R.; Markova, I.; Navratil, M.; Pavelka, M.; Pokorný, R.; Šprtová, M.; Zhang, R. Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Glob. Chang. Biol. 2007, 13, 157–168. [Google Scholar] [CrossRef]
- Proctor, J.; Hsiang, S.; Burney, J.; Burke, M.; Schlenker, W. Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature 2018, 560, 480–483. [Google Scholar] [CrossRef]
Site ID | Latitude (°) | Longitude (°) | IGBP Land Cover Classification 1 | Study Period |
---|---|---|---|---|
FR-Pue | 43.7413 | 3.5957 | EBF | 2003–2014 |
DE-Tha | 50.9626 | 13.5651 | ENF | 2003–2014 |
DK-Sor | 55.4859 | 11.6446 | DBF | 2003–2014 |
CG-Tch | −4.2892 | 11.6564 | SAV | 2006–2009 |
AT-Neu | 47.1167 | 11.3175 | GRA | 2003–2012 |
FR-Gri | 48.844 | 1.952 | CRO | 2004–2014 |
Vegetation Type 1 | DBF | ENF | EBF | GRA | CRO | SAV |
---|---|---|---|---|---|---|
εmax (g C/MJ) | 2.02 | 3.16 | 3.92 | 3.32 | 2.85 | 1.54 |
φ (ppm) | 60 | 20.69 | 30 | 75 | 64 | 41 |
VPD0 (k Pa) | 0.54 | 0.69 | 0.29 | 1.21 | 0.89 | 1.04 |
Vegetation Type 1 | DBF | ENF | EBF | GRA | CRO | SAV |
---|---|---|---|---|---|---|
α | 1.26 | 1.21 | 1.16 | 1.25 | 1.01 | 1.16 |
LAD | LADF | ALA (°) | Measured ALA (°) | Matched Vegetation Types 1 |
---|---|---|---|---|
erectophile | 2(1 − cos(2θ))/π | 63.24 | 67.4 | GRA |
plagiophile | 2(1 − cos(4θ))/π | 45 | 48.5, 36.9, 41.2 | ENF, DBF, CRO |
spherical | sin(θ) | 57.3 | 48.2, 52.1 | SAV, EBF |
Vegetation Types/Metrics | R2 | Slope | Variation Coefficient of Slope (%) | ||
---|---|---|---|---|---|
APARdiffuse | APARdirect | APARdiffuse | APARdirect | ||
EBF | 0.275 | 0.121 | 0.097 | 0.032 | 203.125 |
ENF | 0.667 | 0.445 | 0.262 | 0.094 | 178.723 |
DBF | 0.585 | 0.272 | 0.266 | 0.120 | 121.667 |
SAV | 0.593 | 0.489 | 0.230 | 0.221 | 4.072 |
GRA | 0.422 | 0.384 | 0.182 | 0.098 | 85.714 |
CRO | 0.495 | 0.290 | 0.217 | 0.129 | 68.217 |
Vegetation Types/Metrics | R2 | RMSE (umolC/m2/s) | RMSE* (umolC/m2/s) | Variation Coefficient of RMSE* (%) | |||
---|---|---|---|---|---|---|---|
DDA | TA | DDA | TA | DDA | TA | ||
EBF | 0.565 | 0.558 | 3.219 | 3.407 | 2.785 | 3.321 | −16.140 |
ENF | 0.651 | 0.635 | 5.470 | 5.814 | 4.722 | 5.319 | −11.224 |
DBF | 0.682 | 0.653 | 12.405 | 13.081 | 7.120 | 8.358 | −14.512 |
SAV | 0.645 | 0.622 | 11.528 | 11.903 | 6.302 | 7.468 | −15.513 |
GRA | 0.635 | 0.619 | 10.076 | 11.016 | 8.395 | 9.625 | −12.779 |
CRO | 0.627 | 0.608 | 7.292 | 7.315 | 5.362 | 6.965 | −23.015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Sui, L.; Liu, L.; Liu, X. Effect of the Partitioning of Diffuse and Direct APAR on GPP Estimation. Remote Sens. 2022, 14, 57. https://doi.org/10.3390/rs14010057
Chen S, Sui L, Liu L, Liu X. Effect of the Partitioning of Diffuse and Direct APAR on GPP Estimation. Remote Sensing. 2022; 14(1):57. https://doi.org/10.3390/rs14010057
Chicago/Turabian StyleChen, Siyuan, Lichun Sui, Liangyun Liu, and Xinjie Liu. 2022. "Effect of the Partitioning of Diffuse and Direct APAR on GPP Estimation" Remote Sensing 14, no. 1: 57. https://doi.org/10.3390/rs14010057
APA StyleChen, S., Sui, L., Liu, L., & Liu, X. (2022). Effect of the Partitioning of Diffuse and Direct APAR on GPP Estimation. Remote Sensing, 14(1), 57. https://doi.org/10.3390/rs14010057