Responding to Large-Scale Forest Damage in an Alpine Environment with Remote Sensing, Machine Learning, and Web-GIS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Survey
2.3. Satellite Imagery Processing: Vegetation Indices
2.4. Satellite Imagery Processing: Machine Learning
2.5. Web-GIS Interface
3. Results and Discussion
3.1. Temporal Analysis
3.2. Machine Learning Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- draws, over the view area, a styled raster of the chosen VI, automatically clipping and masking;
- creates a downloadable zonal statistic plot reporting average and standard deviation values of pixels inside the selected area for all images in the temporal scale;
- provides a downloadable report with raw values with id, timestamp, average, and standard deviation calculated from all images over the user-selected area (the data used for creating the plot described in the previous point).
Appendix B
21/09/2019 | Sev. | Canopy | Under- | NDVI | RGI | NDMI | |||
---|---|---|---|---|---|---|---|---|---|
Cover | Storey | Avg. | Std. | Avg. | Std. | Avg. | Std. | ||
RP_01 | 100 | 5 | 5 | 0.486 | 0.099 | 1.098 | 0.103 | 0.197 | 0.096 |
CSL_03 | 90 | 0 | 45 | 0.591 | 0.092 | 1.02 | 0.120 | 0.295 | 0.098 |
AL_03 | 90 | 5 | 40 | 0.561 | 0.109 | 1.064 | 0.157 | 0.242 | 0.122 |
RP_02 | 90 | 10 | 10 | 0.513 | 0.101 | 1.077 | 0.102 | 0.23 | 0.103 |
VOA_02 | 80 | 30 | 70 | 0.742 | 0.095 | 0.843 | 0.153 | 0.473 | 0.105 |
VOA_05 | 80 | 60 | 40 | 0.810 | 0.084 | 0.784 | 0.156 | 0.554 | 0.104 |
LCL_04 | 80 | 5 | 35 | 0.332 | 0.071 | 1.333 | 0.112 | 0.078 | 0.114 |
AG_03 | 80 | 0 | 15 | 0.569 | 0.197 | 1.153 | 0.295 | 0.229 | 0.224 |
RP_03 | 80 | 5 | 15 | 0.599 | 0.115 | 0.989 | 0.150 | 0.313 | 0.120 |
RP_04 | 70 | 20 | 25 | 0.565 | 0.093 | 1.024 | 0.104 | 0.297 | 0.093 |
LCL_03 | 70 | 10 | 10 | 0.472 | 0.093 | 1.119 | 0.088 | 0.194 | 0.085 |
TA_02 | 60 | 40 | 70 | 0.690 | 0.071 | 0.923 | 0.124 | 0.371 | 0.084 |
TA_01 | 60 | 10 | 10 | 0.436 | 0.133 | 1.210 | 0.122 | 0.068 | 0.124 |
VOA_06 | 50 | 60 | 60 | 0.782 | 0.119 | 0.787 | 0.171 | 0.536 | 0.156 |
TA_04 | 50 | 60 | 50 | 0.806 | 0.081 | 0.762 | 0.149 | 0.537 | 0.114 |
VOA_01 | 50 | 30 | 50 | 0.710 | 0.095 | 0.924 | 0.139 | 0.432 | 0.101 |
RA_03 | 50 | 60 | 40 | 0.727 | 0.108 | 0.870 | 0.188 | 0.452 | 0.124 |
LCL_02 | 50 | 25 | 25 | 0.625 | 0.116 | 0.960 | 0.160 | 0.336 | 0.117 |
RA_02 | 30 | 30 | 70 | 0.805 | 0.071 | 0.745 | 0.133 | 0.548 | 0.104 |
LCL_NW1 | 0 | - | - | 0.829 | 0.043 | 0.721 | 0.157 | 0.693 | 0.092 |
LCL_NW2 | 0 | - | - | 0.822 | 0.029 | 0.701 | 0.114 | 0.672 | 0.071 |
RP_NW | 0 | - | - | 0.841 | 0.028 | 0.657 | 0.118 | 0.726 | 0.055 |
21/09/2019 | Sev. | Canopy | Under- | EVI1 | EVI2 | CI | |||
Cover | Storey | Avg. | Std. | Avg. | Std. | Avg. | Std. | ||
RP_01 | 100 | 5 | 5 | 0.233 | 0.071 | 0.228 | 0.068 | 1.575 | 0.237 |
CSL_03 | 90 | 0 | 45 | 0.317 | 0.081 | 0.310 | 0.079 | 1.880 | 0.246 |
AL_03 | 90 | 5 | 40 | 0.298 | 0.087 | 0.293 | 0.083 | 1.785 | 0.295 |
RP_02 | 90 | 10 | 10 | 0.256 | 0.070 | 0.249 | 0.068 | 1.662 | 0.248 |
VOA_02 | 80 | 30 | 70 | 0.420 | 0.108 | 0.405 | 0.103 | 2.544 | 0.434 |
VOA_05 | 80 | 60 | 40 | 0.457 | 0.114 | 0.441 | 0.107 | 3.022 | 0.567 |
LCL_04 | 80 | 5 | 35 | 0.192 | 0.056 | 0.197 | 0.053 | 1.338 | 0.181 |
AG_03 | 80 | 0 | 15 | 0.316 | 0.160 | 0.316 | 0.152 | 1.967 | 0.714 |
RP_03 | 80 | 5 | 15 | 0.309 | 0.089 | 0.301 | 0.087 | 1.898 | 0.363 |
RP_04 | 70 | 20 | 25 | 0.328 | 0.089 | 0.318 | 0.086 | 1.812 | 0.276 |
LCL_03 | 70 | 10 | 10 | 0.234 | 0.054 | 0.228 | 0.052 | 1.572 | 0.219 |
TA_02 | 60 | 40 | 70 | 0.370 | 0.080 | 0.361 | 0.077 | 2.099 | 0.209 |
TA_01 | 60 | 10 | 10 | 0.186 | 0.068 | 0.184 | 0.066 | 1.457 | 0.279 |
VOA_06 | 50 | 60 | 60 | 0.383 | 0.115 | 0.370 | 0.109 | 2.786 | 0.625 |
TA_04 | 50 | 60 | 50 | 0.522 | 0.156 | 0.504 | 0.147 | 2.927 | 0.497 |
VOA_01 | 50 | 30 | 50 | 0.376 | 0.089 | 0.364 | 0.085 | 2.386 | 0.386 |
RA_03 | 50 | 60 | 40 | 0.384 | 0.110 | 0.373 | 0.104 | 2.464 | 0.471 |
LCL_02 | 50 | 25 | 25 | 0.346 | 0.109 | 0.337 | 0.105 | 1.992 | 0.367 |
RA_02 | 30 | 30 | 70 | 0.475 | 0.125 | 0.457 | 0.117 | 3.053 | 0.508 |
LCL_NW1 | 0 | - | - | 0.342 | 0.092 | 0.334 | 0.088 | 2.978 | 0.314 |
LCL_NW2 | 0 | - | - | 0.451 | 0.135 | 0.446 | 0.135 | 2.922 | 0.193 |
RP_NW | 0 | - | - | 0.454 | 0.106 | 0.445 | 0.101 | 3.108 | 0.232 |
21/09/2019 | Sev. | Canopy | Under- | EDWI Sep. 19-18 | EDWI Aug. 19-18 | EDWI 2018 | |||
Cover | Storey | Avg. | Std. | Avg. | Std. | Avg. | Std. | ||
RP_01 | 100 | 5 | 5 | −0.043 | 0.015 | −0.047 | 0.018 | 0.006 | 0.007 |
CSL_03 | 90 | 0 | 45 | −0.046 | 0.025 | −0.049 | 0.027 | 0.007 | 0.010 |
AL_03 | 90 | 5 | 40 | −0.048 | 0.022 | −0.053 | 0.024 | 0.006 | 0.008 |
RP_02 | 90 | 10 | 10 | −0.041 | 0.018 | −0.045 | 0.020 | 0.006 | 0.007 |
VOA_02 | 80 | 30 | 70 | −0.030 | 0.025 | −0.028 | 0.025 | 0.011 | 0.014 |
VOA_05 | 80 | 60 | 40 | −0.017 | 0.018 | −0.014 | 0.020 | 0.011 | 0.009 |
LCL_04 | 80 | 5 | 35 | −0.080 | 0.026 | −0.079 | 0.035 | 0.006 | 0.013 |
AG_03 | 80 | 0 | 15 | −0.043 | 0.034 | −0.045 | 0.039 | 0.009 | 0.011 |
RP_03 | 80 | 5 | 15 | −0.039 | 0.019 | −0.042 | 0.020 | 0.006 | 0.009 |
RP_04 | 70 | 20 | 25 | −0.048 | 0.020 | −0.047 | 0.021 | 0.006 | 0.010 |
LCL_03 | 70 | 10 | 10 | −0.043 | 0.018 | −0.049 | 0.021 | 0.006 | 0.008 |
TA_02 | 60 | 40 | 70 | −0.038 | 0.017 | −0.036 | 0.018 | 0.010 | 0.008 |
TA_01 | 60 | 10 | 10 | −0.044 | 0.011 | −0.048 | 0.013 | 0.007 | 0.004 |
VOA_06 | 50 | 60 | 60 | −0.017 | 0.018 | −0.015 | 0.021 | 0.009 | 0.009 |
TA_04 | 50 | 60 | 50 | −0.017 | 0.024 | −0.015 | 0.025 | 0.009 | 0.016 |
VOA_01 | 50 | 30 | 50 | −0.028 | 0.016 | −0.026 | 0.016 | 0.009 | 0.009 |
RA_03 | 50 | 60 | 40 | −0.030 | 0.023 | −0.024 | 0.023 | 0.012 | 0.011 |
LCL_02 | 50 | 25 | 25 | −0.033 | 0.020 | −0.036 | 0.024 | 0.008 | 0.010 |
RA_02 | 30 | 30 | 70 | −0.021 | 0.025 | −0.014 | 0.025 | 0.013 | 0.013 |
LCL_NW1 | 0 | - | - | −0.004 | 0.012 | 0.001 | 0.014 | 0.005 | 0.011 |
LCL_NW2 | 0 | - | - | −0.002 | 0.016 | −0.001 | 0.013 | 0.000 | 0.018 |
RP_NW | 0 | - | - | −0.004 | 0.016 | 0.001 | 0.015 | 0.003 | 0.016 |
References
- Mantero, G.; Morresi, D.; Marzano, R.; Motta, R.; Mladenoff, D.J.; Garbarino, M. The Influence of Land Abandonment on Forest Disturbance Regimes: A Global Review. Landsc. Ecol. 2020, 35, 2723–2744. [Google Scholar] [CrossRef]
- Albrich, K.; Rammer, W.; Seidl, R. Climate Change Causes Critical Transitions and Irreversible Alterations of Mountain Forests. Glob. Chang. Biol. 2020, 26, 4013–4027. [Google Scholar] [CrossRef] [PubMed]
- Beniston, M. Climatic Change in Mountain Regions: A Review of Possible Impacts. In Climate Variability and Change in High Elevation Regions: Past, Present & Future. Advances in Global Change Research; Diaz, H.F., Ed.; Springer: Dordrecht, The Netherlands, 2003; Volume 15. [Google Scholar]
- Schelhaas, M.-J.; Nabuurs, G.-J.; Schuck, A. Natural Disturbances in the European Forests in the 19th and 20th Centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Schelhaas, M.-J.; Hengeveld, G.; Moriondo, M.; Reinds, G.J.; Kundzewicz, Z.W.; ter Maat, H.; Bindi, M. Assessing Risk and Adaptation Options to Fires and Windstorms in European Forestry. Mitig. Adapt. Strat. Glob. Chang. 2010, 15, 681–701. [Google Scholar] [CrossRef]
- Shikhov, A.N.; Perminova, E.S.; Perminov, S.I. Satellite-Based Analysis of the Spatial Patterns of Fire- and Storm-Related Forest Disturbances in the Ural Region, Russia. Nat. Hazards 2019, 97, 283–308. [Google Scholar] [CrossRef]
- Gregow, H.; Laaksonen, A.; Alper, M.E. Increasing Large Scale Windstorm Damage in Western, Central and Northern European forests, 1951–2010. Sci. Rep. 2017, 7, 46397. [Google Scholar] [CrossRef] [Green Version]
- Usbeck, T.; Wohlgemuth, T.; Dobbertin, M.; Pfister, C.; Bürgi, A.; Rebetez, M. Increasing Storm Damage to Forests in Switzerland from 1858 to 2007. Agric. Meteorol. 2010, 150, 47–55. [Google Scholar] [CrossRef]
- Brůna, J.; Wild, J.; Svoboda, M.; Heurich, M.; Müllerová, J. Impacts and Underlying Factors of Landscape-Scale, Historical Disturbance of Mountain Forest Identified Using Archival Documents. Ecol. Manag. 2013, 305, 294–306. [Google Scholar] [CrossRef]
- Gardiner, B.; Blennow, K.; Carnus, J.-M.; Fleischer, P.; Ingemarson, F.; Landmann, G.; Lindner, M.; Marzano, M.; Nicoll, B.; Orazio, C.; et al. Destructive Storms in European Forests: Past and Forthcoming Impacts. Final Report to European Commission-DG Environment; European Forest Institute: Joensuu, Finland, 2010. [Google Scholar]
- Biolchi, S.; Denamiel, C.; Devoto, S.; Korbar, T.; Macovaz, V.; Scicchitano, G.; Vilibić, I.; Furlani, S. Impact of the October 2018 Storm Vaia on Coastal Boulders in the Northern Adriatic Sea. Water (Switzerland) 2019, 11, 2229. [Google Scholar] [CrossRef] [Green Version]
- Chirici, G.; Giannetti, F.; Travaglini, D.; Nocentini, S.; Francini, S.; D’Amico, G.; Calvo, E.; Fasolini, D.; Broll, M.; Maistrelli, F.; et al. Forest Damage Inventory After the “Vaia” Storm in Italy. Riv. Selvic. Ed. Ecol. 2019, 16, 3–9. [Google Scholar] [CrossRef] [Green Version]
- Forzieri, G.; Pecchi, M.; Girardello, M.; Mauri, A.; Klaus, M.; Nikolov, C.; Rüetschi, M.; Gardiner, B.; Tomaštík, J.; Small, D.; et al. A Spatially Explicit Database of Wind Disturbances in European Forests over the Period 2000–2018. Earth Syst. Sci. Data 2020, 12, 257–276. [Google Scholar] [CrossRef] [Green Version]
- Virot, E.; Ponomarenko, A.; Dehandschoewercker, É.; Quéré, D.; Clanet, C. Critical Wind Speed at Which Trees Break. Phys. Rev. E 2016, 93, 023001. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Emergency Management Service Mapping. Available online: https://emergency.copernicus.eu/mapping/list-of-components/EMSR334 (accessed on 18 January 2021).
- Bolyn, C.; Michez, A.; Gaucher, P.; Lejeune, P.; Bonnet, S. Forest Mapping and Species Composition Using Supervised per Pixel Classification of Sentinel-2 Imagery. Biotechnol. Agron. Soc. Environ. 2018, 22, 16. [Google Scholar]
- Poursanidis, D.; Chrysoulakis, N. Remote Sensing, Natural Hazards and the Contribution of ESA Sentinels Missions. Remote Sens. Appl. Soc. Environ. 2017, 6, 25–38. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Francini, S.; Luti, T.; Chirici, G.; Pirotti, F.; Papale, D. Satellite Open Data to Monitor Forest Damage Caused by Extreme Climate-Induced Events: A Case Study of the Vaia Storm in Northern Italy. Int. J. Res. 2020. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Van Leeuwen, W. MODIS Vegetation Index (MOD13); The University of Arizona: Tucson, AZ, USA, 1999; Volume 3. [Google Scholar]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting Trend and Seasonal Changes In Satellite Image Time Series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Bausch, W.C. Soil Background Effects on Reflectance-Based Crop Coefficients for Corn. Remote Sens. Envrion. 1993, 46, 213–222. [Google Scholar] [CrossRef]
- Huete, A.R.; Liu, H.Q.; van Leeuwen, W.J.D. Use of Vegetation Indices in Forested Regions: Issues of Linearity and Saturation. Int. Geosci. Remote Sens. Symp. 1997, 4, 1966–1968. [Google Scholar]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Hall, R.J.; Castilla, G.; White, J.C.; Cooke, B.J.; Skakun, R.S. Remote Sensing of Forest Pest Damage: A Review and Lessons Learned from a Canadian Perspective. Can. Entomol. 2016, 148, S296–S356. [Google Scholar] [CrossRef]
- Rullan-Silva, C.D.; Olthoff, A.E.; Delgado de la Mata, J.A.; Pajares-Alonso, J.A. Remote Monitoring of Forest Insect Defoliation. A review. For. Syst. 2013, 22, 377–391. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, H.; Skidmore, A.K.; Darvishzadeh, R.; Heurich, M. Sentinel-2 Accurately Maps Green-Attack Stage of European Spruce Bark Beetle (Ips typographus, L.) Compared with Landsat-8. Remote Sens. Ecol. Conserv. 2019, 5, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Hart, S.J.; Veblen, T.T. Detection of Spruce Beetle-Induced Tree Mortality using High- and Medium-Resolution Remotely Sensed Imagery. Remote Sens. Environ. 2015, 168, 134. [Google Scholar] [CrossRef] [Green Version]
- Coops, N.C.; Johnson, M.; Wulder, M.A.; White, J.C. Assessment of Quickbird High Spatial Resolution Imagery to Detect Red Attack Damage Due to Mountain Pine Beetle Infestation. Remote Sens. Environ. 2006, 103, 67–80. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Bentz, B.; Alvarez, M.F.; Coops, N.C. Estimating the Probability of Mountain Pine Beetle Red-Attack Damage. Remote Sens. Environ. 2006, 101, 150–166. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Coops, N.C.; Butson, C.R. Multi-Temporal Analysis of High Spatial Resolution Imagery for Disturbance Monitoring. Remote Sens. Environ. 2008, 112, 2729–2740. [Google Scholar] [CrossRef]
- Gamon, J.A.; SurfurusS, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Coops, N.C.; Waring, R.H.; Wulder, M.A.; White, J.C. Prediction and Assessment of Bark Beetle-Induced Mortality of Lodgepole Pine Using Estimates Of Stand Vigor Derived From Remotely Sensed Data. Remote Sens. Environ. 2009, 113, 1058–1066. [Google Scholar] [CrossRef]
- Crist, E.P.; Cicone, R.C. Comparisons of the Dimensionality and Features of Simulated Landsat-4 MSS and TM data. Remote Sens. Environ. 1984, 14, 235–246. [Google Scholar] [CrossRef]
- Goodwin, N.R.; Coops, N.C.; Wulder, M.A.; Gillanders, S.; Schroeder, T.A.; Nelson, T. Estimation of Insect Infestation Dynamics Using a Temporal Sequence of Landsat Data. Remote Sens. Environ. 2008, 112, 3680–3689. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of Forest Harvest Type using Multiple Dates of Landsat TM Imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Hornero, A.; Hernández-Clemente, R.; Beck, P.S.A. Understanding the Temporal Dimension of the Red-Edge Spectral Region for Forest Decline Detection using High-Resolution Hyperspectral and Sentinel-2a Imagery. Isprs J. Photogramm. Remote Sens. 2018, 137, 134–148. [Google Scholar] [CrossRef]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII; Bruzzone, L., Bovolo, F., Benediktsson, J.A., Eds.; SPIE: Bellingham, WA, USA, 2017; p. 3. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Shi, T.; Horvath, S. Unsupervised Learning With Random Forest Predictors. J. Comput. Graph. Stat. 2006, 15, 118–138. [Google Scholar] [CrossRef]
- Cortez, P. Data Mining with Neural Networks and Support Vector Machines Using the R/rminer Tool. In Advances in Data Mining. Applications and Theoretical Aspects. ICDM 2010. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6171, pp. 572–583. ISBN 978-3-642-14399-1. [Google Scholar]
- Cortez, P.; Embrechts, M.J. Using Sensitivity Analysis and Visualization Techniques to Open Black Box Data Mining Models. Inf. Sci. (N. Y.) 2013, 225, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Eckert, S. Improved Forest Biomass and Carbon Estimations Using Texture Measures from WorldView-2 Satellite Data. Remote Sens. 2012, 4, 810–829. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, A.H.; Picoli, M.C.A.; Camara, G.; Andrade, P.R.; Chaves, M.E.D.; Lechler, S.; Soares, A.R.; Marujo, R.F.B.; Simões, R.E.O.; Ferreira, K.R.; et al. Comparison of Cloud Cover Detection Algorithms on Sentinel-2 Images of the Amazon Tropical Forest. Remote Sens. 2020, 12, 1284. [Google Scholar] [CrossRef] [Green Version]
Survey | Sev. | CC | US | NDVI | RGI | NDMI | |||
---|---|---|---|---|---|---|---|---|---|
21/09/2019 | (%) | (%) | (%) | Avg. | Std. | Avg. | Std. | Avg. | Std. |
RP_01 | 100 | 5 | 5 | 0.486 | 0.099 | 1.098 | 0.103 | 0.197 | 0.096 |
CSL_03 | 90 | 0 | 45 | 0.591 | 0.092 | 1.020 | 0.120 | 0.295 | 0.098 |
AL_03 | 90 | 5 | 40 | 0.561 | 0.109 | 1.064 | 0.157 | 0.242 | 0.122 |
RP_02 | 90 | 10 | 10 | 0.513 | 0.101 | 1.077 | 0.102 | 0.230 | 0.103 |
VOA_02 | 80 | 30 | 70 | 0.742 | 0.095 | 0.843 | 0.153 | 0.473 | 0.105 |
VOA_05 | 80 | 60 | 40 | 0.810 | 0.084 | 0.784 | 0.156 | 0.554 | 0.104 |
LCL_04 | 80 | 5 | 35 | 0.332 | 0.071 | 1.333 | 0.112 | 0.078 | 0.114 |
AG_03 | 80 | 0 | 15 | 0.569 | 0.197 | 1.153 | 0.295 | 0.229 | 0.224 |
RP_03 | 80 | 5 | 15 | 0.599 | 0.115 | 0.989 | 0.150 | 0.313 | 0.120 |
RP_04 | 70 | 20 | 25 | 0.565 | 0.093 | 1.024 | 0.104 | 0.297 | 0.093 |
LCL_03 | 70 | 10 | 10 | 0.472 | 0.093 | 1.119 | 0.088 | 0.194 | 0.085 |
TA_02 | 60 | 40 | 70 | 0.690 | 0.071 | 0.923 | 0.124 | 0.371 | 0.084 |
TA_01 | 60 | 10 | 10 | 0.436 | 0.133 | 1.210 | 0.122 | 0.068 | 0.124 |
VOA_06 | 50 | 60 | 60 | 0.782 | 0.119 | 0.787 | 0.171 | 0.536 | 0.156 |
TA_04 | 50 | 60 | 50 | 0.806 | 0.081 | 0.762 | 0.149 | 0.537 | 0.114 |
VOA_01 | 50 | 30 | 50 | 0.710 | 0.095 | 0.924 | 0.139 | 0.432 | 0.101 |
RA_03 | 50 | 60 | 40 | 0.727 | 0.108 | 0.87 | 0.188 | 0.452 | 0.124 |
LCL_02 | 50 | 25 | 25 | 0.625 | 0.116 | 0.960 | 0.160 | 0.336 | 0.117 |
RA_02 | 30 | 30 | 70 | 0.805 | 0.071 | 0.745 | 0.133 | 0.548 | 0.104 |
LCL_NW1 | 0 | - | - | 0.829 | 0.043 | 0.721 | 0.157 | 0.693 | 0.092 |
LCL_NW2 | 0 | - | - | 0.822 | 0.029 | 0.701 | 0.114 | 0.672 | 0.071 |
RP_NW | 0 | - | - | 0.841 | 0.028 | 0.657 | 0.118 | 0.726 | 0.055 |
NDVI | Spearman Corr. | Adj R2 | Std. Error | p Value |
---|---|---|---|---|
Aug 18 | −0.32478 | 0.00081 | 0.00971 | 0.325 |
Sept 18 | −0.23141 | 0.12340 | 0.01483 | 0.060 |
June 19 | −0.69194 | 0.50950 | 0.05210 | <0.001 |
July 19 | −0.68736 | 0.48370 | 0.05427 | <0.001 |
Aug 19 | −0.64268 | 0.38860 | 0.05319 | <0.001 |
Sept 19 | −0.69137 | 0.43010 | 0.05428 | <0.001 |
RGI | ||||
Aug 18 | 0.30587 | 0.06491 | 0.01747 | 0.132 |
Sept 18 | 0.27437 | 0.19640 | 0.04050 | 0.022 |
June 19 | 0.72860 | 0.57420 | 0.07077 | <0.001 |
July 19 | 0.71542 | 0.51250 | 0.07593 | <0.001 |
Aug 19 | 0.70683 | 0.49130 | 0.06389 | <0.001 |
Sept 19 | 0.70683 | 0.48530 | 0.06335 | <0.001 |
NDMI | ||||
Aug 18 | −0.19819 | 0.06266 | 0.02089 | 0.136 |
Sept 18 | −0.11971 | 0.00978 | 0.02948 | 0.284 |
June 19 | −0.73032 | 0.61600 | 0.05518 | <0.001 |
July 19 | −0.69767 | 0.58010 | 0.05799 | <0.001 |
Aug 19 | −0.68335 | 0.56310 | 0.06087 | <0.001 |
Sept 19 | −0.69194 | 0.57260 | 0.06064 | <0.001 |
EVI1 | ||||
Aug 18 | −0.48172 | 0.09318 | 0.02599 | 0.090 |
Sept 18 | −0.53098 | 0.26150 | 0.02382 | 0.008 |
June 19 | −0.58139 | 0.24830 | 0.05676 | 0.010 |
July 19 | −0.54817 | 0.19950 | 0.05176 | 0.021 |
Aug 19 | −0.57623 | 0.22130 | 0.04507 | 0.015 |
Sept 19 | −0.60086 | 0.24340 | 0.03915 | 0.011 |
EVI2 | ||||
Aug 18 | −0.48058 | 0.03532 | 0.02442 | 0.198 |
Sept 18 | −0.44105 | 0.19910 | 0.02038 | 0.021 |
June 19 | −0.57509 | 0.22640 | 0.04964 | 0.014 |
July 19 | −0.55790 | 0.19940 | 0.04524 | 0.021 |
Aug 19 | −0.56821 | 0.17930 | 0.04004 | 0.028 |
Sept 19 | −0.63752 | 0.25750 | 0.03693 | 0.009 |
CI | ||||
Aug 18 | −0.33738 | 0.00204 | 0.14480 | 0.319 |
Sept 18 | −0.34024 | 0.20080 | 0.12730 | 0.020 |
June 2019 | −0.61805 | 0.44060 | 0.23030 | <0.001 |
July 19 | −0.61805 | 0.41100 | 0.23650 | <0.001 |
Aug 19 | −0.61289 | 0.36780 | 0.22830 | 0.001 |
Sept 19 | −0.67074 | 0.47490 | 0.20870 | <0.001 |
EDWI | 0.325 | |||
Sep 2018–Aug 2018 | 0.05041 | 0.01623 | 0.00142 | 0.060 |
Aug 2019–Aug 2018 | −0.74979 | 0.60540 | 0.00625 | <0.001 |
Sep 2019–Sep 2018 | −0.74807 | 0.56490 | 0.00581 | <0.001 |
Descriptor | MAE | RMSE | COR | Adj. R2 |
---|---|---|---|---|
EVI2 | 18.07 | 22.42 | 0.66 | 0.38 |
NDVI_STD | 11.39 | 15.98 | 0.83 | 0.65 |
NDVI | 11.40 | 15.96 | 0.83 | 0.66 |
RGI | 8.31 | 12.40 | 0.89 | 0.78 |
NDVI, RGI | 8.63 | 12.10 | 0.90 | 0.78 |
NDVI, RGI, NDMI | 7.88 | 10.68 | 0.92 | 0.83 |
NDVI, NDMI | 8.13 | 10.67 | 0.92 | 0.84 |
NDVI, NDVI_STD | 8.07 | 10.56 | 0.92 | 0.84 |
NDVI, RGI, NDMI, NDVI_STD | 7.68 | 9.96 | 0.93 | 0.84 |
NDMI | 7.63 | 10.12 | 0.93 | 0.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piragnolo, M.; Pirotti, F.; Zanrosso, C.; Lingua, E.; Grigolato, S. Responding to Large-Scale Forest Damage in an Alpine Environment with Remote Sensing, Machine Learning, and Web-GIS. Remote Sens. 2021, 13, 1541. https://doi.org/10.3390/rs13081541
Piragnolo M, Pirotti F, Zanrosso C, Lingua E, Grigolato S. Responding to Large-Scale Forest Damage in an Alpine Environment with Remote Sensing, Machine Learning, and Web-GIS. Remote Sensing. 2021; 13(8):1541. https://doi.org/10.3390/rs13081541
Chicago/Turabian StylePiragnolo, Marco, Francesco Pirotti, Carlo Zanrosso, Emanuele Lingua, and Stefano Grigolato. 2021. "Responding to Large-Scale Forest Damage in an Alpine Environment with Remote Sensing, Machine Learning, and Web-GIS" Remote Sensing 13, no. 8: 1541. https://doi.org/10.3390/rs13081541
APA StylePiragnolo, M., Pirotti, F., Zanrosso, C., Lingua, E., & Grigolato, S. (2021). Responding to Large-Scale Forest Damage in an Alpine Environment with Remote Sensing, Machine Learning, and Web-GIS. Remote Sensing, 13(8), 1541. https://doi.org/10.3390/rs13081541