Modeling Water Quality Parameters Using Landsat Multispectral Images: A Case Study of Erlong Lake, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Field Data
2.2.2. Landsat Image Acquisition and Processing
2.3. Changes in the Amount of Water in the Lake
2.4. Statistical Analysis
2.5. Empirical Model Development for Water Quality
2.5.1. Calibration
2.5.2. Validation
3. Results
3.1. Changes in the Amount of Water in the Lake
3.2. Relationship Between Water Quality and Spectral Bands
3.3. Model Development for Water Quality Estimation
3.3.1. Calibration
3.3.2. Validation
3.4. In Situ and Model Trends
3.5. Water Quality Mapping
3.5.1. Volatile Phenol
3.5.2. Nitrate and Ammonium
3.5.3. Dissolved Oxygen
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagy-Kovács, Z.; Davidesz, J.; Czihat-Mártonné, K.; Till, G.; Fleit, E.; Grischek, T. Water Quality Changes during Riverbank Filtration in Budapest, Hungary. Water 2019, 11, 302. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, C.; Grischek, T.; Börnick, H.; Feller, J.; Sharma, S.K. A Water Quality Appraisal of Some Existing and Potential Riverbank Filtration Sites in India. Water 2019, 11, 215. [Google Scholar] [CrossRef] [Green Version]
- El-Batrawy, O.A.; Ibrahim, M.S.; Fakhry, H.; El-Aassar, M.R.; El-Zeiny, A.M.; El-Hamid, H.T.A.; El-Alfy, M.A. Anthropogenic Impacts on Water Quality of River Nile and Marine Environment, Rosetta Branch Using Geospatial Analyses. J. Environ. Sci. 2018, 47, 89–101. [Google Scholar] [CrossRef]
- Abdullah, H.S.A.; Mahdi, M.S.M.; Ibrahim, H.M.I. Water Quality Assessment Models for Dokan Lake Using Landsat 8 OLI Satellite Images. J. Zankoy Sulaimani Pure Appl. Sci. 2017, 4, 25–44. [Google Scholar] [CrossRef]
- Wang, Y.; Xia, H.; Fu, J.; Sheng, G. Water quality change in reservoirs of Shenzhen, China: Detection using LANDSAT/TM data. Sci. Total Environ. 2004, 328, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Tolk, B.L.; Han, L.; Rundquist, D.C. The impact of bottom brightness on spectral reflectance of suspended sediments. Int. J. Remote Sens. 2000, 21, 2259–2268. [Google Scholar] [CrossRef]
- Zhang, C.X.; Liu, C.M.; Yang, H. Rational Allocation and Management of River Basin Water Resources; China Water Power Press: Beijing, China, 2007. [Google Scholar]
- Abdelmalik, K. Role of statistical remote sensing for Inland water quality parameters prediction. Egypt. J. Remote Sens. Space Sci. 2018, 21, 193–200. [Google Scholar] [CrossRef]
- Pavelsky, T.M.; Smith, L.C. Remote sensing of suspended sediment concentration, flow velocity, and lake recharge in the Peace-Athabasca Delta, Canada. Water Resour. Res. 2009, 45. [Google Scholar] [CrossRef]
- El-Zeiny, A.; El-Kafrawy, S. Assessment of water pollution induced by human activities in Burullus Lake using Landsat 8 operational land imager and GIS. Egypt. J. Remote Sens. Space Sci. 2017, 20, S49–S56. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng. Remote Sens. 2003, 69, 695–704. [Google Scholar] [CrossRef] [Green Version]
- Hellweger, F.; Schlosser, P.; Lall, U.; Weissel, J. Use of satellite imagery for water quality studies in New York Harbor. Estuar. Coast. Shelf Sci. 2004, 61, 437–448. [Google Scholar] [CrossRef]
- Doña, C.; Chang, N.-B.; Caselles, V.; Sánchez, J.M.; Camacho, A.; Delegido, J.; Vannah, B.W. Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain. J. Environ. Manag. 2015, 151, 416–426. [Google Scholar] [CrossRef] [Green Version]
- Hadjimitsis, D.G.; Hadjimitsis, M.G.; Toulios, L.; Clayton, C. Use of space technology for assisting water quality assessment and monitoring of inland water bodies. Phys. Chem. Earth Parts A/B/C 2010, 35, 115–120. [Google Scholar] [CrossRef]
- Rajitha, K.; Mukherjee, C.; Chandran, R.V. Applications of remote sensing and GIS for sustainable management of shrimp culture in India. Aquac. Eng. 2007, 36, 1–17. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Topaloglou, C.A.; Lazaridou, E.; Zalidis, G.C. The performance of satellite images in mapping aquacultures. Ocean Coast. Manag. 2008, 51, 638–644. [Google Scholar] [CrossRef]
- Abd-Elrahman, A.; Croxton, M.; Pande-Chettri, R.; Toor, G.S.; Smith, S.; Hill, J. In situ estimation of water quality parameters in freshwater aquaculture ponds using hyperspectral imaging system. ISPRS J. Photogramm. Remote Sens. 2011, 66, 463–472. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, W.; Wang, X.; Luo, D. Application of MODIS satellite data in monitoring water quality parameters of Chaohu Lake in China. Environ. Monit. Assess. 2008, 148, 255–264. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Yi, H.; Liu, X.; Wang, Y.; Liu, X.; Zhang, H. Remote-sensing estimation of dissolved inorganic nitrogen concentration in the Bohai Sea using band combinations derived from MODIS data. Int. J. Remote Sens. 2016, 37, 327–340. [Google Scholar] [CrossRef]
- Singh, A.; Jakubowski, A.R.; Chidister, I.; Townsend, P.A. A MODIS approach to predicting stream water quality in Wisconsin. Remote Sens. Environ. 2013, 128, 74–86. [Google Scholar] [CrossRef]
- Mathew, M.M.; Rao, N.S.; Mandla, V.R. Development of regression equation to study the Total Nitrogen, Total Phosphorus and Suspended Sediment using remote sensing data in Gujarat and Maharashtra coast of India. J. Coast. Conserv. 2017, 21, 917–927. [Google Scholar] [CrossRef]
- Politi, E.; Prairie, Y.T. The potential of Earth Observation in modelling nutrient loading and water quality in lakes of southern Québec, Canada. Aquat. Sci. 2017, 80, 8. [Google Scholar] [CrossRef]
- Morel, A.Y.; Gordon, H.R. Report of the working group on water color. Bound. Layer Meteorol. 1980, 18, 343–355. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, H.-Y.; Wang, H.-L.; Zhang, Z.-X. Spatial analysis of soil erosion and non-point source pollution based on gis in Erlong Lake watershed, Jilin Province. Chin. Geogr. Sci. 2004, 14, 355–360. [Google Scholar] [CrossRef]
- Chavez, P.S. Image-based atmospheric corrections-revisited and improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1035. [Google Scholar]
- González-Márquez, L.C.; Torres-Bejarano, F.M.; Torregroza-Espinosa, A.C.; Hansen-Rodríguez, I.R.; Rodríguez-Gallegos, H.B. Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia. J. South Am. Earth Sci. 2018, 82, 231–238. [Google Scholar] [CrossRef]
- Sharma, J.N.; Kanakiya, R.S.; Singh, S.K. Characterisation study and correlation analysis for water quality of Dal Lake, India. Int. J. Lakes Rivers 2015, 8, 25–33. [Google Scholar]
- He, S.; Fischer, J.; Schaale, M.; He, M.-X. Optical closure of parameterized bio-optical relationships. Chin. J. Oceanol. Limnol. 2014, 32, 480–489. [Google Scholar] [CrossRef]
- Cheng, Q.; Liu, B.; Li, T.; Zhu, L. Research on remote sensing retrieval of suspended sediment concentration in Hangzhou Bay by GF-1 satellite. Mar. Environ. Sci. 2015, 34, 558–563. [Google Scholar]
- Brown, P.M.B.L.C.; Hambley, D.F. Statistics for Environmental Engineers. Environ. Eng. Geosci. 2002, 8, 244–245. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, D. Quantitative Estimation of Chlorophyll-a and Suspended Solids in Taihu Based on Landsat TM. Environ. Sci. Technol. 2015, 38, 362–367. [Google Scholar]
- Khattab, M.F.O.; Merkel, B.J. Application of Landsat 5 and Landsat 7 images data for water quality mapping in Mosul Dam Lake, Northern Iraq. Arab. J. Geosci. 2013, 7, 3557–3573. [Google Scholar] [CrossRef]
- El Saadi, A.M.; Yousry, M.M.; Jahin, H.S. Statistical estimation of Rosetta branch water quality using multi-spectral data. Water Sci. 2014, 28, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Yüzügüllü, O.; Aksoy, A. Determination of Secchi Disc depths in Lake Eymir using remotely sensed data. Procedia Soc. Behav. Sci. 2011, 19, 586–592. [Google Scholar] [CrossRef] [Green Version]
- Ross, H.; Mannion, G. Curriculum Making as the Enactment of Dwelling in Places. Stud. Philos. Educ. 2012, 31, 303–313. [Google Scholar] [CrossRef]
- Shahzad, M.I.; Meraj, M.; Nazeer, M.; Zia, I.; Inam, A.; Mehmood, K.; Zafar, H. Empirical estimation of suspended solids concentration in the Indus Delta Region using Landsat-7 ETM+ imagery. J. Environ. Manag. 2018, 209, 254–261. [Google Scholar] [CrossRef] [PubMed]
- Bhateria, R.; Jain, D. Water quality assessment of lake water: A review. Sustain. Water Resour. Manag. 2016, 2, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Das, B.D. Assessment of Surface Water Quality of Chimdi Lake of Sunsari District, Nepal. Int. J. Nat. Resour. Ecol. Manag. 2017, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Alabaster, J.S.; Calamari, D.; Dethlefsen, V.; Konemann, H.; Lloyd, R.; Solbé, J.F. Water Quality Criteria for European Freshwater Fish. Chem. Ecol. 1988, 3, 165–253. [Google Scholar] [CrossRef]
- Franklin, P. Dissolved oxygen criteria for freshwater fish in New Zealand: A revised approach. N. Z. J. Mar. Freshw. Res. 2013, 48, 112–126. [Google Scholar] [CrossRef]
- Pollock, M.; Clarke, L.; Dubé, M. The effects of hypoxia on fishes: From ecological relevance to physiological effects. Environ. Rev. 2007, 15, 1–14. [Google Scholar] [CrossRef]
- Davis, J.C. Minimal Dissolved Oxygen Requirements of Aquatic Life with Emphasis on Canadian Species: A Review. J. Fish. Res. Board Can. 1975, 32, 2295–2332. [Google Scholar] [CrossRef]
- Champman, G. Ambient Water Quality Criteria for Dissolved Oxygen. 1986. Available online: https://scholar.google.com/scholar?hl=ar&as_sdt=2005&scodt=0%2C5&cites=8744966817855990050&scipsc=&q=47.%09Champman%2C+G.+Ambient+Water+Quality+Criteria+for+Dissolved+Oxygen.+1986.+&btnG= (accessed on 19 January 2021).
- Kramer, D.L. Dissolved oxygen and fish behavior. Environ. Boil. Fishes 1987, 18, 81–92. [Google Scholar] [CrossRef]
- Markogianni, V.; Kalivas, D.; Petropoulos, G.P.; Dimitriou, E. An Appraisal of the Potential of Landsat 8 in Estimating Chlorophyll-a, Ammonium Concentrations and Other Water Quality Indicators. Remote Sens. 2018, 10, 1018. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, W. Water quality monitoring and evaluation using remote sensing techniques in China: A systematic review. Ecosyst. Health Sustain. 2019, 5, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Giardino, C.; Bresciani, M.; Villa, P.; Martinelli, A. Application of Remote Sensing in Water Resource Management: The Case Study of Lake Trasimeno, Italy. Water Resour. Manag. 2010, 24, 3885–3899. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Cooper, C.M.; Schiebe, F.R. The relationship of MSS and TM digital data with suspended sediments, chlorophyll, and temperature in Moon Lake, Mississippi. Remote Sens. Environ. 1990, 33, 137–148. [Google Scholar] [CrossRef]
- Lathrop, R.G. Landsat Thematic Mapper monitoring of turbid inland water quality. Photogramm. Eng. Remote Sens. 1992, 58, 465–470. [Google Scholar]
- Quibell, G. The effect of suspended sediment on reflectance from freshwater algae. Int. J. Remote Sens. 1991, 12, 177–182. [Google Scholar] [CrossRef]
- Lim, J.; Choi, M. Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environ. Monit. Assess. 2015, 187, 1–17. [Google Scholar] [CrossRef]
- Guo, Q.; Wu, X.; Bing, Q.; Pan, Y.; Wang, Z.; Fu, Y.; Wang, D.; Liu, J. Study on Retrieval of Chlorophyll-a Concentration Based on Landsat OLI Imagery in the Haihe River, China. Sustainability 2016, 8, 758. [Google Scholar] [CrossRef] [Green Version]
- Allam, M.; Khan, M.Y.A.; Meng, Q. Retrieval of Turbidity on a Spatio-Temporal Scale Using Landsat 8 SR: A Case Study of the Ramganga River in the Ganges Basin, India. Appl. Sci. 2020, 10, 3702. [Google Scholar] [CrossRef]
- El Din, E.S. Enhancing the accuracy of retrieving quantities of turbidity and total suspended solids using Landsat-8-based-principal component analysis technique. J. Spat. Sci. 2019, 1–20. [Google Scholar] [CrossRef]
- Zheng, Z.; Ren, J.; Li, Y.; Huang, C.; Liu, G.; Du, C.; Lyu, H. Remote sensing of diffuse attenuation coefficient patterns from Landsat 8 OLI imagery of turbid inland waters: A case study of Dongting Lake. Sci. Total. Environ. 2016, 573, 39–54. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Fan, D.; Liu, D.; Song, L.; Ji, D.; Hui, E. Nutrient estimation by HJ-1 satellite imagery of Xiangxi Bay, Three Gorges Reservoir, China. Environ. Earth Sci. 2016, 75, 633. [Google Scholar] [CrossRef]
- Isenstein, E.M.; Park, M.-H. Assessment of nutrient distributions in Lake Champlain using satellite remote sensing. J. Environ. Sci. 2014, 26, 1831–1836. [Google Scholar] [CrossRef]
- Kapalanga, T.S.; Hoko, Z.; Gumindoga, W.; Chikwiramakomo, L. Remote-sensing-based algorithms for water quality monitoring in Olushandja Dam, north-central Namibia. Water Supply 2020. [Google Scholar] [CrossRef]
- Pu, F.; Ding, C.; Chao, Z.; Yu, Y.; Xu, X. Water-Quality Classification of Inland Lakes Using Landsat8 Images by Convolutional Neural Networks. Remote Sens. 2019, 11, 1674. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.; Hu, W. Effect of water depth on concentration of TN, TP and Chla in Taihu Lake, China. Adv. Water Sci. 2006, 17, 732. [Google Scholar]
Water Quality Sampling Date | Samples NO | Spectral Bands Selected | Sensor Name | Date of Images | Difference Days |
---|---|---|---|---|---|
15 May 2000 | Two | (B-G-R-NIR) | TM 5 | 28 May 2000 | 13 |
17 July 2000 | Two | (B-G-R-NIR) | TM 5 | 8 July 2000 | 9 |
15 August 2000 | Two | (B-G-R-NIR) | ETM 7 | 17 August 2000 | 2 |
18 September 2000 | Two | (B-G-R-NIR) | TM 5 | 26 September 2000 | 8 |
15 May 2001 | Two | (B-G-R-NIR) | ETM 7 | 16 May 2001 | 1 |
16 July 2001 | Two | (B-G-R-NIR) | TM 5 | 18 July 2001 | 2 |
16 August 2001 | Two | (B-G-R-NIR) | TM 5 | 12 August 2001 | 4 |
16 September 2001 | Two | (B-G-R-NIR) | TM 5 | 13 September 2001 | 3 |
15 May 2002 | Two | (B-G-R-NIR) | TM 5 | 18 May 2002 | 3 |
14 July 2002 | Two | (B-G-R-NIR) | TM 5 | 28 June 2002 | 16 |
15 August 2002 | Two | (B-G-R-NIR) | TM 5 | 31 August 2002 | 16 |
15 September 2002 | Two | (B-G-R-NIR) | TM 5 | 16 September 2002 | 1 |
19 October 2020 | Seven | (B-G-R-NIR) | OLI 8 | 19 October 2020 | 0 |
Water Quality | V-PHEN | NH4-N | DO | NO3-N | (R + NIR) + (B/NIR) | (G/NIR)/(B + G) ∗ (G) | (NIR − R) ∗ (NIR/G) |
---|---|---|---|---|---|---|---|
V-PHEN (mg/L) | 1 | ||||||
NH4-N (mg/L) | 0.849 ** | 1 | |||||
DO (mg/L) | −0.181 | −0.054 | 1 | ||||
NO3-N (mg/L) | 0.823 ** | 0.915 ** | −0.032 | 1 | |||
(R + NIR) + (B/NIR) | 0.918 ** | 0.901 ** | −0.13 | 0.864 ** | 1 | ||
(G/NIR)/(B + G) ∗ (G) | 0.909 ** | 0.859 ** | −0.258 | 0.838 ** | 0.966 ** | 1 | |
(NIR − R) ∗ (NIR/G) | −0.351 | −0.28 | 0.639 ** | −0.284 | −0.355 | −0.542 ** | 1 |
Water Quality Parameters | Equations | Calibration | Validation | |||
---|---|---|---|---|---|---|
R2 | RMSE | Sig | R2 | RMSE | ||
V-PHENOL (mg/L) | 0.805 | 0.038 | 0.000 | 0.979 | 0.050 | |
NH4-N (mg/L) | 0.862 | 0.645 | 0.000 | 0.954 | 0.525 | |
NO3-N (mg/L) | ×(0.5) | 0.878 | 8.495 | 0.000 | 0.992 | 1.048 |
DO (mg/L) | 0.304 | 0.752 | 0.000 | 0.619 | 1.390 |
Date | In Situ Water Quality Parameters | Estimated Water Quality from the Models | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Years | Months | Statistics | V-PHEN In Situ (mg/L) | NH4-N In Situ (mg/L) | DO In Situ (mg/L) | NO3-N In Situ (mg/L) | V-PHEN Estimated (mg/L) | NH4-N Estimated (mg/L) | DO Estimated (mg/L) | NO3-N Estimated (mg/L) |
2000 | May | Mean | 0.0062 | 0.2130 | 7.4850 | 0.6605 | 0.0088 | 0.3275 | 7.4090 | 0.5278 |
July | Mean | 0.0170 | 0.0120 | 6.2900 | 0.5450 | 0.0105 | 0.4796 | 6.7724 | 0.8457 | |
August | Mean | 0.0071 | 0.1450 | 7.0750 | 0.7625 | 0.0091 | 0.3553 | 6.2370 | 0.6604 | |
September | Mean | 0.0161 | 0.0120 | 6.0750 | 0.9400 | 0.0116 | 0.5858 | 5.2937 | 1.1680 | |
2001 | May | Mean | 0.0036 | 0.3575 | 5.9000 | 1.2350 | 0.0092 | 0.3648 | 5.3168 | 0.6144 |
July | Mean | 0.0034 | 0.0460 | 5.0750 | 1.3150 | 0.0065 | 0.1876 | 5.3478 | 0.6613 | |
August | Mean | 0.0068 | 0.0120 | 4.9850 | 1.1675 | 0.0095 | 0.3890 | 4.0562 | 0.9469 | |
September | Mean | 0.0037 | 0.0120 | 6.1450 | 0.5375 | 0.0105 | 0.4831 | 6.3393 | 0.9028 | |
2002 | May | Mean | 0.0075 | 0.5675 | 7.3200 | 1.3950 | 0.0096 | 0.4013 | 7.7208 | 0.6611 |
July | Mean | 0.0015 | 0.0010 | 5.6850 | 1.8325 | 0.0088 | 0.3356 | 6.7631 | 0.6509 | |
August | Mean | 0.0001 | 0.0010 | 6.5250 | 1.3750 | 0.0090 | 0.3569 | 7.5772 | 0.6356 | |
September | Mean | 0.0001 | 0.0010 | 7.9100 | 2.7100 | 0.0098 | 0.4212 | 7.5570 | 0.6944 | |
2020 | October | Mean | 0.0761 | 1.8000 | 6.1000 | 9.5714 | 0.0186 | 1.5055 | 5.2707 | 4.8026 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Shaibah, B.; Liu, X.; Zhang, J.; Tong, Z.; Zhang, M.; El-Zeiny, A.; Faichia, C.; Hussain, M.; Tayyab, M. Modeling Water Quality Parameters Using Landsat Multispectral Images: A Case Study of Erlong Lake, Northeast China. Remote Sens. 2021, 13, 1603. https://doi.org/10.3390/rs13091603
Al-Shaibah B, Liu X, Zhang J, Tong Z, Zhang M, El-Zeiny A, Faichia C, Hussain M, Tayyab M. Modeling Water Quality Parameters Using Landsat Multispectral Images: A Case Study of Erlong Lake, Northeast China. Remote Sensing. 2021; 13(9):1603. https://doi.org/10.3390/rs13091603
Chicago/Turabian StyleAl-Shaibah, Bazel, Xingpeng Liu, Jiquan Zhang, Zhijun Tong, Mingxi Zhang, Ahmed El-Zeiny, Cheechouyang Faichia, Muhammad Hussain, and Muhammad Tayyab. 2021. "Modeling Water Quality Parameters Using Landsat Multispectral Images: A Case Study of Erlong Lake, Northeast China" Remote Sensing 13, no. 9: 1603. https://doi.org/10.3390/rs13091603
APA StyleAl-Shaibah, B., Liu, X., Zhang, J., Tong, Z., Zhang, M., El-Zeiny, A., Faichia, C., Hussain, M., & Tayyab, M. (2021). Modeling Water Quality Parameters Using Landsat Multispectral Images: A Case Study of Erlong Lake, Northeast China. Remote Sensing, 13(9), 1603. https://doi.org/10.3390/rs13091603