Validation of NOAA CyGNSS Wind Speed Product with the CCMP Data
Abstract
:1. Introduction
2. Data Set Description and Data Processing
2.1. RSS CCMP Wind Product
2.2. NOAA CyGNSS Wind Product
2.3. Along Track Retrieval Algorithm for NOAA CyGNSS
2.4. Spatial and Temporal Collocation
3. Results
3.1. Comparisons between CyGNSS and CCMP Winds
3.2. Global Statistics of CyGNSS/CCMP-Nonzero
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bentamy, A.; Queffeulou, P.; Quilfen, Y.; Katsaros, K. Ocean surface wind fields estimated from satellite active and passive microwave instruments. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2469–2486. [Google Scholar] [CrossRef]
- D’Asaro, E.A. The Energy Flux from the Wind to Near-Inertial Motions in the Surface Mixed Layer. J. Phys.Oceanogr. 1985, 15, 1043–1059. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, M.B.; Koch, W.; Horstmann, J.; Hasager, C.B.; Nielsen, M. Wind resource assessment from C-band SAR. Remote. Sens. Environ. 2006, 105, 68–81. [Google Scholar] [CrossRef] [Green Version]
- Tang, R.; Liu, D.; Han, G.; Ma, Z.; De Young, B. Reconstructed Wind Fields from Multi-Satellite Observations. Remote. Sens. 2014, 6, 2898–2911. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.; Li, Y.; Li, Y.; Wu, Y.; Zhang, D. Retrieval of Sea Surface Wind Fields Using Multi-Source Remote Sensing Data. Remote. Sens. 2020, 12, 1482. [Google Scholar] [CrossRef]
- Atlas, R.; Hoffman, R.N.; Leidner, S.M.; Sienkiewicz, J.; Yu, T.W.; Bloom, S.C.; Brin, E.; Ardizzone, J.; Terry, J.; Bungato, D.A. The Effects of Marine Winds from Scatterometer Data on Weather Analysis and Forecasting. Bull. Am. Meteorol. Soc. 2010, 82, 1965–1990. [Google Scholar] [CrossRef] [Green Version]
- Xing, J.; Shi, J.; Lei, Y.; Huang, X.Y.; Liu, Z. Evaluation of HY-2A scatterometer wind vectors using data from buoys, ERA-interim and ASCAT during 2012–2014. Remote. Sens. 2016, 8, 390. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Zheng, G.; Li, X.; Yang, J.; Lou, X. An Improved Local Gradient Method for Sea Surface Wind Direction Retrieval from SAR Imagery. Remote Sens. 2017, 9, 671. [Google Scholar] [CrossRef] [Green Version]
- Varvayanni, M.; Bartzis, J.; Catsaros, N.; Graziani, G.; Deligiannis, P. Numerical simulation of daytime mesoscale flow over highly complex terrain: Alps case. Atmos. Environ. 1998, 32, 1301–1316. [Google Scholar] [CrossRef]
- Woiceshyn, P.M.; Wurtele, M.G.; Boggs, D.H.; Mcgoldrick, L.F.; Peteherych, S. The necessity for a new parametrisation of an empirical model for wind/ocean scatterometry. J. Geophys. Res. Atmos. 1986, 91, 2273–2288. [Google Scholar] [CrossRef]
- Chelton, D.B.; Wentz, F.J. Further Development of an Improved Altimeter Wind Speed Algorithm. J. Geophys. Res. Atmos. 1987, 91, 14250–14260. [Google Scholar] [CrossRef]
- Goodberlet, M.A.; Swift, C.T.; Wilkerson, J.C. Remote sensing of ocean surface winds with the special sensor microwave/imager. J. Geophys. Res. Oceans 1989, 94, 14547–14555. [Google Scholar] [CrossRef]
- Quilfen, Y.; Cavanie, A. A High Precision Wind Algorithm For The Ers1 Scatterometer Furthermore, Its Validation. In Proceedings of the 11th Annual International Geoscience and Remote Sensing Symposium, Espoo, Finland, 3–6 June 1991; IEEE: Espoo, Finland, 1991. [Google Scholar]
- Flett, D.G.; Wilson, K.J.; Vachon, P.W.; Hopper, J.F. Wind information for marine weather forecasting from RADARSAT-1 synthetic aperture radar data: Initial results from the “Marine winds from SAR” demonstration project. Can. J. Remote Sens. 2002, 28, 490–497. [Google Scholar] [CrossRef]
- Jochen, H.; Wolfgang, K.; Susanne, L.; Rasmus, T. Ocean winds from RADARSAT-1 ScanSAR. Can. J. Remote Sens. 2002, 28, 524–533. [Google Scholar]
- Du, Y.; Vachon, P.W.; Wolfe, J. Wind direction estimation from SAR images of the ocean using wavelet analysis. Can. J. Remote Sens. 2002, 28, 498–509. [Google Scholar] [CrossRef]
- Vachon, P.W.; Wolfe, J.; Hawkins, R.K. Comparison of C-band wind retrieval model functions with airborne multipolarization SAR data. Can. J. Remote Sens. 2004, 30, 462–469. [Google Scholar] [CrossRef]
- Montuori, A.; Ricchi, A.; Benassai, G.; Migliaccio, M. Sea Wave Numerical Simulations and Verification in Tyrrhenian Coastal Area with X-Band Cosmo-Skymed SAR Data. In Proceedings of the ESA, SOLAS & EGU Joint Conference Earth Observation for Ocean-Atmosphere Interactions Science, Frascati, Italy, 29 November–2 December 2011. [Google Scholar]
- Benassai, G.; Migliaccio, M.; Montuori, A.; Ricchi, A. SWAN wave simulations in the Southern Thyrrenian Sea with COSMO SKY-MED SAR data. In Proceedings of the EGU General Assembly, Vienna, Austria, 22–27 April 2012. [Google Scholar]
- Bourassa, M.A.; Meissner, T.; Cerovecki, I.; Chang, P.S.; Dong, X.; De Chiara, G.; Donlon, C.; Dukhovskoy, D.S.; Elya, J.; Fore, A.; et al. Remotely Sensed Winds and Wind Stresses for Marine Forecasting and Ocean Modeling. Front. Mar. Sci. 2019, 6, 443. [Google Scholar] [CrossRef] [Green Version]
- Hasager, C.; Sjöholm, M. (Eds.) Remote Sensing of Atmospheric Conditions for Wind Energy Applications; Remote Sensing, MDPI Books; MDPI: Basel, Switzerland, 2019. [Google Scholar] [CrossRef] [Green Version]
- McCollum, J.R. Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E microwave land rainfall algorithms. J. Geophys. Res. Atmos. 2003, 108, 8382. [Google Scholar] [CrossRef]
- Surussavadee, C.; Staelin, D.H.; Chadarong, V.; Mclaughlin, D.; Entekhabi, D. Comparison of NOWRAD, AMSU, AMSR-E, TMI, and SSM/I surface precipitation rate Retrievals over the united states great plains. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–27 July 2007; IEEE: New York, NY, USA, 2008. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Vitart, F. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Saha, S.E.A. The NCEP Climate Forecast System Version 2. J. Clim. 2012, 27, 2185–2208. [Google Scholar] [CrossRef]
- Atlas, R.; Hoffman, R.N.; Ardizzone, J.; Leidner, S.M.; Jusem, J.C.; Smith, D.K.; Gombos, D. A Cross-calibrated, Multiplatform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications. Bull. Am. Meteorol. Soc. 2011, 92, 157–174. [Google Scholar] [CrossRef]
- Chen, J.; Weisberg, R.H.; Liu, Y.; Zheng, L. The Tampa Bay Coastal Ocean Model Performance for Hurricane Irma. Mar. Technol. Soc. J. 2018, 52, 33–42. [Google Scholar] [CrossRef]
- Mayer, D.A.; Weisberg, R.H.; Zheng, L.; Liu, Y. Winds on the West Florida Shelf: Regional comparisons between observations and model estimates. J. Geophys. Res. Oceans 2017, 122, 834–846. [Google Scholar] [CrossRef] [Green Version]
- Martín-Neira, M. A Passive Reflectometry and Interferometry System (PARIS): Application to ocean altimetry. ESA J. 1993, 17, 331–355. [Google Scholar]
- Clarizia, M.P.; Ruf, C.S. Wind Speed Retrieval Algorithm for the Cyclone Global Navigation Satellite System (CYGNSS) Mission. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4419–4432. [Google Scholar] [CrossRef]
- Ruf, C.S.; Balasubramaniam, R. Development of the CYGNSS Geophysical Model Function for Wind Speed. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 66–77. [Google Scholar] [CrossRef]
- Soulat, F. Sea state monitoring using coastal GNSS-R. Geophys. Res. Lett. 2004, 31, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Roggenbuck, O.; Reinking, J.; Lambertus, T. Determination of Significant Wave Heights Using Damping Coefficients of Attenuated GNSS SNR Data from Static and Kinematic Observations. Remote Sens. 2019, 11, 409. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Arroyo, A.; Zavorotny, V.U.; Camps, A. Sea Ice Detection Using U.K. TDS-1 GNSS-R Data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4989–5001. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Huang, W. Sea Ice Sensing From GNSS-R Data Using Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1510–1514. [Google Scholar] [CrossRef]
- Li, W.; Cardellach, E.; Fabra, F.; Rius, A.; Ribó, S.; Martín-Neira, M. First spaceborne phase altimetry over sea ice using TechDemoSat-1 GNSS-R signals. Geophys. Res. Lett. 2017, 44, 8369–8376. [Google Scholar] [CrossRef]
- Hu, C.; Benson, C.R.; Qiao, L.; Rizos, C. The Validation of the Weight Function in the Leading-Edge-Derivative Path Delay Estimator for Space-Based GNSS-R Altimetry. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6243–6254. [Google Scholar] [CrossRef]
- Tabibi, S.; Geremia-Nievinski, F.; Francis, O.; van Dam, T. Tidal analysis of GNSS reflectometry applied for coastal sea level sensing in Antarctica and Greenland. Remote Sens. Environ. 2020, 248, 111959. [Google Scholar] [CrossRef]
- Schmugge, T.; Jackson, T.J. Mapping surface soil moisture with microwave radiometers. Meteorol. Atmos. Phys. 1994, 54, 213–223. [Google Scholar] [CrossRef]
- Rodriguez-Alvarez, N.; Bosch-Lluis, X.; Camps, A.; Vall-Llossera, M.; Valencia, E.; Marchan-Hernandez, J.F.; Ramos-Perez, I. Soil Moisture Retrieval Using GNSS-R Techniques: Experimental Results Over a Bare Soil Field. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3616–3624. [Google Scholar] [CrossRef]
- Martín-Neira, M.; Caparrini, M.; Font-Rossello, J.; Lannelongue, S.; Vallmitjana, C.S. The PARIS Concept: An Experimental Demonstration of Sea Surface Altimetry Using GPS Reflected Signals. IEEE Trans. Geosci. Remote Sens. 2001, 39, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Martín-Neira, F.; Camps, A.; Martin-Neira, M.; D’Addio, S.; Park, H. Significant wave height retrieval based on the effective number of incoherent averages. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; IEEE: New York, NY, USA, 2015; pp. 3634–3637. [Google Scholar]
- Zavorotny, V.U.; Voronovich, A.G. Scattering of GPS signals from the ocean with wind remote sensing application. IEEE Trans. Geosci. Remote Sens. 2000, 38, 951–964. [Google Scholar] [CrossRef] [Green Version]
- Komjathy, A.; Zavorotny, V.U.; Axelrad, P.; Born, G.H.; Garrison, J.L. GPS Signal Scattering from Sea Surface: Wind Speed Retrieval Using Experimental Data and Theoretical Model. Remote Sens. Environ. 2000, 73, 162–174. [Google Scholar] [CrossRef]
- Cardellach, E.; Fabra, F.; Nogués-Correig, O.; Oliveras, S.; Ribó, S.; Rius, A. GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques: Application to the GOLD-RTR data sets. Radio Sci. 2011, 46. [Google Scholar] [CrossRef] [Green Version]
- Lowe, S.T.; Zuffada, C.; Chao, Y.; Kroger, P.; Young, L.E.; Labrecque, J.L. 5-cm-Precision aircraft ocean altimetry using GPS reflections. Geophys. Res. Lett. 2002, 29, 1375. [Google Scholar] [CrossRef] [Green Version]
- Cardellach, E.; Rius, A.; Martin-Neira, M.; Fabra, F.; Nogues-Correig, O.; Ribo, S.; Kainulainen, J.; Camps, A.; D’Addio, S. Consolidating the Precision of Interferometric GNSS-R Ocean Altimetry Using Airborne Experimental Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4992–5004. [Google Scholar] [CrossRef]
- Egido, A.; Paloscia, S.; Motte, E.; Guerriero, L.; Pierdicca, N.; Caparrini, M.; Santi, E.; Fontanelli, G.; Floury, N. Airborne GNSS-R Polarimetric Measurements for Soil Moisture and Above-Ground Biomass Estimation. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 7, 1522–1532. [Google Scholar] [CrossRef]
- Lowe, S.T.; Labrecque, J.L.; Zuffada, C.; Romans, L.J.; Young, L.E.; Hajj, G.A. First spaceborne observation of an Earth-reflected GPS signal. Radio Sci. 2016, 37. [Google Scholar] [CrossRef]
- Gleason, S.; Hodgart, S.; Sun, Y.; Gommenginger, C.; Mackin, S.; Adjrad, M.; Unwin, M. Detection and Processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1229–1241. [Google Scholar] [CrossRef] [Green Version]
- Foti, G.; Gommenginger, C.; Jales, P.; Unwin, M.; Rosello, J. Spaceborne GNSS reflectometry for ocean winds: First results from the UK TechDemoSat-1 mission. Geophys. Res. Lett. 2015, 42, 5435–5441. [Google Scholar] [CrossRef] [Green Version]
- Asgarimehr, M.; Wickert, J.; Reich, S. TDS-1 GNSS Reflectometry: Development and Validation of Forward Scattering Winds. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 4534–4541. [Google Scholar] [CrossRef]
- Soisuvarn, S.; Jelenak, Z.; Said, F.; Chang, P.S.; Egido, A. The GNSS Reflectometry Response to the Ocean Surface Winds and Waves. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 9, 4678–4699. [Google Scholar] [CrossRef]
- Foti, G.; Gommenginger, C.; Unwin, M.; Jales, P.; Tye, J.; Roselló, J. An Assessment of Non-geophysical Effects in Spaceborne GNSS Reflectometry Data From the UK TechDemoSat-1 Mission. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 10, 3418–3429. [Google Scholar] [CrossRef] [Green Version]
- Hammond, M.L.; Foti, G.; Gommenginger, C.; Srokosz, M. Temporal variability of GNSS-Reflectometry ocean wind speed retrieval performance during the UK TechDemoSat-1 mission. Remote Sens. Environ. 2020, 242, 111744. [Google Scholar] [CrossRef]
- Ruf, C.; Twigg, D. Level 1 and 2 Trackwise Corrected Climate Data Record Algorithm Theoretical Basis Document. 2020. Available online: https://clasp-research.engin.umich.edu/missions/cygnss/reference/148-0389 (accessed on 2 February 2021).
- Jing, C.; Niu, X.; Duan, C.; Lu, F.; Yang, X. Sea Surface Wind Speed Retrieval from the First Chinese GNSS-R Mission: Technique and Preliminary Results. Remote Sens. 2019, 11, 3013. [Google Scholar] [CrossRef] [Green Version]
- Clarizia, M.P.; Ruf, C.S.; Jales, P.; Gommenginger, C. Spaceborne GNSS-R Minimum Variance Wind Speed Estimator. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6829–6843. [Google Scholar] [CrossRef]
- Clarizia, M.P.; Ruf, C.S.; Gleason, S.; Balasubramaniam, R.; Mckague, D. Generation of CYGNSS level 2 wind speed data products. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), FortWorth, TX, USA, 23–28 July 2017; IEEE: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Ruf, C.S.; Gleason, S.; Mckague, D.S. Assessment of CYGNSS Wind Speed Retrieval Uncertainty. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 12, 87–97. [Google Scholar] [CrossRef]
- Asharaf, S.; Waliser, D.E.; Posselt, D.J.; Ruf, C.S.; Agie, W.P. CYGNSS Ocean Surface Wind Validation in the Tropics. J. Atmos. Ocean. Technol. 2020, 38, 711–724. [Google Scholar] [CrossRef]
- Said, F.; Jelenak, Z.; Park, J.; Chang, P.S.; Soisuvarn, S. NOAA CyGNSSWind Product-Ver 1.0; Presentations. In Proceedings of the CyGNSS Science TeamWebex Telecon, online, 6 November 2019. [Google Scholar]
- Mears, C.A.; Scott, J.; Wentz, F.J.; Ricciardulli, L.; Leidner, S.M.; Hoffman, R.; Atlas, R. A Near-Real-Time Version of the Cross-Calibrated Multiplatform (CCMP) Ocean Surface Wind Velocity Data Set. J. Geophys. Res. Oceans 2019, 124, 6997–7010. [Google Scholar] [CrossRef]
- Monaldo, F.M. Evaluation of WindSat wind vector performance with respect to QuikSCAT estimates. IEEE Trans. Geosci. Remote Sens. 2006, 44, 638–644. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Wang, Z.; Wang, H.; Zhang, Z.; Zhang, L.; Yang, Q. Assessment of Sea Surface Wind from NWP Reanalyses and Satellites in the Southern Ocean. J. Atmos. Ocean. Technol. 2013, 30, 1842–1853. [Google Scholar] [CrossRef]
- Wang, X.; Shum, C.K.; Johnson, J. Analysis of Surface Wind Diurnal Cycles in Tropical Regions using Mooring Observations and the CCMP Product. In Proceedings of the Conference on Hurricanes and Tropical Meteorology American Meteorological Society, Washington, DC, USA, 1–4 April 2014; p. 7A.7. [Google Scholar]
- Ruf, C.S.; Atlas, R.; Chang, P.S.; Clarizia, M.P.; Zavorotny, V.U. New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection. Bull. Am. Meteorol. Soc. 2015, 97, 150626133330005. [Google Scholar] [CrossRef]
- Said, F.; Jelenak, Z.; Park, J.; Chang, P.S. An Introduction to v1.1 NOAA CyGNSS Wind Product and a Look at v3.0 Level 1 Data. Technical Report. In Proceedings of the CyGNSS Science Team Webex Telecon, online, 6 June 2020. [Google Scholar]
- Ruf, C.; Asharaf, S.; Balasubramaniam, R.; Gleason, S.; Waliser, D. In-Orbit Performance of the Constellation of CYGNSS Hurricane Satellites. Bull. Amer. Meteorol. Soc. 2019, 100, 2009–2023. [Google Scholar] [CrossRef]
- Said, F.; Jelenak, Z.; Park, J.; Soisuvarn, S.; Chang, P.S. A ‘Track-Wise’ Wind Retrieval Algorithm for the CYGNSS Mission. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: New York, NY, USA, 2019; pp. 8711–8714. [Google Scholar]
- Chang, P.S.; Jelenak, Z.; Said, F.; Soisuvarn, S. CYGNSS Observations of Ocean Winds and Waves. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Said, F.; Jelenak, Z.; Chang, P.S. V1.1 NOAA Level 2 CyGNSS Winds Basic User Guide; Compiled by the OSWT at NOAA-NESDIS-STAR. September 2020; U.S. Department of Commerce, National Oceanic and Atmospheric Administration: Washington, DC, USA, 2020.
- Ruf, C.; Atlas, R.; Majumdar, S.; Ettammal, S.; Waliser, D. NASA CYGNSS Tropical Cyclone Mission. In Proceedings of the EGU, General Assembly Conference, Vienna, Austria, 23–28 April 2017. [Google Scholar]
- Yi, Y.; Johnson, J.T.; Wang, X. On the Estimation of Wind Speed Diurnal Cycles Using Simulated Measurements of CYGNSS and ASCAT. IEEE Geosci. Remote Sens. Lett. 2019, 16, 168–172. [Google Scholar] [CrossRef]
- Wessel, P.; Smith, W.H.F. A global, self-consistent, hierarchical, high-resolution shoreline database. J. Geophys. Res. 1996, 101, 8741–8743. [Google Scholar] [CrossRef] [Green Version]
- Said, F.; Jelenak, Z.; Park, J.; Soisuvarn, S.; Chang, P.S. Latest Cal/Val Assessment of v2.1 L1/L2 Data. Presentations. In Proceedings of the CyGNSS Science Team Meeting on JPL, Pasadena, CA, USA, 14 January 2019. [Google Scholar]
Requirement | Performance |
---|---|
Retrieval uncertainty for winds < 20 m/s | 2 m/s |
Retrieval uncertainty for winds > 20 m/s | 10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yang, D.; Yang, J.; Han, G.; Zheng, G.; Li, W. Validation of NOAA CyGNSS Wind Speed Product with the CCMP Data. Remote Sens. 2021, 13, 1832. https://doi.org/10.3390/rs13091832
Li X, Yang D, Yang J, Han G, Zheng G, Li W. Validation of NOAA CyGNSS Wind Speed Product with the CCMP Data. Remote Sensing. 2021; 13(9):1832. https://doi.org/10.3390/rs13091832
Chicago/Turabian StyleLi, Xiaohui, Dongkai Yang, Jingsong Yang, Guoqi Han, Gang Zheng, and Weiqiang Li. 2021. "Validation of NOAA CyGNSS Wind Speed Product with the CCMP Data" Remote Sensing 13, no. 9: 1832. https://doi.org/10.3390/rs13091832
APA StyleLi, X., Yang, D., Yang, J., Han, G., Zheng, G., & Li, W. (2021). Validation of NOAA CyGNSS Wind Speed Product with the CCMP Data. Remote Sensing, 13(9), 1832. https://doi.org/10.3390/rs13091832