Photogrammetry Using UAV-Mounted GNSS RTK: Georeferencing Strategies without GCPs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Acquisition
2.2. Data Processing
3. Results
3.1. The Accuracy of the GNSS RTK Ground Geodetic Survey
3.2. Elevation Errors and Related Parameters
3.3. Analysis of the Association between the Systematic Error in Elevation and the Deviation of the Focal Length f
3.4. Comparison of Dense Clouds
4. Discussion
- Performing duplicate flights, even if the second flight is perpendicular to the first one (double-grid), brings only a minor improvement; however, the accuracy still remains above the expected limit of 1–2 GSD. In some cases, it may still fail with a systematic shift of up to 0.18 m.
- Geometrically different combinations (i.e., the primary flight combined with flights at other altitudes or with different camera angles) led to a significant improvement. This was especially apparent at the Brownfield site where any of these combinations led to the expected accuracy (elevation difference below 0.05 m). Still, the error at the Rural site remained in some instances as high as 0.4 m. It is, therefore, obvious that the quality and selection of the key points for image matching affect the quality of the calibration.
- The best results were obtained from the combinations of the primary flight and flights with oblique image acquisition. This was the only strategy that worked well at both sites in all tested combinations. The variant with the higher angle (30° from the vertical direction) provided the best results, with even the worst systematic error not exceeding 0.03 m (1 GSD).
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, S.; Choi, Y. Applications of Unmanned Aerial Vehicles in Mining from Exploration to Reclamation: A Review. Minerals 2020, 10, 663. [Google Scholar] [CrossRef]
- Kršák, B.; Blišťan, P.; Pauliková, A.; Puškárová, P.; Kovanič, L.; Palková, J.; Zelizňaková, V. Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study. Meas. J. Int. Meas. Confed. 2016, 91, 276–287. [Google Scholar] [CrossRef]
- Blistan, P.; Jacko, S.; Kovanič, Ľ.; Kondela, J.; Pukanská, K.; Bartoš, K. TLS and SfM Approach for Bulk Density Determination of Excavated Heterogeneous Raw Materials. Minerals 2020, 10, 174. [Google Scholar] [CrossRef] [Green Version]
- Pavelka, K.; Šedina, J.; Matoušková, E.; Hlaváčová, I.; Korth, W. Examples of different techniques for glaciers motion monitoring using InSAR and RPAS. Eur. J. Remote Sens. 2019, 5, 219–232, ISSN 2279-7254. [Google Scholar] [CrossRef] [Green Version]
- Kovanič, Ľ.; Blistan, P.; Urban, R.; Štroner, M.; Blišťanová, M.; Bartoš, K.; Pukanská, K. Analysis of the Suitability of High-Resolution DEM Obtained Using ALS and UAS (SfM) for the Identification of Changes and Monitoring the Development of Selected Geohazards in the Alpine Environment—A Case Study in High Tatras, Slovakia. Remote Sens. 2020, 12, 3901. [Google Scholar] [CrossRef]
- Komárek, J.; Klouček, T.; Prošek, J. The potential of Unmanned Aerial Systems: A tool towards precision classification of hard-to-distinguish vegetation types? Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 9–19. [Google Scholar] [CrossRef]
- Klouček, T.; Komárek, J.; Surový, P.; Hrach, K.; Janata, P.; Vašíček, B. The Use of UAV Mounted Sensors for Precise Detection of Bark Beetle Infestation. Remote Sens. 2019, 11, 1561. [Google Scholar] [CrossRef] [Green Version]
- Šedina, J.; Housarová, E.; Raeva, P. Using of rpas in precision agriculture. In 17th International Multidisciplinary Scientific Geoconference, Conference Proceedings Volume 17, Informatics, Geoinformatics and Remote Sensing Issue 22, Geodesy and Mine Surveying. Sofia: International Multidisciplinary Scientific GeoConference SGEM; STEF92 Technology Ltd.: Sofia, Bulgaria, 2017; Volume 17, pp. 331–338, ISSN 1314-2704; ISBN 978-619-7408-02-7. [Google Scholar] [CrossRef]
- Buffi, G.; Manciola, P.; Grassi, S.; Barberini, M.; Gambi, A. Survey of the Ridracoli Dam: UAV–based photogrammetry and traditional topographic techniques in the inspection of vertical structures. Geomat. Nat. Hazards Risk 2017, 8, 1562–1579. [Google Scholar] [CrossRef] [Green Version]
- Kumhálová, J.; Moudrý, V. Topographical characteristics for precision agriculture in conditions of the Czech Republic. Appl. Geogr. 2014, 50, 90–98. [Google Scholar] [CrossRef]
- Puniach, E.; Bieda, A.; C´wia˛kała, P.; Kwartnik-Pruc, A.; Parzych, P. Use of Unmanned Aerial Vehicles (UAVs) for Updating Farmland Cadastral Data in Areas Subject to Landslides. ISPRS Int. J. Geo-Inf. 2018, 7, 331. [Google Scholar] [CrossRef] [Green Version]
- Moudrý, V.; Beková, A.; Lagner, O. Evaluation of a high resolution UAV imagery model for rooftop solar irradiation estimates. Remote Sens. Lett. 2019, 10, 1077–1085. [Google Scholar] [CrossRef]
- Kalvoda, P.; Nosek, J.; Kuruc, M.; Volařík, T.; Kalvodova, P. Accuracy Evaluation and Comparison of Mobile Laser Scanning and Mobile Photogrammetry Data; IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2020; pp. 1–10, ISSN 1755-1307. [Google Scholar] [CrossRef]
- Tavani, S.; Pignalosa, A.; Corradetti, A.; Mercuri, M.; Smeraglia, L.; Riccardi, U.; Seers, T.; Pavlis, T.; Billi, A. Photogrammetric 3D Model via Smartphone GNSS Sensor: Workflow, Error Estimate, and Best Practices. Remote Sens. 2020, 12, 3613. [Google Scholar] [CrossRef]
- Tavani, S.; Corradetti, A.; Granado, P.; Snidero, M.; Seers, T.D.; Mazzoli, S. Smartphone: An alternative to ground control points for orienting virtual outcrop models and assessing their quality. Geosphere 2019, 15, 2043–2052. [Google Scholar] [CrossRef]
- Jaud, M.; Bertin, S.; Beauverger, M.; Augereau, E.; Delacourt, C. RTK GNSS-Assisted Terrestrial SfM Photogrammetry without GCP: Application to Coastal Morphodynamics Monitoring. Remote Sens. 2020, 12, 1889. [Google Scholar] [CrossRef]
- Sanz-Ablanedo, E.; Chandler, J.H.; Rodríguez-Pérez, J.R.; Ordóñez, C. Accuracy of Unmanned Aerial Vehicle (UAV) and SfM Photogrammetry Survey as a Function of the Number and Location of Ground Control Points Used. Remote Sens. 2018, 10, 1606. [Google Scholar] [CrossRef] [Green Version]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle. Measurement 2017, 98, 221–227. [Google Scholar] [CrossRef]
- Vacca, G.; Dessì, A.; Sacco, A. The Use of Nadir and Oblique UAV Images for Building Knowledge. ISPRS Int. J. Geo-Inf. 2017, 6, 393. [Google Scholar] [CrossRef] [Green Version]
- Nesbit, P.R.; Hugenholtz, C.H. Enhancing UAV–SfM 3D Model Accuracy in High-Relief Landscapes by Incorporating Oblique Images. Remote Sens. 2019, 11, 239. [Google Scholar] [CrossRef] [Green Version]
- Gerke, M.; Nex, F.; Remondino, F.; Jacobsen, K.; Kremer, J.; Karel, W.; Hu, H.; Ostrowski, W. Orientation of oblique airborne image sets–experiences from the isprs/eurosdr benchmark on multi-platform photogrammetry. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, 41, 185–191. [Google Scholar] [CrossRef] [Green Version]
- Gerke, M.; Przybilla, H.J. Accuracy Analysis of Photogrammetric UAV Image Blocks: Influence of Onboard RTK-GNSS and Cross Flight Patterns. Photogramm. Fernerkund. Geoinf. 2016, 2016, 17–30. [Google Scholar] [CrossRef] [Green Version]
- Forlani, G.; Diotri, F.; Morra di Cella, U.; Roncella, R. UAV Block GEOREFERENCING and control by on-board GNSS data. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci 2020, XLIII-B2-2020, 9–16. [Google Scholar] [CrossRef]
- Jon, J.; Koska, B.; Pospíšil, J. Autonomous Airship Equipped with Multi-Sensor Mapping Platform. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 40, 119–124, ISSN 2194-9034. [Google Scholar] [CrossRef] [Green Version]
- Jaud, M.; Passot, S.; Le Bivic, R.; Delacourt, C.; Grandjean, P.; Le Dantec, N. Assessing the Accuracy of High Resolution Digital Surface Models Computed by PhotoScan® and MicMac® in Sub-Optimal Survey Conditions. Remote Sens. 2016, 8, 465. [Google Scholar] [CrossRef] [Green Version]
- Tahar, K.N.; Kamarudin, S.S. Uav onboard gps in positioning determination. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2016, XLI-B1, 1037–1042. [Google Scholar] [CrossRef] [Green Version]
- Urban, R.; Štroner, M.; Kuric, I. The use of onboard UAV GNSS navigation data for area and volume calculation. Acta Montan. Slovaca 2020, 25, 361–374. [Google Scholar] [CrossRef]
- Padró, J.C.; Munoz, F.J.; Planas, J.; Pons, X. Comparison of four UAV georeferencing methods for environmental monitoring purposes focusing on the combined use with airborne and satellite remote sensing platforms. Int. J. Appl. Earth Obs. Geoinf. 2019, 75, 130–140. [Google Scholar] [CrossRef]
- Hung, I.-K.; Unger, D.; Kulhavy, D.; Zhang, Y. Positional Precision Analysis of Orthomosaics Derived from Drone Captured Aerial Imagery. Drones 2019, 3, 46. [Google Scholar] [CrossRef] [Green Version]
- Křemen, T. Measurement and Documentation of St. Spirit Church in Liběchov. In Advances and Trends in Geodesy, Cartography and Geoinformatics II; Taylor & Francis Group: London, UK, 2020; pp. 44–49. ISBN 978-0-367-34651-5. [Google Scholar] [CrossRef]
- Koska, B.; Křemen, T. The Combination of Laser Scanning and Structure from Motion Technology for Creation of Accurate Exterior and Interior Orthophotos of St. Nicholas Baroque Church. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-5/W1, 133–138, ISSN 2194-9034. [Google Scholar] [CrossRef] [Green Version]
- Moudrý, V.; Lecours, V.; Gdulová, K.; Gábor, L.; Moudrá, L.; Kropáček, J.; Wild, J. On the use of global DEMs in ecological modelling and the accuracy of new bare-earth DEMs. Ecol. Model. 2018, 383, 3–9, ISSN 0304-3800. [Google Scholar] [CrossRef]
- Tomaštík, J.; Mokroš, M.; Surový, P.; Grznárová, A.; Merganič, J. UAV RTK/PPK Method—An Optimal Solution for Mapping Inaccessible Forested Areas? Remote Sens. 2019, 11, 721. [Google Scholar] [CrossRef] [Green Version]
- Štroner, M.; Urban, R.; Reindl, T.; Seidl, J.; Brouček, J. Evaluation of the Georeferencing Accuracy of a Photogrammetric Model Using a Quadrocopter with Onboard GNSS RTK. Sensors 2020, 20, 2318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peppa, M.V.; Hall, J.; Goodyear, J.; Mills, J.P. Photogrammetric Assessment and Comparison of DJI Phantom 4 Pro and Phantom 4 RTK Small Unmanned Aircraft Systems. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci 2019, XLII-2/W13, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Taddia, Y.; Stecchi, F.; Pellegrinelli, A. Coastal Mapping using DJI Phantom 4 RTK in Post-Processing Kinematic Mode. Drones 2020, 4, 9. [Google Scholar] [CrossRef] [Green Version]
- Santise, M.; Fornari, M.; Forlani, G.; Roncella, R. Evaluation of DEM generation accuracy from UAS imagery. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2014, XL-5, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Forlani, G.; Dall’Asta, E.; Diotri, F.; Cella, U.M.; Roncella, R.; Santise, M. Quality Assessment of DSMs Produced from UAV Flights Georeferenced with On-Board RTK Positioning. Remote Sens. 2018, 10, 311. [Google Scholar] [CrossRef] [Green Version]
- Le Van Canh, X.; Cao Xuan Cuong, X.; Nguyen Quoc Long, X.; Le Thi Thu Ha, X.; Tran Trung Anh, X.; Xuan-Nam Bui, X. Experimental Investigation on the Performance of DJI Phantom 4 RTK in the PPK Mode for 3D Mapping Open-Pit Mines. Inz. Miner. J. Pol. Miner. Eng. Soc. 2020, 46, 65–74, ISSN 1640-4920. [Google Scholar] [CrossRef]
- Teppati Losè, L.; Chiabrando, F.; Giulio Tonolo, F. Boosting the Timeliness of UAV Large Scale Mapping. Direct Georeferencing Approaches: Operational Strategies and Best Practices. ISPRS Int. J. Geo-Inf. 2020, 9, 578. [Google Scholar] [CrossRef]
- Cramer, M.; Przybilla, H.-J.; Zurhorst, A. UAV cameras: Overview and geometric calibration benchmark. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, XLII-2/W6, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Harwin, S.; Lucieer, A.; Osborn, J. The Impact of the Calibration Method on the Accuracy of Point Clouds Derived Using Unmanned Aerial Vehicle Multi-View Stereopsis. Remote Sens. 2015, 7, 11933–11953. [Google Scholar] [CrossRef] [Green Version]
- James, M.R.; Robson, S. Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf. Proc. Landf. 2014, 39, 1413–1420. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Aldana-Jague, E.; Clapuyt, F.; Wilken, F.; Vanacker, V.; Van Oost, K. Evaluating the potential of post-processing kinematic (PPK) georeferencing for UAV-based structure- from-motion (SfM) photogrammetry and surface change detection. Earth Surf. Dynam. 2019, 7, 807–827. [Google Scholar] [CrossRef] [Green Version]
- Przybilla, H.-J.; Bäumker, M.; Luhmann, T.; Hastedt, H.; Eilers, M. Interaction between direct georeferencing, control point configuration and camera self-calibration for rtk-based uav photogrammetry. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, 43, 485–492. [Google Scholar] [CrossRef]
Site | Designation | Flight Altitude above the Terrain (m) | Imagery Acquisition—Deviation from the Nadiral Direction (°) | Number of Images—Flight 1 | Number of Images—Flight 2 |
---|---|---|---|---|---|
Brownfield | 75 m | 75 | 0 | 78 | 76 |
100 m | 100 | 0 | 50 | 53 | |
125 m | 125 | 0 | 39 | 41 | |
60° (100 m) | 100 | 30 | 67 | 80 | |
75° (100 m) | 100 | 15 | 58 | 66 | |
Rural | 75 m | 75 | 0 | 176 | 183 |
100 m | 100 | 0 | 112 | 122 | |
125 m | 125 | 0 | 84 | 84 | |
60° (100 m) | 100 | 30 | 147 | 160 | |
75° (100 m) | 100 | 15 | 128 | 140 |
Setting | Value |
---|---|
Align Photos | |
-Accuracy | High |
-Key point limit | 40,000 |
-Tie point limit | 4000 |
Optimize Camera Alignment | Fit all constants (f, cx, cy, k1–k4, p1–p4) |
Build Dense Cloud | |
-Quality | High |
-Depth filtering | Moderate |
Digital Elevation Model | |
-Coordinate System | S-JTSK, Bpv |
-Parameters | |
-Source data | Dense Cloud |
-Interpolation | Enabled |
-Advanced | |
-Resolution | 2.8 cm/pix (implicit) |
(Settings not detailed above were kept at default). |
Site | SX (m) | SY (m) | SH (m) | S in 3D Position (m) |
---|---|---|---|---|
Rural | 0.0063 | 0.0046 | 0.0069 | 0.010 |
Brownfield | 0.0061 | 0.0051 | 0.0067 | 0.010 |
Calculation Variant | Mean Difference (m) | StDev (m) | RMS (m) | f (Pixels) | Cx (Pixels) | Cy (Pixels) |
---|---|---|---|---|---|---|
All_Combined | 0.0201 | 0.0063 | 0.0211 | 3685.4568 | 9.9062 | 28.3165 |
All_RTK | 0.0254 | 0.0063 | 0.0261 | 3685.3472 | 9.9037 | 28.3546 |
75m_1 | 0.0412 | 0.0080 | 0.0419 | 3683.5605 | 9.5506 | 27.7429 |
75m_2 | 0.0769 | 0.0107 | 0.0776 | 3682.2500 | 9.5145 | 27.7860 |
100m_1 | 0.2715 | 0.0115 | 0.2717 | 3676.2500 | 9.8893 | 27.4269 |
100m_2 | 0.1252 | 0.0104 | 0.1256 | 3680.7900 | 9.3435 | 27.6945 |
125m_1 | −0.1701 | 0.0225 | 0.1716 | 3691.0449 | 9.8862 | 27.5684 |
125m_2 | 0.2200 | 0.0153 | 0.2205 | 3679.5466 | 9.5863 | 27.7279 |
60° (100m)_1 | −0.1398 | 0.0093 | 0.1401 | 3687.8589 | 9.6792 | 22.6777 |
60° (100m)_2 | −0.0541 | 0.0100 | 0.0550 | 3687.0000 | 9.5963 | 25.4033 |
75° (100m)_1 | −0.8557 | 0.0115 | 0.8558 | 3716.3172 | 12.1673 | 13.5000 |
75° (100m)_2 | −0.1610 | 0.0113 | 0.1613 | 3693.5500 | 11.0213 | 26.6421 |
Calculation Variant | Mean (m) | StDev (m) | RMS (m) | f (Pixels) | Cx (Pixels) | Cy (Pixels) |
---|---|---|---|---|---|---|
All_Combined | −0.0126 | 0.0237 | 0.0265 | 3685.1506 | 9.0573 | 29.2059 |
All_RTK | −0.0145 | 0.0241 | 0.0278 | 3685.1948 | 9.0573 | 29.1926 |
75m_1 | −0.1813 | 0.0211 | 0.1825 | 3692.6899 | 9.4703 | 27.8337 |
75m_2 | 0.1829 | 0.0376 | 0.1866 | 3675.7142 | 8.9789 | 30.0060 |
100m_1 | 0.0369 | 0.0243 | 0.0440 | 3684.3132 | 9.5869 | 30.4881 |
100m_2 | 0.3154 | 0.0318 | 0.3170 | 3675.1982 | 9.4326 | 30.2998 |
125m_1 | −0.0755 | 0.0231 | 0.0789 | 3685.7920 | 8.2727 | 27.9129 |
125m_2 | 0.4000 | 0.0238 | 0.4007 | 3672.1744 | 8.1549 | 28.0104 |
60° (100m)_1 | −0.0971 | 0.0297 | 0.1014 | 3687.4122 | 9.9673 | 24.2402 |
60° (100m)_2 | 0.0761 | 0.0274 | 0.0807 | 3684.7123 | 8.3047 | 31.9379 |
75° (100m)_1 | −0.2793 | 0.0403 | 0.2821 | 3693.5554 | 9.6960 | 23.1674 |
75° (100m)_2 | −0.0715 | 0.0315 | 0.0780 | 3686.4340 | 9.0964 | 29.4237 |
Calculation Variant | Mean (m) | StDev (m) | RMS (m) | F (Pixels) | Cx (Pixels) | Cy (Pixels) |
---|---|---|---|---|---|---|
All_Combined | 0.0201 | 0.0063 | 0.0211 | 3685.4568 | 9.9062 | 28.3165 |
75m_1 + 75m_2 | −0.0869 | 0.0080 | 0.0873 | 3690.0200 | 9.6071 | 28.0833 |
100m_1 + 100m_2 | 0.0089 | 0.0070 | 0.0112 | 3685.3100 | 9.6407 | 27.9082 |
125m_1 + 125m_2 | 0.0217 | 0.0142 | 0.0257 | 3685.2400 | 9.7382 | 27.7874 |
60°_1 + 60°_2 (100m) | −0.0517 | 0.0073 | 0.0522 | 3686.6200 | 9.4244 | 25.6123 |
75°_1 + 75°_2 (100m) | −0.1596 | 0.0104 | 0.1600 | 3693.7200 | 11.1567 | 26.3864 |
Calculation Variant | Mean (m) | StDev (m) | RMS (m) | F (Pixels) | Cx (Pixels) | Cy (Pixels) |
---|---|---|---|---|---|---|
All_Combined | −0.0126 | 0.0237 | 0.0265 | 3685.1506 | 9.0573 | 29.2059 |
75m_1 + 75m_2 | −0.1879 | 0.0266 | 0.1897 | 3692.8619 | 9.2088 | 29.2684 |
100m_1 + 100m_2 | −0.1088 | 0.0253 | 0.1116 | 3689.8473 | 9.4996 | 30.5776 |
125m_1 + 125m_2 | −0.0865 | 0.0215 | 0.0890 | 3686.0700 | 8.3529 | 28.1841 |
60°_1 + 60°_2 (100m) | 0.0962 | 0.0235 | 0.0989 | 3684.0718 | 8.5973 | 31.4189 |
75°_1 + 75°_2 (100m) | −0.0343 | 0.0299 | 0.0452 | 3685.7482 | 9.0306 | 28.9058 |
Calculation Variant | Mean (m) | StDev (m) | RMS (m) | F (Pixels) | Cx (Pixels) | Cy (Pixels) |
---|---|---|---|---|---|---|
All_Combined | 0.0201 | 0.0063 | 0.0211 | 3685.4568 | 9.9062 | 28.3165 |
100m_1 + 75m_1 | −0.0197 | 0.0073 | 0.0210 | 3686.6469 | 9.6673 | 27.8125 |
100m_1 + 75m_2 | −0.0246 | 0.0084 | 0.0259 | 3687.0021 | 9.8057 | 27.7864 |
100m_2 + 75m_1 | −0.0010 | 0.0074 | 0.0073 | 3685.7385 | 9.4378 | 27.8479 |
100m_2 + 75m_2 | −0.0046 | 0.0086 | 0.0096 | 3686.0403 | 9.4761 | 27.9108 |
100m_1 + 125m_1 | 0.0012 | 0.0155 | 0.0152 | 3685.9121 | 9.7736 | 27.6163 |
100m_1 + 125m_2 | 0.0061 | 0.0105 | 0.0119 | 3685.9438 | 9.8531 | 27.7257 |
100m_2 + 125m_1 | −0.0272 | 0.0146 | 0.0308 | 3686.5826 | 9.5823 | 27.8234 |
100m_2 + 125m_2 | −0.0141 | 0.0106 | 0.0175 | 3686.1716 | 9.4705 | 27.8232 |
100m_1 + 60°_1 | 0.0181 | 0.0079 | 0.0196 | 3685.2030 | 9.8340 | 27.4012 |
100m_1 + 60°_2 | 0.0218 | 0.0093 | 0.0237 | 3685.4790 | 9.8563 | 27.5374 |
100m_2 + 60°_1 | 0.0137 | 0.0084 | 0.0159 | 3684.9970 | 9.4563 | 27.8556 |
100m_2 + 60°_2 | 0.0188 | 0.0078 | 0.0203 | 3685.2289 | 9.4574 | 27.7306 |
100m_1 + 75°_1 | −0.0311 | 0.0099 | 0.0326 | 3689.4667 | 10.4964 | 27.9219 |
100m_1 + 75°_2 | −0.0409 | 0.0122 | 0.0426 | 3689.7403 | 10.4778 | 28.1390 |
100m_2 + 75°_1 | −0.0439 | 0.0079 | 0.0446 | 3689.0670 | 10.2551 | 28.0417 |
100m_2 + 75°_2 | −0.0504 | 0.0159 | 0.0527 | 3689.8025 | 10.2318 | 28.2601 |
Calculation Variant | Mean (m) | StDev (m) | RMS (m) | F (Pixels) | Cx (Pixels) | Cy (Pixels) |
---|---|---|---|---|---|---|
All_Combined | −0.0126 | 0.0237 | 0.0265 | 3685.1506 | 9.0573 | 29.2059 |
100m_1 + 75m_1 | −0.1148 | 0.0219 | 0.1168 | 3689.6683 | 9.6098 | 29.3811 |
100m_1 + 75m_2 | −0.1343 | 0.0319 | 0.1379 | 3690.3496 | 9.4486 | 30.4642 |
100m_2 + 75m_1 | −0.2110 | 0.0246 | 0.2124 | 3693.8792 | 9.5771 | 29.1683 |
100m_2 + 75m_2 | −0.2231 | 0.0358 | 0.2258 | 3694.4234 | 9.5165 | 30.2986 |
100m_1 + 125m_1 | 0.2818 | 0.0246 | 0.2828 | 3675.5925 | 8.8262 | 29.1363 |
100m_1 + 125m_2 | 0.2790 | 0.0238 | 0.2800 | 3675.6822 | 8.9231 | 29.2559 |
100m_2 + 125m_1 | 0.4269 | 0.0269 | 0.4277 | 3671.3294 | 8.8258 | 28.9144 |
100m_2 + 125m_2 | 0.4379 | 0.0249 | 0.4386 | 3670.9576 | 8.8740 | 29.2264 |
100m_1 + 60°_1 | 0.0127 | 0.0251 | 0.0277 | 3684.4032 | 9.5076 | 29.8877 |
100m_1 + 60°_2 | −0.0036 | 0.0248 | 0.0246 | 3685.6338 | 9.2217 | 30.2379 |
100m_2 + 60°_1 | 0.0334 | 0.0261 | 0.0422 | 3684.4453 | 9.5665 | 29.8517 |
100m_2 + 60°_2 | 0.0085 | 0.0264 | 0.0273 | 3685.4680 | 9.3255 | 30.0001 |
100m_1 + 75°_1 | 0.0400 | 0.0253 | 0.0471 | 3683.1644 | 9.3780 | 29.8556 |
100m_1 + 75°_2 | 0.0010 | 0.0265 | 0.0261 | 3684.9419 | 9.4006 | 30.6061 |
100m_2 + 75°_1 | 0.0628 | 0.0266 | 0.0680 | 3683.2049 | 9.3918 | 29.8083 |
100m_2 + 75°_2 | 0.0126 | 0.0299 | 0.0320 | 3684.9628 | 9.4726 | 30.3318 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štroner, M.; Urban, R.; Seidl, J.; Reindl, T.; Brouček, J. Photogrammetry Using UAV-Mounted GNSS RTK: Georeferencing Strategies without GCPs. Remote Sens. 2021, 13, 1336. https://doi.org/10.3390/rs13071336
Štroner M, Urban R, Seidl J, Reindl T, Brouček J. Photogrammetry Using UAV-Mounted GNSS RTK: Georeferencing Strategies without GCPs. Remote Sensing. 2021; 13(7):1336. https://doi.org/10.3390/rs13071336
Chicago/Turabian StyleŠtroner, Martin, Rudolf Urban, Jan Seidl, Tomáš Reindl, and Josef Brouček. 2021. "Photogrammetry Using UAV-Mounted GNSS RTK: Georeferencing Strategies without GCPs" Remote Sensing 13, no. 7: 1336. https://doi.org/10.3390/rs13071336
APA StyleŠtroner, M., Urban, R., Seidl, J., Reindl, T., & Brouček, J. (2021). Photogrammetry Using UAV-Mounted GNSS RTK: Georeferencing Strategies without GCPs. Remote Sensing, 13(7), 1336. https://doi.org/10.3390/rs13071336