Assessment of Normalized Water-Leaving Radiance Derived from GOCI Using AERONET-OC Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. GOCI Data
2.2. AERONET-OC Data
2.3. Methods
2.3.1. Conversion to L2 Products
2.3.2. Matchup Procedure
2.3.3. Accuracy Indicator
3. Results
3.1. Comparison between nLw_xxx and nLw_AERONET-OC
3.2. Comparison between nLw_GDPS and nLw_SeaDAS
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Platt, T.; Hoepffner, N.; Stuart, V.; Brown, C. Why Ocean Colour? The Societal Benefits of Ocean-Colour Technology; Reports of the International Ocean-Colour Coordinating Group, NO.7: Dartmouth, NS, Canada, 2008. [Google Scholar]
- McClain, C.R. A Decade of Satellite Ocean Color Observations. Annu. Rev. Mar. Sci. 2009, 1, 19–42. [Google Scholar] [CrossRef] [Green Version]
- Esaias, W.E.; Abbott, M.R.; Barton, I.; Brown, O.B.; Campbell, J.W.; Carder, K.L.; Clark, D.K.; Evans, R.H.; Hoge, F.E.; Gordon, H.R.; et al. An Overview of MODIS Capabilities for Ocean Science Observations. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1250–1265. [Google Scholar] [CrossRef] [Green Version]
- Ruddick, K.; Neukermans, G.; Vanhellemont, Q.; Jolivet, D. Challenges and Opportunities for Geostationary Ocean Colour Remote Sensing of Regional Seas: A Review of Recent Results. Remote Sens. Environ. 2014, 146, 63–76. [Google Scholar] [CrossRef] [Green Version]
- Antoine, D. Ocean Color Observation from the Geostationary Orbit; Reports of the International Ocean-Colour Coordinating Group, NO.12: Dartmouth, NS, Canada, 2012. [Google Scholar]
- Ryu, J.-H.; Han, H.-J.; Cho, S.; Park, Y.-J.; Ahn, Y.-H. Overview of Geostationary Ocean Color Imager (GOCI) and GOCI Data Processing System (GDPS). Ocean Sci. J. 2012, 47, 223–233. [Google Scholar] [CrossRef]
- Yang, H.; Kim, M.; Park, Y.-J.; Bae, S.-S.; Han, H.-J. Marine Disaster Detection Using the Geostationary Ocean Color Imager (GOCI). Int. J. U-E-Serv. Sci. Technol. 2016, 9, 129–138. [Google Scholar] [CrossRef]
- Liu, X.; Wang, M. Analysis of Ocean Diurnal Variations from the Korean Geostationary Ocean Color Imager Measurements Using the DINEOF Method. Estuar. Coast. Shelf Sci. 2016, 180, 230–241. [Google Scholar] [CrossRef]
- Lennartson, E.M.; Wang, J.; Gu, J.; Castro Garcia, L.; Ge, C.; Gao, M.; Choi, M.; Saide, P.E.; Carmichael, G.R.; Kim, J.; et al. Diurnal Variation of Aerosol Optical Depth and PM2.5 in South Korea: A Synthesis from AERONET, Satellite (GOCI), KORUS-AQ Observation, and the WRF-Chem Model. Atmos. Chem. Phys. 2018, 18, 15125–15144. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.-K.; Park, Y.J.; Lee, B.R.; Eom, J.; Moon, J.-E.; Ryu, J.-H. Application of the Geostationary Ocean Color Imager (GOCI) to Mapping the Temporal Dynamics of Coastal Water Turbidity. Remote Sens. Environ. 2014, 146, 24–35. [Google Scholar] [CrossRef]
- Hu, Z.; Qi, Y.; He, X.; Wang, Y.-H.; Wang, D.-P.; Cheng, X.; Liu, X.; Wang, T. Characterizing Surface Circulation in the Taiwan Strait during NE Monsoon from Geostationary Ocean Color Imager. Remote Sens. Environ. 2019, 221, 687–694. [Google Scholar] [CrossRef]
- Lou, X.; Hu, C. Diurnal Changes of a Harmful Algal Bloom in the East China Sea: Observations from GOCI. Remote Sens. Environ. 2014, 140, 562–572. [Google Scholar] [CrossRef]
- Son, Y.B.; Choi, B.-J.; Kim, Y.H.; Park, Y.-G. Tracing Floating Green Algae Blooms in the Yellow Sea and the East China Sea Using GOCI Satellite Data and Lagrangian Transport Simulations. Remote Sens. Environ. 2015, 156, 21–33. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, D.-P.; Pan, D.; He, X.; Miyazawa, Y.; Bai, Y.; Wang, D.; Gong, F. Mapping Surface Tidal Currents and Changjiang Plume in the East China Sea from Geostationary Ocean Color Imager. J. Geophys. Res. Oceans 2016, 121, 1563–1572. [Google Scholar] [CrossRef] [Green Version]
- Son, Y.B.; Min, J.-E.; Ryu, J.-H. Detecting Massive Green Algae (Ulva Prolifera) Blooms in the Yellow Sea and East China Sea Using Geostationary Ocean Color Imager (GOCI) Data. Ocean Sci. J. 2012, 47, 359–375. [Google Scholar] [CrossRef]
- Hu, C.; Feng, L.; Lee, Z. Evaluation of GOCI Sensitivity for At-Sensor Radiance and GDPS-Retrieved Chlorophyll-a Products. Ocean Sci. J. 2012, 47, 279–285. [Google Scholar] [CrossRef]
- Bailey, S.W.; Franz, B.A.; Werdell, P.J. Estimation of Near-Infrared Water-Leaving Reflectance for Satellite Ocean Color Data Processing. Opt. Express 2010, 18, 7521–7527. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, J.; Han, B.; Jamet, C.; Tian, Z.; Zhao, Y.; Li, J.; Li, T. Evaluation of Four Atmospheric Correction Algorithms for GOCI Images over the Yellow Sea. Remote Sens. 2019, 11, 1631. [Google Scholar] [CrossRef] [Green Version]
- Concha, J.; Mannino, A.; Franz, B.; Kim, W. Uncertainties in the Geostationary Ocean Color Imager (GOCI) Remote Sensing Reflectance for Assessing Diurnal Variability of Biogeochemical Processes. Remote Sens. 2019, 11, 295. [Google Scholar] [CrossRef] [Green Version]
- Concha, J.; Mannino, A.; Franz, B.; Bailey, S.; Kim, W. Vicarious Calibration of GOCI for the SeaDAS Ocean Color Retrieval. Int. J. Remote Sens. 2019, 40, 3984–4001. [Google Scholar] [CrossRef]
- Kim, W.; Moon, J.-E.; Park, Y.-J.; Ishizaka, J. Evaluation of Chlorophyll Retrievals from Geostationary Ocean Color Imager (GOCI) for the North-East Asian Region. Remote Sens. Environ. 2016, 184, 482–495. [Google Scholar] [CrossRef]
- Lamquin, N.; Mazeran, C.; Doxaran, D.; Ryu, J.-H.; Park, Y.-J. Assessment of GOCI Radiometric Products Using MERIS, MODIS and Field Measurements. Ocean Sci. J. 2012, 47, 287–311. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Ding, J.; Hu, Z.; Cui, W.; Li, S.; Zhang, L. Validation of the Remote Sensing Products Retrieved by Geostationary Ocean Color Imager in Liaodong Bay in Spring. Acta Opt. Sin. 2016, 36, 17–28. [Google Scholar]
- Qi, L.; Hu, C.; Visser, P.M.; Ma, R. Diurnal Changes of Cyanobacteria Blooms in Taihu Lake as Derived from GOCI Observations. Limnol. Oceanogr. 2018, 63, 1711–1726. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Chen, C.; Nukapothula, S. Atmospheric Correction of GOCI Using Quasi-Synchronous VIIRS Data in Highly Turbid Coastal Waters. Remote Sens. 2020, 12, 89. [Google Scholar] [CrossRef] [Green Version]
- Yongchao, W.; Shen, F.; Sokoletsky, L.; Sun, X. Validation and Calibration of QAA Algorithm for CDOM Absorption Retrieval in the Changjiang (Yangtze) Estuarine and Coastal Waters. Remote Sens. 2017, 9, 1192. [Google Scholar]
- Huang, C.; Yao, L. Semi-Analytical Retrieval of the Diffuse Attenuation Coefficient in Large and Shallow Lakes from GOCI, a High Temporal-Resolution Satellite. Remote Sens. 2017, 9, 825. [Google Scholar] [CrossRef] [Green Version]
- Zibordi, G.; Holben, B.; Slutsker, I.; Giles, D.; D’Alimonte, D.; Mélin, F.; Berthon, J.-F.; Vandemark, D.; Feng, H.; Schuster, G.; et al. AERONET-OC: A Network for the Validation of Ocean Color Primary Products. J. Atmos. Ocean. Technol. 2009, 26. [Google Scholar] [CrossRef]
- Morel, A.; Antoine, D.; Gentili, B. Bidirectional Reflectance of Oceanic Waters: Accounting for Raman Emission and Varying Particle Scattering Phase Function. Appl. Opt. 2002, 41, 6289–6306. [Google Scholar] [CrossRef]
- Gordon, H.; Wang, M. Retrieval of Water-Leaving Radiance and Aerosol Optical-Thickness Over the Oceans with Seawifs - a Preliminary Algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef]
- Park, Y.J.; Ahn, Y.H.; Han, H.J.; Yang, H.; Moon, J.E.; Ahn, J.H.; Lee, B.R.; Min, J.E.; Lee, S.J.; Kim, K.S. GOCI Level 2 Ocean Color Products (GDPS 1.3) Brief Algorithm Description; Korea Ocean Satellite Center: Busan Metropolitan City, Korea, 2014; Available online: http://kosc.kiost.ac.kr/index.nm?menuCd=55 (accessed on 21 December 2020).
- Ahn, J.-H.; Park, Y.-J.; Ryu, J.-H.; Lee, B.; Oh, I.S. Development of Atmospheric Correction Algorithm for Geostationary Ocean Color Imager (GOCI). Ocean Sci. J. 2012, 47, 247–259. [Google Scholar] [CrossRef]
- Mobley, C.D.; Werdell, J.; Franz, B.; Ahmad, Z.; Bailey, S. Atmospheric Correction for Satellite Ocean Color Radiometry; National Aeronautics and Space Administration: Greenbelt, MD, USA, 2016. Available online: https://ntrs.nasa.gov/citations/20160011399 (accessed on 21 December 2020).
- Stumpf, R.; Arnone, R.; Gould, R.; Martinolich, P.; Ransibrahmanakul, V. A Partially Coupled Ocean-Atmosphere Model for Retrieval of Water-Leaving Radiance from SeaWiFS in Coastal Waters. NASA Tech. Memo 2003, 206892, 51–59. [Google Scholar]
- Ahmad, Z.; Franz, B.A.; McClain, C.R.; Kwiatkowska, E.J.; Werdell, J.; Shettle, E.P.; Holben, B.N. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors over Coastal Regions and Open Oceans. Appl. Opt. 2010, 49, 5545–5560. [Google Scholar] [CrossRef]
- Bailey, S.W.; Werdell, P.J. A Multi-Sensor Approach for the on-Orbit Validation of Ocean Color Satellite Data Products. Remote Sens. Environ. 2006, 102, 12–23. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Park, Y.-J.; Kim, W.; Lee, B.; Oh, I.S. Vicarious Calibration of the Geostationary Ocean Color Imager. Opt. Express 2015, 23, 23236–23258. [Google Scholar] [CrossRef] [PubMed]
- Eck, T.F.; Holben, B.N.; Reid, J.S.; Dubovik, O.; Smirnov, A.; O’Neill, N.T.; Slutsker, I.; Kinne, S. Wavelength Dependence of the Optical Depth of Biomass Burning, Urban, and Desert Dust Aerosols. J. Geophys. Res. Atmos. 1999, 104, 31333–31349. [Google Scholar] [CrossRef]
- Choi, J.-K.; Park, Y.J.; Ahn, J.H.; Lim, H.-S.; Eom, J.; Ryu, J.-H. GOCI, the World’s First Geostationary Ocean Color Observation Satellite, for the Monitoring of Temporal Variability in Coastal Water Turbidity. J. Geophys. Res. Oceans 2012, 117. [Google Scholar] [CrossRef]
- Goyens, C.; Jamet, C.; Ruddick, K.G. Spectral Relationships for Atmospheric Correction. I. Validation of Red and near Infra-Red Marine Reflectance Relationships. Opt. Express 2013, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Shi, W.; Jiang, L. Atmospheric Correction Using Near-Infrared Bands for Satellite Ocean Color Data Processing in the Turbid Western Pacific Region. Opt. Express 2012, 20, 741–753. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Park, Y.-J. Estimating Water Reflectance at Near-Infrared Wavelengths for Turbid Water Atmospheric Correction: A Preliminary Study for GOCI-II. Remote Sens. 2020, 12, 3791. [Google Scholar] [CrossRef]
- Morel, A.; Gentili, B. Diffuse Reflectance of Oceanic Waters. III. Implication of Bidirectionality for the Remote-Sensing Problem. Appl. Opt. 1996, 35, 4850–4862. [Google Scholar] [CrossRef]
- Li, H.; He, X.; Bai, Y.; Shanmugam, P.; Park, Y.-J.; Liu, J.; Zhu, Q.; Gong, F.; Wang, D.; Huang, H. Atmospheric Correction of Geostationary Satellite Ocean Color Data under High Solar Zenith Angles in Open Oceans. Remote Sens. Environ. 2020, 249, 112022. [Google Scholar] [CrossRef]
GOCI | AERONET-OC | ||||
---|---|---|---|---|---|
Band# | 𝛌 (nm) | Δ𝛌(nm) | Band# | 𝛌 (nm) | Δ𝛌(nm) |
B1 | 412 | 20 | B4 | 412 | 10 |
B2 | 443 | 20 | B6 | 443 | 10 |
B3 | 490 | 20 | B7 | 490 | 10 |
B4 | 555 | 20 | - | - | - |
B5 | 660 | 20 | B16 | 667 | 10 |
B6 | 680 | 10 | - | - | - |
B7 | 745 | 20 | - | - | - |
B8 | 865 | 40 | B21 | 865 | 10 |
Site | Ariake | Ieodo | Socheongcho | Gageocho | |
---|---|---|---|---|---|
AERONET-OC vs. GDPS | MAE | 2.0713 | 2.8250 | 2.0816 | 1.7582 |
MPRE | 28.9892 | 29.7820 | 67.6869 | 56.0459 | |
N | 1098 | 87 | 210 | 35 | |
AERONET-OC vs. SeaDAS | MAE | 3.2454 | 2.9215 | 2.4304 | 2.1949 |
MPRE | 39.2502 | 17.9286 | 74.1094 | 57.0899 | |
N | 943 | 96 | 270 | 36 |
λ (nm) | 412 nm | 443 nm | 490 nm | 660 nm | 865 nm | |
---|---|---|---|---|---|---|
AERONET-OC vs. GDPS | MAE | 2.6553 | 2.8279 | 2.8016 | 1.6127 | 0.1550 |
MPRE | 44.1857 | 31.7500 | 22.1521 | 41.9414 | 37.7339 | |
N | 304 | 305 | 305 | 298 | 218 | |
AERONET-OC vs. SeaDAS | MAE | 3.9288 | 3.9614 | 4.3641 | 1.7531 | 0.1452 |
MPRE | 63.3289 | 47.5962 | 32.6843 | 42.8915 | 36.9046 | |
N | 287 | 287 | 292 | 291 | 188 |
Time | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | |
---|---|---|---|---|---|---|---|---|---|
AERONET-OC vs. GDPS | MAE | 1.7705 | 2.2657 | 1.9321 | 2.0722 | 2.2548 | 2.5361 | 2.0484 | 3.7610 |
MPRE | 48.7573 | 40.8977 | 31.9189 | 26.9986 | 34.9606 | 42.5066 | 18.8008 | 32.2694 | |
N | 96 | 311 | 425 | 289 | 155 | 146 | 4 | 4 | |
AERONET-OC vs. SeaDAS | MAE | 2.2521 | 2.5500 | 2.6899 | 2.9287 | 3.7351 | 4.3946 | 4.7275 | 5.0621 |
MPRE | 78.5825 | 44.7390 | 39.0737 | 36.4317 | 47.2525 | 62.7846 | 55.5676 | 22.6875 | |
N | 73 | 259 | 351 | 341 | 165 | 139 | 13 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, M.; He, S.; Zhang, X.; Zhou, F.; Li, P. Assessment of Normalized Water-Leaving Radiance Derived from GOCI Using AERONET-OC Data. Remote Sens. 2021, 13, 1640. https://doi.org/10.3390/rs13091640
He M, He S, Zhang X, Zhou F, Li P. Assessment of Normalized Water-Leaving Radiance Derived from GOCI Using AERONET-OC Data. Remote Sensing. 2021; 13(9):1640. https://doi.org/10.3390/rs13091640
Chicago/Turabian StyleHe, Mingjun, Shuangyan He, Xiaodong Zhang, Feng Zhou, and Peiliang Li. 2021. "Assessment of Normalized Water-Leaving Radiance Derived from GOCI Using AERONET-OC Data" Remote Sensing 13, no. 9: 1640. https://doi.org/10.3390/rs13091640
APA StyleHe, M., He, S., Zhang, X., Zhou, F., & Li, P. (2021). Assessment of Normalized Water-Leaving Radiance Derived from GOCI Using AERONET-OC Data. Remote Sensing, 13(9), 1640. https://doi.org/10.3390/rs13091640