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Abstract: The fraction of absorbed photosynthetically active radiation by vegetation (FAPAR) is a 
key variable in describing the light absorption ability of the vegetation canopy. Most global FAPAR 
products, such as MCD15A2H and GEOV1, correspond to FAPAR under black-sky conditions at 
the satellite overpass time only. In this paper, we aim to produce both the global white-sky and 
black-sky FAPAR products based on the moderate resolution imaging spectroradiometer (MODIS) 
visible (VIS) albedo, leaf area index (LAI), and clumping index (CI) products. Firstly, a non-linear 
spectral mixture model (NSM) was designed to retrieve the soil visible (VIS) albedo. The global soil 
VIS albedo and its dynamics were successfully mapped at a resolution of 500 m using the MCD43A3 
VIS albedo product and the MCD15A2H LAI product. Secondly, a method based on the energy 
balance residual (EBR) principle was presented to retrieve the white-sky and black-sky FAPAR 
using the MODIS broadband VIS albedo (white-sky and black-sky) product (MCD43A3), the LAI 
product (MCD15A2H) and CI products. Finally, the two EBR FAPAR products were compared with 
the MCD15A2H and Geoland2/BioPar version 1 (GEOV1) black-sky FAPAR products. A 
comparison of the results indicates that these FAPAR products show similar spatial and seasonal 
patterns. Direct validation using FAPAR observations from the Validation of Land European 
Remote sensing Instrument (VALERI) project demonstrates that the EBR black-sky FAPAR product 
was more accurate and had a lower bias (R2 = 0.917, RMSE = 0.088, and bias = −2.8 %) than 
MCD15A2H (R2 = 0.901, RMSE = 0.096, and bias = 7.6 % ) and GEOV1 (R2 = 0.868, RMSE = 0.105, and 
bias = 6.1%).  

Keywords: fraction of absorbed photosynthetically active radiation (FAPAR); the energy balance 
residual method; non-linear spectral mixing model; MODIS; GEOV1; leaf area index (LAI); 
clumping index (CI); black-sky; white-sky; albedo 

 

1. Introduction 

The fraction of absorbed photosynthetically active radiation (FAPAR) is defined as the fraction 
of intercepted photosynthetically active radiation (PAR) which is absorbed by the canopy. The 
FAPAR is a key variable in describing the exchange of fluxes of energy, mass, and momentum 
between the surface and atmosphere in global models of climate, hydrology, biogeochemistry, 
agriculture, and ecology [1,2]. With the significant increase in global remotely-sensed biophysical 
datasets, FAPAR is identified as one of the key terrestrial products [2–4]. 
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The radiative transfer process within the canopy is different for diffuse and direct PARs. In 
general, the diffuse PAR has more probability to arrive at the bottom of the canopy than the direct 
PAR. The probability of the direct PAR intercepted by the canopy usually increases with the increase 
of the solar zenith angle (SZA) [5,6]. Numerous diurnal observations and theoretical simulations have 
also shown that FAPAR is larger under overcast-sky (white-sky) than under clear-sky (or blue-sky) 
conditions. For the diurnal pattern, FAPAR is usually found to be smaller at noon with smaller SZA 
[7–10], especially for regions covered with sparse vegetation [5,11–13]. The FAPAR of direct radiation 
and diffuse radiation are defined as “black-sky FAPAR” and “white-sky FAPAR”, respectively. To 
estimate the instantaneous total FAPAR or daily integrated FAPAR under natural conditions, both 
white-sky and black-sky FAPARs are needed. 

There are several available global FAPAR datasets, including the MISR (multi-angle imaging 
spectroradiometer) [14], MODIS (moderate resolution imaging spectroradiometer) [3,15], MERIS 
(medium resolution imaging spectrometer) [16,17], SeaWiFS (sea-viewing wide field-of-view sensor) 
[18], GLOBCARBON [19], CYCLOPES [20], Geoland2/BioPar version 1 (GEOV1) [6], and GLASS 
(global land surface satellite) [21] products. These global FAPAR products have been widely 
validated, with reported errors varying from 0.08 to 0.23 [21–27]. However, most of the global 
products are black-sky FAPAR (direct radiation only) or FAPAR under instantaneous illumination 
condition at the satellite overpass time [6,13,21]. Previous studies have proved that total FAPAR 
would be underestimated without considering the white-sky FAPAR, and the current models also 
underestimated total FAPAR because of the simplification of radiative transfer processes [8,13]. 
Therefore, it is important to develop algorithms for new white-sky and black-sky FAPAR. 

Algorithms for estimation of FAPAR from satellite remote sensing data can be divided into two 
groups: empirical methods and physical methods [6,14,15,18,20]. The empirical methods use the 
statistical relationships between FAPAR and vegetation indices to estimate FAPAR. [3,5,11,14,28–30]. 
However, these statistical relationships are dependent on the vegetation type, soil background and 
imaging geometries [5,10,21,29,31,32]. In contrast, physical methods are based on inversion of canopy 
radiative transfer models, and are usually more applicable to various vegetation types [3,14,18–20]. 
In recent years, some physical approaches for generating global white-sky and black-sky FAPAR 
products have recently been presented. Pinty et al. [33] developed a Joint Research Centre two-stream 
inversion procedure (JRC-TIP) to generate white-sky FAPAR using broadband visible (VIS) and near-
infrared (NIR) white-sky surface albedo data. Li et al. [12] developed an inversion model to 
distinguish direct and diffuse radiation, and generated FAPAR products for the Heihe River Basin 
with a validation root mean square error (RMSE) of 0.03 and coefficient of determination (R2) of 0.85. 
Li and Fang [13] developed a lookup table approach to estimate diffuse, direct, and total FAPAR from 
Landsat surface reflectance data with a validation RMSE of 0.05. The MODIS land surface products 
were widely used in different fields of research. However, to date, there is no MODIS white-sky 
FAPAR products available. Therefore, developing new global white-sky and black-sky FAPAR 
products with 500 m resolution using the MODIS data is important.  

In this paper, we aim to propose a new physical algorithm based on the energy balance residual 
(EBR) principle to generate new global white-sky and black-sky FAPAR products using the MODIS 
dataset. In the EBR method, FAPAR equals 1 minus the reflected fraction of the incident PAR at the 
top of canopy (TOC) and the soil-absorbed fraction of the TOC incident PAR. The TOC-reflected 
fraction of PAR is directly determined using the MCD43A3 surface visible (VIS) albedo. The key 
problem in the EBR method is, therefore, how to retrieve the soil-absorbed fraction of PAR. Here, a 
non-linear spectral mixture model (NSM) was successfully developed and applied to retrieve global 
snow-free soil VIS albedo. Finally, the global white-sky and black-sky FAPAR products were 
successfully generated using the MODIS albedo, LAI, and CI products. 
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2. Materials and Methods  

2.1. Satellite Datasets 

Five global MODIS products, including albedo, LAI, CI, land cover, and snow cover, were 
collected from 2001 to 2017 to develop the white-sky and black-sky FAPAR datasets. The GEOV1 and 
MODIS FAPAR data in 2005 were collected for comparison analysis with the retrieved white-sky and 
black-sky FAPAR data. Furthermore, in order to compare the seasonal variations in different FAPAR 
products for different vegetation types, tile H10V05 (located in North America, covering 30.00°N–
40.00°N and 80.00°W–104.43°W) was selected as the study region. Within this tile, there are enough 
samples for all vegetation types defined in MODIS land cover product. 

2.1.1. MODIS Albedo Product 

The VIS broadband (0.4–0.7 μm) white-sky and black-sky albedo products are available from 
MODIS collection V006 products (MCD43A3) [34,35]. The MCD43A3 product provides both black-
sky albedo and white-sky albedo with a spatial resolution of 500 m, the date associated with each 
daily retrieval is the center of the 16-day compositing window. The MODIS albedo algorithm uses 16 
days observations from both Terra and Aqua and a semi-empirical kernel-driven bidirectional 
reflectance model (RossThick-LiSparse reciprocal kernels) [36] to determine the directional 
hemispherical reflectance (black-sky albedo), and bi-hemispherical reflectance (white-sky albedo) 
[34].  

The use of the MCD43A3 product in this study had three aims: (1) to use the VIS albedo to 
directly determine the part of PAR reflected by the surface; (2) to invert the VIS albedo of the soil 
background using the NSM model presented in this paper; and (3) to determine the surface VIS 
albedo of ”pure” vegetation (i.e., vegetation with an LAI value ≥ 6). 

2.1.2. MODIS LAI and FAPAR Product (MCD15A2H) 

The MCD15A2H from MODIS collection V006 products is an 8-day composite LAI and FAPAR 
dataset with a spatial resolution of 500 m [37]. The MODIS LAI/FAPAR algorithm consists of a main 
look-up-table (LUT)-based procedure that exploits the spectral information contained in the MODIS 
red and NIR bands, and a back-up algorithm that uses the empirical relationships between the NDVI 
and canopy LAI, and FAPAR [3]. In the main algorithm, the observed and modeled spectral 
directional reflectances at the red and NIR bands were compared for a suite of canopy structures and 
soil patterns, and the mean values of LAI and FAPAR were recorded as retrievals for each pixel [3].  

The MCD15A2H LAI product, together with the MODIS CI product presented by Jiao et al. [38], 
were employed to calculate the FVC (fraction of vegetation cover) and canopy transmittance using 
the canopy gap fraction method. 

2.1.3. MODIS Land Cover Product (MCD12Q1) 

The MODIS land cover product (MCD12Q1) from the MODIS collection V006 products contains 
multiple classification schemes, which are derived from observations by Terra and Aqua satellites 
made within one year. The MODIS land cover type product was produced using a decision tree 
classification algorithm in conjunction with a technique for improving classification accuracies 
known as boosting [39]. The primary scheme identifies 17 land cover types defined by the 
International Geosphere Bosphere Programme (IGBP) [40]. The MCD12Q1 is a yearly land-cover 
dataset that has a 500-m pixel size.  

The MCD43A3 and MCD15A2H were used to determine the prior VIS albedo of “pure” 
vegetation for different vegetation types. 

2.1.4. MODIS Snow Cover Product (MOD10A2) 

The MODIS snow cover 8-days L3 grid (MOD10A2) dataset from the MODIS collection V006 
products reports the maximum snow cover extent over an eight-day compositing period with a 
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resolution of 500 m [41]. The MODIS snow-cover data were based on a snow mapping algorithm that 
employs a normalized difference snow index (NDSI) and other criteria [41,42]. The MODIS snow 
indicator was used here to identify the presence of snow. Only snow-free pixels were selected for 
calculation of the snow-free soil albedo in this study. 

2.1.5. Global Clumping Index (CI) Product 

The CI is an important canopy structural parameter, which characterizes the level of leaf 
grouping within a canopy [43]. The CIs of plant canopies can be constructed using a linear 
relationship between the CI and the normalized difference between hotspot and dark spot (NDHD) 
angular index [43]. A hotspot-adjusted RossThick-LiSparse Reciprocal (RTLSR) model was employed 
to reconstruct the hotspot signatures for the MODIS BRDF parameters [38]. Jiao et al. [38] proposed 
a framework for retrieving CIs from the MODIS bidirectional reflectance distribution function (BRDF) 
products (MCD43A1 and MCD43A2) based on linear CI-NDHD equations proposed by Chen et al. 
[43]. The main algorithm was designed to retrieve CIs in the closed interval (0.33, 1.00). If the retrieved 
CIs are outside of this range, then a backup algorithm was designed to reprocess these outlier CIs. 
Finally, the MODIS CI dataset by Jiao et al. [38] gives the clumping index over an eight-day 
compositing period with a resolution of 500 m. Validation results have shown that this framework 
can accurately produce MODIS CIs with an R2 of 0.80 and an RMSE of 0.07 for the main algorithm, 
and an R2 of 0.72 and an RMSE of 0.12 for the backup algorithm. The MODIS CI product was provided 
with a spatial resolution of 500 m and a temporal interval of 8 days [38]. 

2.1.6. Global FAPAR Products for Comparative Analysis 

Two popular global FAPAR products with a resolution ≤ 1 km—including MCD15A2H (500 m) 
and GEOV1 (1 km)—were selected for comparative analysis. The main specifications of the two 
FAPAR products are summarized in Table 1.  

2.2. Field Measurement Data 

The 27 high-resolution FAPAR maps covering 22 VALERI project sites were used to validate the 
accuracy of the FAPAR product constructed using the EBR method and also for comparison with the 
MCD15A2H and GEOV1 FAPAR products. The ground-based datasets were provided by the 
VALERI project (http://w3.avignon.inra.fr/valeri/). All the in situ FAPAR values were calculated from 
the digital hemispherical photos taken at the VALERI sites during 2001–2005 [28,44]. The validation 
with ground-based data was achieved by scaling up the in situ measurements using fine-resolution 
imagery that had a resolution of 20 m [45]. All these satellite FAPAR products were validated using 
the mean values for an area of 3 km × 3 km, which enabled the effects of the point spread function 
and geometric accuracy to be limited. More details about the VALERI project and dataset are 
presented in Baret et al. [46]. 

Table 1. The main characteristics of the MODIS and GEOV1 FAPAR products, including definition, 
retrieval method, and resolution. 

FAPAR 
Product Initiative Sensor 

Spatial and 
temporal 

resolution 
Definition Method 

MCD15A2H NASA MODIS/Terra and 
Aqua 

500 m, 8 days 
Instantaneous 

black-sky 
FAPAR 

Inversion of 3D-RTM 
(LUT) [3]  

GEOV1 ESA Vegetation/SPOT 1 km, 10 days 
Instantaneous 

black-sky 
FAPAR 

Neural network to 
relate the fused 

products to the surface 
reflectance [6]  
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Table 2. The VALERI sites and their FAPAR (fraction of absorbed photosynthetically active radiation 
by vegetation) records. DOY is day of year. 

Site Country Latitude Longitude Biome Year DOY FAPAR 
Alpilles2 France 43.81 4.715 Broadleaf crops 2002 204 0.399 

Barrax Spain 39.057 −2.104 Broadleaf forest 2003 194 0.256 
Cameron Australia −32.598 116.254 Broadleaf forest 2004 63 0.479 

Concepcion Chile −37.467 −73.470 Broadleaf forest 2003 9 0.771 

Counami 
French 
Guyana 5.347 −53.238 Broadleaf forest 

2001 269 0.95 
2002 286 0.887 

Demmin Germany 53.892 13.207 Broadleaf crops 2004 164 0.741 
Donga Benin 9.77 1.778 Shrubs 2005 172 0.472 

Fundulea Romania 44.406 26.583 Grasses and cereal crops 
2001 128 0.519 
2002 160 0.464 
2003 151 0.374 

Gilching Germany 48.082 11.32 Grasses and cereal crops 2002 199 0.786 
Gnangara Australia −31.534 115.882 Broadleaf forest 2004 61 0.263 

Haouz Morocco 31.659 −7.600 Shrubs 2003 71 0.489 

Laprida Argentina −36.990 −60.553 Savannahs 2001 311 0.837 
2002 292 0.62 

Larose Canada 45.38 −75.217 Needleleaf forests 2003 219 0.906 
Larzac France 43.938 3.123 Savannahs 2002 183 0.349 
Nezer France 44.568 −1.038 Needleleaf forests 2002 107 0.494 

Plan-de-
Dieu France 44.199 4.948 Broadleaf forest 2004 189 0.223 

Puechabon France 43.725 3.652 Broadleaf forest 2001 164 0.601 
Sonian Belgium 50.768 4.411 Needleleaf forests 2004 174 0.916 

Sud-Ouest France 43.506 1.238 Grasses and cereal crops 2002 189 0.404 

Turco Bolivia −18.239 −68.193 Shrubs 
2002 240 0.025 
2003 105 0.046 

Wankama Niger 13.645 2.635 Grasses and cereal crops 2005 174 0.073 
Zhangbei China 41.279 114.688 Grasses and cereal crops 2002 221 0.422 

The characteristics of the 22 VALERI sites and the 27 VALERI FAPAR data covering 3 km × 3 
km regions are given in Table 2 (derived from Table 2 in Camacho et al. [23] and Table 1 in Xiao et al. 
[21]). 

2.3. Data Simulated Using the PROSAIL Model 

To quantitatively evaluate the performance of the FAPAR estimation approach proposed in this 
study, the PROSAIL model was employed to generate a simulated dataset which could cover most 
of the common vegetation conditions. The simulated FAPAR dataset by PROSAIL model was treated 
as the “true” value to validate our developed FAPAR. 

The PROSAIL model is a vertical (1-D) radiative transfer model [47] that combines the 
PROSPECT leaf optical properties model [48] and the SAIL canopy bidirectional reflectance model 
[49]. The PROSAIL model is widely used to simulate canopy spectra and bi-directional reflectance in 
the solar domain (0.4–2.5 μm). Using the PROSAIL model, the canopy directional reflectance at the 
nadir direction, the canopy VIS albedo, and canopy FAPAR (which are the input/output parameters 
of the proposed EBR model for FAPAR estimation) can be simulated for various vegetation 
conditions. The leaf chlorophyll content, LAI, soil albedo, solar zenith angle, and ratio of diffuse light 
are the main parameters influencing both the canopy VIS albedo and the white-sky/black-sky FAPAR 
[48]. We used the most possible values to cover the range of parameters which significantly impacted 
FAPAR, and used fixed values for those with small influences on FAPAR. According to the statistical 
value of the vegetation biochemical contents in some research [50–53], the values assigned to these 
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parameters were in the range of 20–80 μg/cm2 for Cab, 0.002–0.02 g/cm2 for Cdm, 0.1–7 for LAI, 0.02–
0.3 for soil backgrounds, and 15–75°for SZA. Furthermore, six canopy structure types (e.g., spherical, 
planophile, erectophile, plagiophile, extremophile, uniform) were also simulated. The values of N 
can be determined using the leaf dry matter content based on their statistical relationship [54]. 
According to the ANGERS dataset [54], there was a significant relationship between N and Cdm (N =1.214 + 58.428		Cdm, ݎ = 0.735, RMSE = 0.152) [51]. 

The values of these parameters were set to cover most parts of the vegetation conditions, while 
the other parameters were set as the default values of the PROSAIL model (as listed in Table 3). The 
PROSAIL model was run using a “look-up table” mode to generate simulations with all possible 
combinations of the input parameters, and consequently, a total of 81,000 simulations were generated. 
In the PROSAIL model, the PAR absorbed by canopy (APAR) was calculated using the total APAR 
for two components: the sunlit leaves and the shaded leaves [49, 54]. For sunlit leaves, the total 
absorbed PAR included the absorbed PAR of the direct and the diffuse radiation in the canopy. While 
for shaded leaves, the absorbed PAR was related to the diffuse radiation only. Once the canopy 
FAPAR was determined, the fraction of PAR absorbed by the soil could be directly calculated by 
subtracting the sum of the canopy FAPAR and the canopy albedo. 

Table 3. The main input parameters used for the PROSAIL model simulations. 

Parameter Definition Units Range or values 
Leaf optical 

Cab Chlorophyll AB content μg/cm2 20, 30, 40, 60, 80 
Cw Leaf water-equivalent thickness cm 0.009 
Cdm Dry matter content g/cm2 0.002, 0.004, 0.008, 0.012, 0.02 

N Leaf internal scatter parameter — 
1.33, 1.45, 1.68, 1.92, 2.38, co-

varied with Cdm 
Canopy 

LAI Leaf area index m2/m2 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7 

(LIDF a, 
LIDF b) 

LIDF parameter a, which controls 
the average leaf slope, LIDF 

parameter b, which controls the 
distribution's bimodality 

— 

spherical (−0.35, −0.15), 
planophile (1, 0), erectophile (−1, 

0), plagiophile (0, −1), 
extremophile (0, 1), uniform (0, 0) 

hc Hot spot parameter — 0.05 
Soil 

Albedo Hemisphere reflectance, assumed 
as isotropic 

— 0.02, 0.1, 0.2, 0.3 

Imaging Geometry  
SZA Sun zenith angle degrees 15, 30, 45, 60, 75 ܴܽ݋݅ݐௌ௞௬ Ratio of diffuse light — 0.3, 0.5, 0.7 

2.4. Algorithms for Estimating Global White-Sky and Black-Sky FAPAR 

To develop the global white-sky and black-sky FAPAR products, a novel method based on the 
energy balance residual principle was proposed as illustrated in Figure 1. There are two key steps in 
our procedure.  

First, a simplified non-linear spectral mixture model was presented to estimate the snow-free 
soil albedo based on the MODIS surface VIS albedo, LAI, and CI products. If the NSM model failed 
to give normal retrieval of soil VIS albedo, it was approximated using empirical formulae based on 
the soil organic deposition and texture of the soil recorded in the ECOCLIMAP dataset [55,56].  

Second, the energy balance residual method was employed to retrieve the white-sky and black-
sky FAPAR products based on the MODIS VIS albedo, LAI, CI products, and also the above snow-
free soil albedo data. In the EBR method, FAPAR equaled 1 minus the reflected fraction of PAR and 
the soil-absorbed fraction of PAR. The reflected fraction of PAR was directly provided by the 
MCD43A3 surface VIS albedo. The soil absorbed fraction of PAR was determined using the canopy 
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transmittance and the retrieved soil VIS albedo using the NSM model. The canopy transmittance was 
calculated using the gap fraction model based on the MODIS LAI and CI products.  

All the prior values needed in the NSM model and EBR method were determined according to 
the simulations by the PROSAIL model (listed in Table 3) and also the MODIS satellite products. 

 
Figure 1. The flowchart of the energy balance residual method to generate the white-sky and black-
sky FAPAR products using the MODIS datasets. 

2.4.1. Estimating White-Sky and Black-Sky FAPAR Using the EBR Method 

The PAR absorbed by the canopy, ܴܣܲܣ஼௔௡௢௣௬, excludes the PAR reflected by the canopy and 
absorbed by the soil background, but includes the small part of PAR absorbed by the canopy after 
reflection from the underlying background. The energy budget in the soil–canopy–atmosphere 
structure is shown Figure 2. According to the EBR method, the ܴܣܲܣ஼௔௡௢௣௬ can be calculated using 
Equation (1) [5,11,57]: APARୡୟ୬୭୮୷ = PAR୧୬ − PAR୭୳୲ − PAR୲୰ୟ୬ୱ୫ + PARୱ୭୧୪ = PAR୧୬ − PAR୭୳୲ − APARୗ୭୧୪		  (1) 

where ܴܣܲܣ௖௔௡௢௣௬ and ܴܣܲܣ௦௢௜௟ are the canopy absorbed PAR and soil absorbed PAR, and ܴܲܣ௜௡, ܴܲܣ௢௨௧, ܴܲܣ௧௥௔௡௦௠, and PARୱ୭୧୪ are the incident PAR, outgoing PAR, transmitted PAR, and PAR 
reflected by soil substrate, respectively.  

 
Figure 2. The energy budget in the soil–canopy–atmosphere system. 

Therefore, FAPAR can be calculated as the ratio of ܴܣܲܣ஼௔௡௢௣௬ to ܴܲܣ௜௡: ܴܣܲܣܨ = 1 − ௜௡ܴܣ௢௨௧ܴܲܣܲ − ௜௡ܴܣ௦௢௜௟ܴܲܣܲܣ = 1 − ை஼்݋ܾ݈݀݁ܣ −  ௦௢௜௟ (2)݋݅ݐܴܽ

where ்݋ܾ݈݀݁ܣை஼ , the ratio of ܴܲܣ௢௨௧  to ܴܲܣ௜௡ , is the VIS albedo of the canopy, which can be 
directly determined from the MODIS BRDF product: ܴܽ݋݅ݐ௦௢௜௟, the ratio of ܴܣܲܣௌ௢௜௟ to ܴܲܣ௜௡, is the 
fraction of PAR absorbed by the soil background.  
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To obtain the canopy FAPAR, it is therefore necessary to derive the ܴܽ݋݅ݐ௦௢௜௟ , which can be 
derived if the canopy transmittance and VIS albedo of the soil background are available. ܴܽ݋݅ݐ௦௢௜௟ 
can be given by [5,58],  

௦௢௜௟݋݅ݐܴܽ  = ஺௉஺ோೞ೚೔೗௉஺ோ೔೙ = ௉஺ோ೟ೝೌ೙ೞ೘ି௉஺ோೞ೚೔೗௉஺ோ೔೙ = ௉஺ோ೔೙×ି௉஺ோ೔೙××஺௟௕௘ௗ௢ೞ೚೔೗௉஺ோ೔೙ =  × (1 −  ௦௢௜௟) (3)݋ܾ݈݀݁ܣ

where ݋ܾ݈݀݁ܣ௦௢௜௟, the ratio of ܴܲܣ௦௢௜௟ to ܴܲܣ௧௥௔௡௦௠, is the VIS albedo of the soil background, and  
is the canopy transmittance. 

The canopy directional transmittance, ߬(ߠ), can be determined using the gap fraction model 
(ߠ)߬ ,[5,59,60] = ݁ି௞×ீ(ఏ)×௅஺ூ×஼ூ ୡ୭ୱ	(ఏ)⁄  (4) 

where ݇ is the leaf extinction coefficient, (ߠ)ܩ is the projection of unit foliage area on the plane 
perpendicular to the sun incident direction ߠ, LAI is the leaf area index, CI is the clumping index, 
and ߠ is the SZA. In this paper, the leaf angle distribution was assumed to be a spherical function 
with 0.5 = (ߠ)ܩ. The leaf extinction coefficient ݇ can be determined using the leaf absorptance in 
the VIS band, which was set as 0.88 according to the simulations using the PROSPECT-5 model and 
also the measurements of the LOPEX’93 and ANGERS [61]. 

If the soil background was assumed to be isotropic, the white-sky and black-sky FAPAR can be 
calculated using Equations (5) and (6): ܴܣܲܣܨ஻ௌ = 1 − ௢௖஻ௌ்݋ܾ݈݀݁ܣ − ௦௢௜௟஻ௌ݋݅ݐܴܽ ௐௌܴܣܲܣܨ (5)  = 1 − ௢௖ௐௌ்݋ܾ݈݀݁ܣ − ௦௢௜௟ௐௌ݋݅ݐܴܽ  (6) 

where the superscript ܵܤ  represents black-sky and ܹܵ  represents white sky; ்݋ܾ݈݀݁ܣ௢௖஻ௌ  and ்݋ܾ݈݀݁ܣ௢௖ௐௌ  are the black-sky VIS surface albedo and white-sky VIS surface albedo, respectively, which 
can be directly derived from BRDF products, such as MCD43A3.	ܴܽ݋݅ݐ௦௢௜௟஻ௌ  and ܴܽ݋݅ݐ௦௢௜௟ௐௌ  are the soil-
absorbed fraction of PAR under white-sky and black-sky conditions, respectively, and can be 
determined using Equation (3). 

In order to determine ܴܽ݋݅ݐ௦௢௜௟ௐௌ , the canopy transmittance under white-sky conditions should be 
calculated by integrating the directional transmittance ߬(ߠ) over the whole hemisphere: 

߬ௐௌ = 2 × න ൫݁ି௞×ீ(ఏ)×௅஺ூ×஼ூ ୡ୭ୱ(ఏ)⁄ ൯ × sin	(θ) × cos	(ߠ)݀ߠగଶ଴  (7) 

where ߬ௐௌ is the canopy transmittance under white-sky condition; other quantities are the same as 
for Equation (4).  

Finally, the total FAPAR can be calculated using a linear combination of the black-sky FAPAR 
and white-sky FAPAR: ்ܴܣܲܣܨ௢௧௔௟ = ൫1 − ௌ௞௬൯݋݅ݐܴܽ × ஻ௌܴܣܲܣܨ + ௌ௞௬݋݅ݐܴܽ ×  ௐௌ (8)ܴܣܲܣܨ

where ்ܴܣܲܣܨ௢௧௔௟ is the total FAPAR and ܴܽ݋݅ݐௌ௞௬ is the proportion of diffuse PAR. 

2.4.2. Estimating Snow-Free Soil VIS Albedo Using the Non-Linear Spectral Mixture Model 

In the EBR method, the key step is to estimate the VIS albedo of the soil background because the 
LAI and VIS albedo products are available as part of the MODIS products. 

Many methods of analyzing remote sensing data assume that pixels are pure, and so a failure to 
accommodate mixed pixels may cause significant errors. The linear spectral mixture model, called 
the patch method, has been widely used to deal with mixed pixels, where each patch (or subpixel) 
acts independently of the other for the downwelling radiation. However, the linear spectral mixture 
model or patch method fails to describe mixed pixels for the coupled subpixels: for example, the 
vegetation canopy and soil background are normally non-linearly mixed due to light interception by 
the leaves within the upper canopy (see Figure 3a,b).  
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Figure 3. A physical representation of a non-linear spectral mixture model to simplify the dual-source 
vegetation–soil lay approach. (a) The vertical digital photo of a wheat canopy; (b) the re-ordered 
image of (a), in which the leaf and soil pixels are placed side by side in the form of a mosaic. For the 
soil substrate, its input radiation is attenuated by the leaves of the upper canopy. FVC is the fraction 
of vegetation cover, ܴܲܣ௜௡  and ܴܲܣ௧௥௔௡௦௠  are the incident and transmitted photosynthetically 
active radiation, respectively. 

In this paper, we employed the layer approach to describe the non-linear contribution of soil 
background and leaves within the upper canopy on the canopy albedo (Figure 3b). The layer 
approach was used to account for the contribution of leaves within the upper canopy and soil 
substrate on the canopy albedo, which treats the upper canopy as semi-transparent for the radiation 
input [62]. The transmitted PAR above the soil substrate can be determined using Beer’s law,  ܴܲܣ௧௥௔௡௦௠ = ߬	௜௡ܴܣܲ = ௜௡݁ି௞×ீ(ఏ)×௅஺ூ×஼ூܴܣܲ ୡ୭ୱ	(ఏ)⁄  (9) 

As illustrated in Figure 3b, if all the leaf pixels in Figure 3a were separated and re-ordered 
together at the upper part, while all the soil pixels were re-ordered at the lower part, a simplified 
non-linear spectral mixture (NSM) model can be designed to simulate the total canopy albedo by 
combining the albedo of the “pure” vegetation canopy with an ܥܸܨ of 100% and soil albedo. For 
each coarse-resolution pixel, the TOC VIS albedo is approximated as a non-linear mixture of a “pure” 
vegetation sub-pixel (upper part in Figure 3b with FVC of 100%) and a soil sub-pixel (lower part in 
Figure 3b):  ்݋ܾ݈݀݁ܣை஼ = ܥܸܨ × ௣௨௥௘݋ܾ݈݀݁ܣ + (1 − (ܥܸܨ × ௦௢௜௟݋ܾ݈݀݁ܣ × ߬ (10) 

where ்݋ܾ݈݀݁ܣை஼ is the TOC VIS albedo, ܥܸܨ is the fraction of vegetation cover, ݋ܾ݈݀݁ܣ௣௨௥௘ is the 
TOC VIS albedo of a “pure” vegetation canopy with an ܥܸܨ of 100%, ݋ܾ݈݀݁ܣ௦௢௜௟ is the VIS albedo 
of the soil background, and ߬ is the canopy downward transmittance when light is transferred from 
the TOC to the soil, as in Equation (7). In Equation (10), the canopy VIS albedo is simplified using a 
weighted mean of the “pure” vegetation subpixel and the soil subpixel; the weighting coefficient used 
for the soil subpixel is the canopy transmittance. 

The TOC VIS albedo of “pure” vegetation can be approximated using that of dense vegetation. 
In this study, we analyzed the TOC VIS albedo for woody and herbaceous vegetation with different 
LAIs. The VIS albedo data is from the MCD43A3 product, the LAI data is from the MCD15A2H 
product, and the vegetation types were from the MCD12Q1 product. Only the MODIS products at 
peak growth stage (during the day of year (DOY) 209–217 in 2005 in the northern hemisphere) was 
used. For dense canopy, woody cover types, including needleleaf evergreen forest, broadleaf 
evergreen forest, needleleaf deciduous forest, broadleaf deciduous forest) have almost the same 
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white-sky VIS albedo, while herbaceous vegetation types have a relative higher white-sky VIS albedo. 
The variations of the white-sky VIS albedo of woody and herbaceous vegetation types with different 
LAI are illustrated in Figure 4. The VIS albedo decreased with increased LAI, and became quite stable 
when LAI was greater than four. Therefore, we assumed that the VIS albedo for pure vegetation can 
be represented by the VIS albedo for vegetation with a “saturated” LAI value (e.g., LAI = 6). So, the 
priori VIS albedo values of “pure” vegetation with an FVC of 100 were designated as 0.025 and 0.041 
for white-sky albedo of woody and herbaceous vegetation types, and 0.020 and 0.036 for black-sky 
albedo, respectively, which is corresponding to the VIS albedo of a dense canopy with an LAI value 
of 6. 

   
Figure 4. Variations of the white-sky (a) and black-sky (b) VIS albedo of woody vegetation and 
herbaceous vegetation with different LAI. The error bar is the standard deviation.  The	ܥܸܨ can also be calculated using the gap fraction model with a fixed SZA of 0° and a fixed 

leaf extinction coefficient of 1: ܥܸܨ = 1 − ݁ିீ(ఏ)×௅஺ூ×஼ூ (11) 

The canopy transmittance and ܥܸܨ can, therefore, be determined using LAI and CI data. The 
VIS albedo of the soil background can then be retrieved using the NSM model: ݋ܾ݈݀݁ܣ௦௢௜௟ = ை஼்݋ܾ݈݀݁ܣ − ܥܸܨ × ௣௨௥௘(1݋ܾ݈݀݁ܣ − (ܥܸܨ × ߬  (12) 

Here, the TOC VIS albedo can be directly derived from the MCD43A3 BRDF products, and FVC 
and ߬ can be determined using Equations (11) and (7), respectively. In this paper, the soil substrate 
was assumed as isotropic, and only the white-sky albedo of soil substrate was calculated. 

If the NSM model shown in Equation (12) was employed to retrieve the soil VIS albedo, the 
uncertainty for dense vegetation pixels would be very large. For example, the error in the canopy VIS 
albedo will be magnified by about 100 times for a vegetation canopy with an ܥܸܨ of 0.9, because the 
denominator of Equation (12) is then about 0.01. In order to address this problem, the abnormal soil 
VIS albedos obtained using the NSM model were replaced by the prior values. These prior values of 
soil VIS albedo can be determined using the yearly composite values, or be approximated using 
empirical formulae based on the soil organic deposition and texture of the soil [55]. The ECOCLIMAP 
(a global database of land surface parameters at 1 km resolution) uses an empirical equation to 
calculate soil reflectance, as given in Carrer et al. [56], ݋ܾ݈݀݁ܣ௦௢௜௟ = 0.1 + (0.05 + 0.3 ∗ ௦݂௔௡ௗ) × (1 − 0.9 ×  ଶ) (13)ܥܸܨ

where ௦݂௔௡ௗ is the sand fraction. The global sand fraction data are derived from the Harmonized 
World Soil Database (FAO/IIASA/ISRIC/ISSCAS/JRC, 2009). The prior soil VIS albedo was mapped 
using the ECOCLIMAP sand fraction data and the yearly maximum FVC values derived from the 
MODIS CI and MCD15A2H LAI products based on the gap fraction model (Equation (11)), as shown 
in Figure 5. 
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Figure 5. The global prior soil VIS albedo map obtained using the ECOCLIMAP sand fraction data 
and the yearly maximum FVC values derived from the MCD15A2H product and gap fraction model. 

In this study, if the retrieved soil VIS albedo value was smaller than 0.02 or greater than 0.3 (the 
two threshold values given in Myneni et al. [3] and Equation (13)) for snow-free pixels with an FVC > 
0.3, the pixels were marked as abnormal and their soil VIS albedo values were replaced either by the 
yearly composite value (if there were more than three valid retrievals within a year) or the prior 
values determined by substituting the sand fraction and FVC values in Equation (13).  

The TOC VIS albedo of a “pure” vegetation canopy will increase greatly if it is covered by snow 
and the NSM model will then fail to estimate the VIS soil albedo. For pixels determined to be snow-
covered by the MOD10A2 snow cover product, the canopy black-sky FAPAR was directly 
determined using the gap fraction method as used in Xiao et al. [21], where the black-sky FAPAR 
was assumed equal to one minus the canopy directional transmittance (τ(θ)) as Equation (4); then, 
the canopy diffuse transmittance, ߬ௐௌ , was calculated by integrating τ(θ)  over the whole 
hemisphere (as Equation (7)) to determine the white-sky FAPAR (1 − ߬ௐௌ). 

Furthermore, in some regions, such as boreal forest, the soil surface is typically covered by 
different understory species (including litter, moss, lichen, etc.). Such cases were not taken into 
account in the NSM model. We did not discriminate the understory vegetation from soil background, 
and the soil albedo was regarded as the understory albedo for the forest region. 

Table 4. The main inputs of the NSM model and EBR method in the validation experiment using 
simulations by the PROSAIL model. A Gaussian random noise with a relative intensity of 0% to 30% 
was added to the canopy LAI values to investigate the sensitivity of the EBR approach. 

Parameter Definition Units Range or Values 
Leaf optical 

k Leaf extinction coefficient, varies with leaf 
chlorophyll content (Cab) 

- 0.88 

Canopy 
LAI Leaf area index m2/m2 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7 

LAI noise Gaussian random noise - 
0%, 5%, 10%, 15%, 20%, 
25%, 30% of the “true” 

LAI 

G(θ) 
The projection of unit foliage area on the 
plane perpendicular to the sun incident 

direction ߠ 
- 0.5 

CI clumping index - 1 Albedo୮୳୰ୣ VIS albedo of “pure” vegetation - 0.025 
Soil 
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 ௦௢௜௟ Hemisphere reflectance, assumed as݋ܾ݈݀݁ܣ
isotropic 

- Limited to 0.02–0.3 

Remote sensing data ்݋ܾ݈݀݁ܣை஼ TOC VIS white-sky and black-sky albedo - 
81,000 simulations by 

PROSAIL shown in Table 
3 

Imaging Geometry, same as Table 3 
SZA Sun zenith angle degrees 10, 30, 45, 60, 75 ܴܽ݋݅ݐௌ௞௬ Ratio of diffuse light - 0.3, 0.5, 0.7 

However, there was no in situ dataset to validate the VIS albedo of soil substrate at 500 m 
resolution. So, the simulations by the PROSAIL model were treated as the “true” values to indirectly 
validate the NSM model and EBR method. Furthermore, in order to quantify the sensitivity of the 
NSM model and EBR method, a Gaussian random noise with a relative intensity of 0% to 30% was 
added to the canopy LAI values. One-thousand different random noises were added to each of the 
81,000 simulated samples listed in Table 4. 

3. Results 

3.1. Validation Using Simulations by PROSAIL 

The 81,000 simulations made using the PROSAIL model (see Table 3 for details) were used to 
validate the NSM model VIS albedo and the EBR method.  

(a) 

(b) 

Figure 6. Evaluation of the EBR approach using the 81,000 simulations by PROSAIL. (a) “True” values 
of the leaf extinction coefficient (k), ݋ܾ݈݀݁ܣ௣௨௥௘, and G(θ) were available from PROSAIL simulations, 
(b) the prior parameters were fixed (k = 0.88, G(θ) = 0.5, ݋ܾ݈݀݁ܣ௣௨௥௘ = 0.025). 

Figure 6 illustrates the validation results for the VIS canopy albedo, the fraction of PAR absorbed 
by the soil, and the canopy FAPAR. For the simulated dataset by PROSAIL, the “true” values of the 
leaf extinction coefficient (k), G(θ), and ݋ܾ݈݀݁ܣ௣௨௥௘  needed in the NSM model and EBR can be 
accurately determined for each specific sample. However, these parameters are not available for 
generating global FAPAR products. So we evaluated the performance of the NSM model and EBR 
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method with both “true” values (Figure 6a) and fixed values (Figure 6b) of k, G(θ), and ݋ܾ݈݀݁ܣ௣௨௥௘. 
The results show that, the NSM model and EBR method can give more accurate retrievals with “true” 
values of the parameters. With fixed values (k = 0.88, G(θ) = 0.5, ݋ܾ݈݀݁ܣ௣௨௥௘ = 0.025), the VIS canopy 
albedo and soil-absorbed fraction of PAR can be still accurately modeled using the NSM model—the 
results give the RMSEs of 0.016 and 0.039, respectively. In addition, the canopy FAPAR can also be 
accurately estimated using the EBR method; in this case, the RMSE as 0.041 and R2 was 0.982. 
Therefore, if the LAI can be accurately estimated using remote sensing data, it should be possible to 
calculate the FAPAR accurately using the remotely sensed canopy VIS albedo even if the variations 
in the TOC VIS albedo of the “pure” vegetation (݋ܾ݈݀݁ܣ௣௨௥௘), the leaf extinction coefficient (k), and 
also the (ߠ)ܩ are neglected. 

The sensitivity of the EBR method was also investigated using the noised-LAI dataset (assumed 
a random noise existing in the LAI products) as illustrated in Figure 7. The results show that the EBR 
method gives robust and accurate estimation of the canopy VIS albedo, FAPAR, and soil absorbed 
fraction of PAR, with a RMSE less than 0.012, 0.133, and 0.132, respectively, if the noise of the LAI 
data was smaller than 30%. The FAPAR can be more accurately estimated for both sparse (LAI < 1) 
and dense canopies (LAI ≥ 2)—the largest RMSE was for a vegetation canopy with an LAI value of 1.  

 
Figure 7. The mean RMSE of the retrieved TOC VIS albedo, soil VIS albedo, FAPAR, and soil-absorbed 
fraction of PAR using the EBR method for the 81,000 simulations with a Gaussian random noise in 
the LAI values (0% to 30%). Figures (a–d) correspond to the TOC VIS albedo, soil VIS albedo, FAPAR, 
and soil-absorbed fraction of PAR, respectively. 

However, the retrieval error of soil VIS albedo increases rapidly when the LAI increases (Figure 
7b). Here, the soil VIS albedo was forcibly limited to the range 0.02–0.3. Almost all the retrieved soil 
VIS albedos fall into wrong range if the LAI is greater than three, so the RMSE value of the retrieved 
VIS soil albedo in Figure 7b was almost same when LAI was greater than three. The results show that 
the soil VIS albedo can be accurately retrieved with an RMSE value < 0.05 for sparse vegetation (LAI 
< 1). 

3.2. Global Snow-Free VIS Soil Albedo  

The global VIS soil albedo and the temporal variations in the VIS albedo were calculated from 
the MCD43A3 VIS albedo product and MCD15A2H LAI product using the NSM model shown in 
Equation (12). Figure 8 shows the global map of the yearly-averaged snow-free VIS albedo of the soil 
background (the mean value of all the valid retrievals using Equation (12)) and the number of valid 
retrievals for 2005. The retrieved VIS soil albedo was high in deserts and in regions where there is 
sparse grass, including the Sahara Desert, inland Australia, and the Eurasian Steppe region, whereas 
it was low in the tropical forest regions of Southeast Asia, the Amazon Basin, and the African Congo 
Basin. The number of valid retrievals of the VIS soil albedo was high in regions of sparse vegetation 
and low in regions of dense vegetation, especially in tropical forest regions. The yearly mean values 
of the retrieved VIS soil albedo for different vegetation types in Figure 8 were summarized in Table 
5. 

0
0.005
0.01
0.015

0 2 4 6 8RMSE	o
f	TOC	a

lbedo

LAI 00.050.1
0.150.2

0 2 4 6 8RMSE	o
f	soil	al

bedo

LAI 0
0.05
0.1
0.15

0 2 4 6 8

RMSE	o
f	FAPA

R

LAI 0
0.05
0.1
0.15

0 2 4 6 8RMSE	o
f	Ratio

soil
LAI

(c) (d)(a) (b)

0% 5% 10% 15% 20% 25% 30%



Remote Sens. 2019, 11, 1004 14 of 23 

 

 

Figure 8. Global maps of the yearly snow-free VIS soil albedo (a) and the number of valid retrievals 
in 2005 (b). 

Table 5. The yearly mean values of the snow-free soil VIS albedo retrieved using the NSM model for 
different vegetation types in 2005. 

Type NLE BLE NLD BLD Shru Sav GCC BLC MF CNM 
Albedo 0.069  0.120  0.085  0.120  0.109  0.111  0.144  0.134  0.109  0.120  

NLE: needleleaf evergreen forest, BLE: broad-leaf evergreen forest, NLD: needleleaf deciduous forest, 
BLD: broadleaf deciduous forest, Shru: shrublands, Sav: savannas, GCC: grasses and cereal crop, 
BLCs: broadleaf crops, MF: mixed forest, CNM: crop/natural vegetation mosaic. 

  
Figure 9. The global effective retrieval fraction for VIS soil albedo derived using the NSM model with 
MODIS products in 2005. If the retrieved soil VIS albedo was smaller than 0.02 or greater than 0.3 for 
a snow-free pixel with an FVC > 0.3, the pixel was marked as abnormal. 

Figure 9 shows the global effective retrieval fraction for VIS soil albedo values derived using the 
NSM model in 2005. The results indicate that about 58–75% of snow-free pixels can have their VIS 
albedo inverted from the MODIS VIS albedo products. The VIS soil albedo retrieval fraction decreases 
noticeably in winter due to snow cover and also decreases slightly in the peak summer growth 
season.  

The yearly mean values of the VIS soil albedo in 2005 retrieved using the NSM model for the 
different vegetation types listed in Table 5 were linked to the ECOCLIMAP soil albedo data, and the 
statistical result shows a strong linear relationship between the two soil albedo datasets (y = 0.536x + 
0.025, R² = 0.860). 

3.3. EBR FAPAR Validation Using VALERI Sites 

A statistical analysis was conducted to examine the relationship between the retrieved black-sky 
FAPAR at 10:30 and white-sky FAPAR using VALERI site locations. The results showed that there 
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was a linear relationship between the white-sky FAPAR and black-sky FAPAR at 10:30 (y = 1.062x + 
0.024, R2 = 0.995), and that the white-sky FAPAR is a little higher than the black-sky FAPAR. 

Next, the black-sky FAPAR retrieved using the EBR method was compared to the MCD15A2H 
and GEOV1 FAPARs. Results showed that the EBR black-sky FAPAR was more accurate (R2 = 0.917, 
RMSE = 0.088, and bias = -2.8 %) than MCD15A2H (R2 = 0.901, RMSE = 0.096, and bias =7.6 %) and 
GEOV1 (R2 = 0.868, RMSE = 0.105, and bias = 6.1%) (Figure 10, Table 6.). 

 

Figure 10. Validation of the EBR black-sky FAPAR (EBRBS), MCD15A2H, and GEOV1 FAPAR 
products using reference FAPAR estimates from 22 VALERI sites. 

Table 6. Accuracy of the FAPAR products using reference FAPAR estimates. 

(a) From 22 VALERI sites (27 samples). 

 MCD15A2H GEOV1 ܁܅܀۳۰ ܁۰܀۳۰ 
R2 0.917 0.909 0.901 0.868 

RMSE 0.088 0.012 0.096 0.105 
Bias −2.8% 9.5% 7.6% 6.1% 

(b) From 8 VALERI sites (11 samples) covered with herbaceous vegetation. 

 MCD15A2H GEOV1 ܁܅܀۳۰ ܁۰܀۳۰ 
R2 0.807  0.765  0.781  0.797  

RMSE 0.106  0.114  0.110  0.111  
Bias −7.2% 7.5% 6.4% 10.1% 

(c) From 14 VALERI sites (16 samples) covered with woody vegetation. 

 MCD15A2H GEOV1 ܁܅܀۳۰ ܁۰܀۳۰ 
R2 0.966  0.964  0.947  0.904  

RMSE 0.072  0.093  0.085  0.100  
Bias 0.1% 10.8% 8.5% 3.1% 

The quantitative accuracy assessment for the FAPAR products are shown in Table 6. The results 
for herbaceous and woody vegetation were also analyzed separately, as shown in Table 6b,c. The 
results show that for herbaceous vegetation, the black-sky FAPAR obtained using the EBR method 
was slightly lower than the measured FAPAR (7.2% underestimation), while for woody vegetation, 
the black-sky FAPAR obtained using the EBR method was very slightly overestimated (0.1%). For 
both types of vegetation, the white-sky FAPAR was slightly overestimated (7.5% for herbaceous 
vegetation, 10.8% for woody vegetation, and 9.5% for all samples); In general, the EBR black-sky 
FAPAR gave the best unbiased estimation, with a bias of about −2.8% against 7.6% for MCD15A2H 
and 6.1% for GEOV1. 
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3.4. Spatio-Temporal Variation of the FAPAR Products 

To investigate spatial patterns specific to a given FAPAR product, global maps of the monthly 
mean values for the MCD15A2H, GEOV1, EBR black-sky, and white-sky FAPAR products were 
calculated for January and July in 2005. All FAPAR datasets exhibited similar spatial patterns and 
seasonal variations (Figure 11). Higher FAPAR values were distributed over equatorial forest regions 
and boreal forest regions around 50–60°N in July, and over equatorial forest regions in January.  

 
Figure 11. Spatial variation of the monthly mean FAPARs for January (left) and July (right) in 2005: 
(a–b) EBR method-based black-sky FAPARs; (c–d) EBR method-based white-sky FAPARs; (e–f) 
MCD15A2H FAPARs; and (g–h) GEOV1 FAPARs. 

However, discrepancies were evident in the scatterplots of the FAPAR products (Figure 12). The 
EBR white-sky FAPAR was higher than the black-sky FAPAR when the SZA was less than T0 (about 
60°) for most observations at middle and low latitudes. The MOD15A2H2 FAPAR gave an obvious 
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overestimate compared to the EBR black-sky FAPAR. The GEOV1 FAPAR produced an obvious 
overestimate compared to the EBR black-sky FAPAR except for canopies with very small FAPAR 
values (<0.2)—it also gave a noticeable underestimate for canopies with very small FAPAR values 
(<0.2) if compared to the EBR white-sky FAPAR. The EBR white-sky FAPAR agreed better than the 
EBR black-sky FAPAR with the MCD15A2H and GEOV1 FAPARs. The MCD15A2H FAPAR agreed 
better than the GEOV1 FAPAR with the EBR black-sky and white-sky FAPARs. Lastly, we could find 
a “horizontal red line” over high FAPAR regions in Figure 12a,b, which indicates “abnormal” pixels 
in the MODIS FAPAR products. These ‘abnormal’ pixels were mainly located in the high LAI value 
areas (with a mean value of 6.32 and standard deviation value of 0.71). The MCD15A2H FAPAR 
retrieved algorithm suffered from the “saturation phenomenon’” over the high LAI areas [63], so the 
MCD15A2H FAPAR kept stable while the EBR FAPAR varied over the high values. 

 
Figure 12. Comparison of FAPAR estimates for July 2005: (a–b) EBR black-sky and white-sky FAPARs 
against MOD15A2H FAPAR; (c–d) EBR black-sky and white-sky FAPARs against GEOV1 FAPAR; 
and (e) EBR black-sky FAPAR against EBR white-sky FAPAR (Note that the Sun Zenith Angle (SZA) 
threshold value (T0) was approximately 60). 

3.5. Seasonal Variation of the FAPAR Products 
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Figure 13 illustrates the seasonal variations in the FAPAR for different vegetation types within 
tile H10V05 in 2005. The EBR black-sky FAPAR was smaller than the white-sky FAPAR outside the 
winter season with the large SZA. The EBR white-sky FAPAR agreed well with the MODIS FAPAR 
but was smaller than the MODIS FAPAR in the spring and winter seasons. The EBR black-sky FAPAR 
was noticeably smaller than the MODIS FAPAR for all land cover types. The GEOV1 and MODIS 
FAPARs agreed with the EBR white-sky FAPAR at broadleaf deciduous forests, savannas, grasslands, 
and croplands. For these biomes, the EBR black-sky FAPARs were notably lower than the other 
FAPAR estimates. However, the EBR black-sky FAPAR agreed well with the GEOV1 for needleleaf 
forests and shrublands. 

 
Figure 13. Time-series of the mean of the EBR black-sky, EBR white sky, MCD15A2H, and GEOV1 
FAPARs of different vegetation types within tile H10V05 (located in North America, covering 30.0°N–
40.0°N and 80.0°W–104.4°W) for 2005. 

4. Discussion 

4.1. Limitations of the Gap Fraction Model and NSM Model 

In this study, the gap fraction model and MODIS LAI (MCD15A2H) were employed to 
determine the canopy transmittance in the EBR method. The MODIS LAI was based on the inversion 
of the 3D radiative transfer model [15], which describes global vegetation using biomes, which are 
characterized by variables such as clumping, soil, reflectance, and stem ratio [3,15]. In the gap fraction 
model, only the LAI and leaf clumping effect are considered, and the woody components’ (branches, 
stems) influence on the canopy transmittance is neglected. The woody components contribute extra 
radiation absorption in the forest canopy. Therefore, the canopy transmittance using the gap fraction 
model may be overestimated for forest regions, which can affect the retrieval of soil albedo and soil 
absorbed fraction of PAR. Chen et al. [5,64] introduced the needle-to-shoot ratio and woody area 
index to address this problem. If the prior data concerning the needle-to-shoot ratio and woody area 
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index are available, the gap fraction model can be improved to give a more accurate estimation of the 
canopy transmittance for forest regions [64].  

The multiple scattering within the canopy is also neglected when the canopy transmittance is 
approximated using the gap fraction method (Equation (4)). This approximation has also been widely 
employed by other researchers (for example, Xiao et al. [21], for the GLASS FAPAR product). In the 
VIS band, the leaf single scattering albedo is low (it was fixed as 0.12 in this study), and this 
approximation introduces a degree of error in determining of canopy transmittance. So, the multiple 
scattering within the canopy will result in some errors when the gap fraction method is employed in 
the NSM model and EBR method. The NSM model, which does not account for multiple scattering 
effects, gave a small RMSE (of 0.028) for the canopy FAPAR as it was validated using PROSAIL 
simulations, which account for multiple scattering effects. Therefore, the error produced by the EBR 
method was very small even though the multiple scattering was neglected.  

Furthermore, the NSM model, a simplified layer approach, was employed to simplify the dual-
source vegetation–soil transfer models, such as PROSAIL [53], four-scale [65], and KUUSK [66]. This 
layer approach, which treats the upper canopy as semi-transparent for the radiation input, may not 
work for clumped or patchy vegetation, in which both the canopy and the bare soil are uncoupled, 
and receive full radiation loading [62]. For such an uncoupled dual-source case, the linear spectral 
mixture model, or the combination of the NSM model and the linear spectral mixture model may be 
more effective to deal with such mixed pixels with coarse resolution if the percentage of the patchy-
distributed vegetation is available.  

4.2. Directional Effect of the Clumping Index and Its Influence on the Retrieval of FAPAR 

To characterize the clumping effects of leaves within a canopy, Nilson [59] added a vegetation 
dispersion parameter (Ω) to the directional gap fraction model: ܲ(ߠ) = (ߠ)ܩ−)	݌ݔ݁ × ܫܣܮ × Ω(ߠ)/ܿݏ݋	(14) ((ߠ) 

where ߠ is the zenith angle, ܲ is the gap probability, Ω(ߠ) is the directional clumping index, and (ߠ)ܩ is the foliage area orientation function (i.e., the G-function).  
To avoid the variation in the clumping index as a function of ߠ, an average clumping index (CI) 

was proposed by Chen et al. [43] through a definition using the effective LAI (ܫܣܮ௘) [43]: ܫܥ =  (15) ܫܣܮ/௘ܫܣܮ

where ܫܣܮ௘ can be computed using the following formula [5]: 

௘ܫܣܮ  = ׬2− ln	(ܲ(ߠ)) × (ߠ)	ݏ݋ܿ × ഏమ଴ߠ݀((ߠ)	݊݅ݏ  (16) 

In this study, the CI product by Jiao et al. [38], as defined in Equation (15), was used to calculate 
both the black-sky and white-sky FAPARs. Thus, using an averaged CI is reasonable when 
calculating the white-sky transmittance whereas the directional CI, Ω(ߠ), should be employed to 
calculate the black-sky transmittance.  

The directional clumping index, Ω(ߠ), generally increases with increasing zenith angle [43,67]. 
According to simulations and observations, Ω(ߠ)  may increase by about 20%–30% for some 
vegetation types, such as crop and forest, if the zenith angle increases from 30° to 80° [43,60,65,67,68]. 
However, there is no directional CI product available. Therefore, the black-sky transmittance and 
FAPAR may be overestimated for solar illumination with a small SZA, and under-estimated for 
illumination with a large SZA. More attention should be paid to investigate the directional effects of 
the clumping index and to examine its influence on the retrieval of canopy black-sky FAPAR. 

5. Conclusions 

This paper presented an EBR method for producing a VIS global soil background albedo, as well 
as white-sky and black-sky FAPAR datasets using MODIS broadband albedo together with the LAI 
and CI product.  
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An NSM model was proposed to simulate the TOC albedo and also to retrieve VIS soil albedo. 
According to the validation with PROSAIL simulations, the NSM model have an RMSE of 0.015 and 
an R2 value of 0.932 for the TOC VIS albedo, and the EBR method gave an RMSE of 0.039 and an R2 
of 0.984 for FAPAR. Direct validation against observations at VALERI sites demonstrated that the 
EBR black-sky FAPAR product was more accurate and unbiased (R2 = 0.917, RMSE = 0.088, and bias 
=−2.8 %) than the GEOV1 (R2 = 0.868, RMSE = 0.105, and bias = 6.1%) and MCD15A2H (R2 = 0.901, 
RMSE = 0.096, and bias = 7.6 %) products.  

This study provided a new global white-sky and black-sky FAPAR dataset, just like MCD43A3 
albedo product, for the remote sensing community. The two FAPAR products and the soil VIS albedo 
product are available at http://www.geodata.cn/. 
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