Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods and Data in Google Earth Engine
2.3. Classification Scheme
2.4. Classification Method and Strategy
2.5. Data Assessment and Analysis
- Independent sampling: Validation sample points are created independently from training data. All validation points are visually interpreted manually according to the high-resolution images of the corresponding year. If there is no high-resolution image in the corresponding year, refer to the high-resolution image near this point in time or the Landsat image of the corresponding year.
- Random sampling: Each validation points of each year are spatially independent and randomly distributed in the study area.
- Stratified sampling: The sample unit for the validation sample was a pixel of 90-m resolution. The sample size was designed to be 168 validation points per year, and a certain number of points will be selected in each class.
- Balanced sampling: Stratified sampling with proportional allocation balances the proportion of each land use/cover class sample to close to the proportion of the area of each class from the map to be validated. To compromise between favoring user’s versus producer’s and overall accuracies, we increased the sample size in the rarer classes (No less than 85 per class, that is no less than 5 points per class per year). Finally, 2856 samples (168*17) were sampled in 17 years.
- Statistics of the area of each land use/cover class. Use the “ee.Image.pixelArea()” in GEE API to implement the area calculation using equal-area projection.
- Construction of land use/cover transition matrix and transition network between multiple maps. Implement transition type mask extraction and area statistics in GEE.
- Detection method of area ratio change trend in grids. Use ridge regression to obtain the changing trend in the area ratio of each grid (0.5°) for each class. Furthermore, use the k means algorithm to cluster these change trends, and get several types of LUCC patterns in the study area.
- Drawing of the spatiotemporal map of land use/cover classes transition. Display the temporal and geographical distribution of land class transition on the map.
3. Results
3.1. Annual Mapping Results and Assessment
3.2. Land Use/Cover Change Patterns
3.3. The Transition from Multiple Land Use/Cover Classes to Orchard and Terrace
4. Discussion
4.1. Limitations
4.2. Land Use/Cover Dynamics and Potential Causes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Gong, P.; Wang, J.; Clinton, N.; Bai, Y.; Liang, S. Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth Syst. Sci. Data 2020, 12, 1217–1243. [Google Scholar] [CrossRef]
- Turner, B.L., II; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Duveiller, G.; Hooker, J.; Cescatti, A. The mark of vegetation change on Earth’s surface energy balance. Nat. Commun. 2018, 9, 679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, N.L.; Lemieux, J.M.; Delottier, H.; Fortier, R.; Fortier, P. A Conceptual Model for Anticipating the Impact of Landscape Evolution on Groundwater Recharge in Degrading Permafrost Environments. Geophys. Res. Lett. 2020, 47, e2020GL087695. [Google Scholar] [CrossRef]
- Yue, C.; Ciais, P.; Houghton, R.A.; Nassikas, A.A. Contribution of land use to the interannual variability of the land carbon cycle. Nat. Commun. 2020, 11, 3170. [Google Scholar] [CrossRef]
- Jones, K.R.; Venter, O.; Fuller, R.A.; Allan, J.R.; Maxwell, S.L.; Negret, P.J.; Watson, J.E.M. One-third of global protected land is under intense human pressure. Science 2018, 360, 788–791. [Google Scholar] [CrossRef] [Green Version]
- Marques, A.; Martins, I.S.; Kastner, T.; Plutzar, C.; Theurl, M.C.; Eisenmenger, N.; Huijbregts, M.A.J.; Wood, R.; Stadler, K.; Bruckner, M.; et al. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 2019, 3, 628–637. [Google Scholar] [CrossRef]
- Tilman, D.; Socolow, R.; Foley, J.A.; Hill, J.; Larson, E.; Lynd, L.; Pacala, S.; Reilly, J.; Searchinger, T.; Somerville, C. Beneficial biofuels—the food, energy, and environment trilemma. Science 2009, 325, 270–271. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Defries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, J.; Mas, E. The Emergence of China and India in the Global Market. J. East-West Bus. 2016, 22, 28–50. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.P.; Wang, K.B.; Lin, Y.S.; Shi, W.Y.; Song, Y.; He, X.H. Balancing green and grain trade. Nat. Geosci. 2015, 8, 739–741. [Google Scholar] [CrossRef]
- Lu, Y.; Zhang, L.; Feng, X.; Zeng, Y.; Fu, B.; Yao, X.; Li, J.; Wu, B. Recent ecological transitions in China: Greening, browning, and influential factors. Sci. Rep. 2015, 5, 8732. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Mu, X.; Li, R.; Fleskens, L.; Stringer, L.C.; Ritsema, C.J. Co-evolution of soil and water conservation policy and human-environment linkages in the Yellow River Basin since 1949. Sci. Total Environ. 2015, 508, 166–177. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.J.; Wang, S.; Liu, Y.; Liu, J.B.; Liang, W.; Miao, C.Y. Hydrogeomorphic Ecosystem Responses to Natural and Anthropogenic Changes in the Loess Plateau of China. Annu. Rev. Earth Planet. Sci. 2017, 45, 223–243. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zhao, Q.; Zhao, Z. Effects of ecological restoration projects on changes in land cover: A case study on the Loess Plateau in China. Sci. Rep. 2017, 7, 44496. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Liang, W.; Fu, B.; Wang, S.; Zhang, W.; Jin, Z.; Feng, X.; Yan, J.; Liu, Y.; Zhou, S. Quantification of the ecosystem carrying capacity on China’s Loess Plateau. Ecol. Indic. 2019, 101, 192–202. [Google Scholar] [CrossRef]
- Liang, W.; Bai, D.; Wang, F.Y.; Fu, B.J.; Yan, J.P.; Wang, S.; Yang, Y.T.; Long, D.; Feng, M.Q. Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China’s Loess Plateau. Water Resour. Res. 2015, 51, 6500–6519. [Google Scholar] [CrossRef]
- Bryan, B.A.; Gao, L.; Ye, Y.; Sun, X.; Connor, J.D.; Crossman, N.D.; Stafford-Smith, M.; Wu, J.; He, C.; Yu, D.; et al. China’s response to a national land-system sustainability emergency. Nature 2018, 559, 193–204. [Google Scholar] [CrossRef]
- Song, Y.; Xue, D.; Dai, L.; Wang, P.; Huang, X.; Xia, S. Land cover change and eco-environmental quality response of different geomorphic units on the Chinese Loess Plateau. J. Arid Land 2019, 12, 29–43. [Google Scholar] [CrossRef] [Green Version]
- Theobald, D.M.; Harrison-Atlas, D.; Monahan, W.B.; Albano, C.M. Ecologically-Relevant Maps of Landforms and Physiographic Diversity for Climate Adaptation Planning. PLoS ONE 2015, 10, e0143619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delang, C.O.; Yuan, Z. China’s Grain for Green Program: A Review of the Largest Ecological Restoration and Rural Development Program in the World; Springer International Publishing: Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Yin, Y.Y.; Tang, Q.H.; Liu, X.C.; Zhang, X.J. Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River basin. Hydrol. Earth Syst. Sci. 2017, 21, 791–804. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Wang, X.; Song, Y.; Chen, L.; Feng, Q. International Journal of Applied Earth Observation and Geoinformation. Ecol. Econ. 2010, 69, 1454–1462. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Classification and Regression Trees; Routledge: London, England, 1984. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Sedano, F.; Lisboa, S.; Duncanson, L.; Ribeiro, N.; Sitoe, A.; Sahajpal, R.; Hurtt, G.; Tucker, C. Monitoring intra and inter annual dynamics of forest degradation from charcoal production in Southern Africa with Sentinel—2 imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102184. [Google Scholar] [CrossRef]
- Huang, C.; Yang, Q.; Guo, Y.; Zhang, Y.; Guo, L. The pattern, change and driven factors of vegetation cover in the Qin Mountains region. Sci. Rep. 2020, 10, 20591. [Google Scholar] [CrossRef]
- Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K. Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 110–124. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Liu, D.; Duan, H.; Loiselle, S.; Hu, C.; Zhang, G.; Li, J.; Yang, H.; Thompson, J.R.; Cao, Z.; Shen, M.; et al. Observations of water transparency in China’s lakes from space. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102187. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Liu, X.P.; Huang, Y.H.; Xu, X.C.; Li, X.C.; Li, X.; Ciais, P.; Lin, P.R.; Gong, K.; Ziegler, A.D.; Chen, A.N.; et al. High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nat. Sustain. 2020, 3, 564–570. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.N.; Li, C.C.; Wang, J.; Huang, H.B.; Clinton, N.; Ji, L.Y.; Li, W.Y.; Bai, Y.Q.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [Green Version]
- Parente, L.; Mesquita, V.; Miziara, F.; Baumann, L.; Ferreira, L. Assessing the pasturelands and livestock dynamics in Brazil, from 1985 to 2017: A novel approach based on high spatial resolution imagery and Google Earth Engine cloud computing. Remote Sens. Environ. 2019, 232, 111301. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat sensor performance: History and current status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Lim, T.K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Lück, W.; van Niekerk, A. Evaluation of a rule-based compositing technique for Landsat-5 TM and Landsat-7 ETM+ images. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 1–14. [Google Scholar] [CrossRef]
- Flood, N. Seasonal Composite Landsat TM/ETM+ Images Using the Medoid (a Multi-Dimensional Median). Remote Sens. 2013, 5, 6481–6500. [Google Scholar] [CrossRef] [Green Version]
- Azzari, G.; Lobell, D.B. Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote Sens. Environ. 2017, 202, 64–74. [Google Scholar] [CrossRef]
- Dorren, L.K.A.; Maier, B.; Seijmonsbergen, A.C. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. For. Ecol. Manag. 2003, 183, 31–46. [Google Scholar] [CrossRef]
- Polykretis, C.; Grillakis, M.G.; Alexakis, D.D. Exploring the impact of various spectral indices on land cover change detection using change vector analysis: A case study of Crete Island, Greece. Remote Sens. 2020, 12, 319. [Google Scholar] [CrossRef] [Green Version]
- Defries, R.S.; Townshend, J.R.G. NDVI-derived land cover classifications at a global scale. Int. J. Remote Sens. 1994, 15, 3567–3586. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2010, 24, 583–594. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite-1 Symposium. Volume 1; NASA Special Publication: Washington, DC, USA, 1974; Volume 351, p. 309. [Google Scholar]
- Lewis, R.J. An introduction to classification and regression tree (CART) analysis. In Proceedings of the 2000 Annual Meeting of the Society for Academic Emergency Medicine, San Francisco, CA, USA, 22–25 May 2000. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Magnussen, S.; McDonald, S. Validation of a large area land cover product using purpose-acquired airborne video. Remote Sens. Environ. 2007, 106, 480–491. [Google Scholar] [CrossRef]
- Man, C.D.; Nguyen, T.T.; Bui, H.Q.; Lasko, K.; Nguyen, T.N.T. Improvement of land-cover classification over frequently cloud-covered areas using Landsat 8 time-series composites and an ensemble of supervised classifiers. Int. J. Remote Sens. 2017, 39, 1243–1255. [Google Scholar] [CrossRef]
- Fu, H.; Chen, J. Formation, features and controlling strategies of severe haze-fog pollutions in China. Sci. Total Environ. 2017, 578, 121–138. [Google Scholar] [CrossRef]
- Zhang, Y.; Guindon, B. Quantitative assessment of a haze suppression methodology for satellite imagery: Effect on land cover classification performance. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1082–1089. [Google Scholar] [CrossRef]
- Foody, G.M. Assessing the accuracy of land cover change with imperfect ground reference data. Remote Sens. Environ. 2010, 114, 2271–2285. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Stehman, S.V.; Woodcock, C.E. Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 2013, 129, 122–131. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, D.; Yu, L.; Cheng, Y.; Zhang, M.; Liu, X.; Xu, Y.; Fang, L.; Zhu, Z.; Gong, P. Long-Term Land Cover Dynamics (1986–2016) of Northeast China Derived from a Multi-Temporal Landsat Archive. Remote Sens. 2019, 11, 599. [Google Scholar] [CrossRef] [Green Version]
- Bontemps, S.; Defourny, P.; Radoux, J.; Van Bogaert, E.; Lamarche, C.; Achard, F.; Mayaux, P.; Boettcher, M.; Brockmann, C.; Kirches, G. Consistent global land cover maps for climate modelling communities: Current achievements of the ESA’s land cover CCI. In Proceedings of the ESA Living Planet Symposium, Edimburgh, UK, 9–13 September 2013; pp. 9–13. [Google Scholar]
- Tassi, A.; Vizzari, M. Object-Oriented LULC Classification in Google Earth Engine Combining SNIC, GLCM, and Machine Learning Algorithms. Remote Sens. 2020, 12, 3776. [Google Scholar] [CrossRef]
- Riad, P.; Graefe, S.; Hussein, H.; Buerkert, A. Landscape transformation processes in two large and two small cities in Egypt and Jordan over the last five decades using remote sensing data. Landsc. Urban Plan. 2020, 197, 103766. [Google Scholar] [CrossRef]
- Li, J.; Peng, S.; Li, Z. Detecting and attributing vegetation changes on China’s Loess Plateau. Agric. For. Meteorol. 2017, 247, 260–270. [Google Scholar] [CrossRef]
- Guo, J.; Gong, P. Forest cover dynamics from Landsat time-series data over Yan’an city on the Loess Plateau during the Grain for Green Project. Int. J. Remote Sens. 2016, 37, 4101–4118. [Google Scholar] [CrossRef]
- Song, C.H.; Zhang, Y.L.; Mei, Y.; Liu, H.; Zhang, Z.Q.; Zhang, Q.F.; Zha, T.G.; Zhang, K.R.; Huang, C.L.; Xu, X.N.; et al. Sustainability of Forests Created by China’s Sloping Land Conversion Program: A comparison among three sites in Anhui, Hubei and Shanxi. For. Policy Econ. 2014, 38, 161–167. [Google Scholar] [CrossRef]
- Cao, S.X.; Xu, C.G.; Chen, L.; Wang, X.Q. Attitudes of farmers in China’s northern Shaanxi Province towards the land-use changes required under the Grain for Green Project, and implications for the project’s success. Land Use Policy 2009, 26, 1182–1194. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Ma, K.; Zhou, H.; Wang, J. The relationships between land use and soil conditions in the hilly area of the loess plateau in northern Shaanxi, China. Catena 2000, 39, 69–78. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Fu, B.; Ding, J.; Wang, S. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Sci. Total Environ. 2017, 607–608, 1250–1263. [Google Scholar] [CrossRef]
- Wang, F.; Liang, W.; Fu, B.; Jin, Z.; Yan, J.; Zhang, W.; Fu, S.; Yan, N. Changes of cropland evapotranspiration and its driving factors on the loess plateau of China. Sci. Total Environ. 2020, 728, 138582. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Wang, S.; Zhao, X.; Gao, X.; Liu, S. Soil properties of apple orchards on China’s Loess Plateau. Sci. Total Environ. 2020, 723, 138041. [Google Scholar] [CrossRef]
- Tang, Q.; Bennett, S.J.; Xu, Y.; Li, Y. Agricultural practices and sustainable livelihoods: Rural transformation within the Loess Plateau, China. Appl. Geogr. 2013, 41, 15–23. [Google Scholar] [CrossRef]
- Xu, Z.; Chau, S.N.; Chen, X.; Zhang, J.; Li, Y.; Dietz, T.; Wang, J.; Winkler, J.A.; Fan, F.; Huang, B.; et al. Assessing progress towards sustainable development over space and time. Nature 2020, 577, 74–78. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.S.; Fang, F.; Li, Y.H. Key issues of land use in China and implications for policy making. Land Use Policy 2014, 40, 6–12. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Liu, L.; Xu, X.; Chen, X. Assessing the impact of urban expansion on potential crop yield in China during 1990–2010. Food Secur. 2015, 7, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.X.; Zhang, L.; Zhu, R.R.; Liu, C.M.; Sato, Y.; Fukushima, Y. Responses of streamflow to climate and land surface change in the headwaters of the Yellow River Basin. Water Resour. Res. 2009, 45, 641–648. [Google Scholar] [CrossRef]
- Li, J.; Liu, D.; Wang, T.; Li, Y.; Wang, S.; Yang, Y.; Wang, X.; Guo, H.; Peng, S.; Ding, J.; et al. Grassland restoration reduces water yield in the headstream region of Yangtze River. Sci. Rep. 2017, 7, 2162. [Google Scholar] [CrossRef] [PubMed]
Dataset | GEE ID | Dataset Provider | Period | Spatial Resolution |
---|---|---|---|---|
USGS Landsat 5 Surface Reflectance Tier 1 | LANDSAT/LT05/C01/T1_SR | USGS | 1986–2011 | 30 m |
USGS Landsat 7 Surface Reflectance Tier 1 | LANDSAT/LE07/C01/T1_SR | USGS | 2012 | 30 m |
USGS Landsat 8 Surface Reflectance Tier 1 | LANDSAT/LC08/C01/T1_SR | USGS | 2013–2018 | 30 m |
SRTM Digital Elevation Data | USGS/SRTMGL1_003 | NASA/USGS/JPL-Caltech | 2000 | 30 m |
Global SRTM Topographic Diversity | CSP/ERGo/1_0/Global/SRTM_topoDiversity | Conservation Science Partners | 2000 | 270 m |
First-Degree Class | Second-Degree Class | Abbreviation | Description |
---|---|---|---|
Forests | Deciduous Broadleaf Forests | DBF | Dominated by deciduous broadleaf trees (canopy > 2 m). Tree cover > 60%. |
Evergreen Needleleaf Forests | ENF | Dominated by evergreen conifer trees (canopy > 2 m). Tree cover > 60%. | |
Mixed Forests | MF | Dominated by neither deciduous nor evergreen (24–36% to 50–50% of each) tree type (canopy > 2 m). Tree cover > 60%. | |
Shrublands | Shrublands | Shrub | Dominated by woody perennials (1–2 m height) > 60% cover. |
Grasslands | Low Coverage Grasslands | LCG | Herbaceous plants with low coverage (<30%), usually covered by annuals xerophyte grasslands. |
Medium Coverage Grasslands | MCG | Herbaceous plants with medium coverage (30~60%). | |
High Coverage Grasslands | HCG | Herbaceous plants with high coverage (>60%), usually covered by perennial temperate grasslands | |
Agricultural Lands | Croplands | Crop | Dominated by herbaceous annuals (<2 m). At least 80% cultivated cereal crops. |
Orchard and Terrace | OT | Mosaics of agricultural or artificial vegetation growing on sloping land, including orchards and terraces. | |
Urban and Built-up | Urban and Built-up | UB | At least 60% of area is covered by building materials, transportation lands, and other impervious surface area. |
Water Bodies | Surface Water | Water | At least 60% of area is covered by water located on top of the Earth’s surface. |
Wetlands | Wet | Permanently inundated lands with 30–60% water cover and > 10% vegetated cover. | |
Snow and Ice | Snow | At least 60% of area is covered by snow and ice. | |
Desert and Low-vegetated Lands | Desert and Bare soil | DB | At least 60% of area is covered by desert or bare rock and soil. |
Low-vegetated Lands | LV | At least 60% of area is low-vegetated lands with less than 10% vegetation, such as tundra and saline-alkali soil. |
Prediction | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Class | DBF | ENF | MF | Shrub | LCG | MCG | HCG | Crop | OT | UB | Water | Wet | Snow | DB | LV | PA | |
Reference | DBF | 160 | 0 | 1 | 6 | 1 | 3 | 0 | 2 | 25 | 3 | 1 | 0 | 0 | 0 | 0 | 79% |
ENF | 1 | 80 | 1 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 93% | |
MF | 1 | 1 | 130 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 96% | |
Shrub | 2 | 0 | 1 | 67 | 5 | 0 | 2 | 0 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 82% | |
LCG | 4 | 0 | 3 | 0 | 205 | 14 | 12 | 4 | 10 | 6 | 1 | 1 | 4 | 1 | 0 | 77% | |
MCG | 0 | 0 | 2 | 0 | 2 | 225 | 13 | 6 | 12 | 2 | 1 | 0 | 0 | 0 | 1 | 85% | |
HCG | 2 | 2 | 2 | 0 | 2 | 2 | 430 | 5 | 11 | 0 | 0 | 4 | 2 | 0 | 0 | 93% | |
Crop | 8 | 0 | 5 | 4 | 51 | 31 | 5 | 332 | 30 | 25 | 4 | 10 | 0 | 4 | 2 | 65% | |
OT | 9 | 2 | 8 | 4 | 8 | 42 | 0 | 15 | 269 | 1 | 0 | 3 | 0 | 0 | 4 | 74% | |
UB | 0 | 0 | 0 | 0 | 8 | 5 | 0 | 6 | 10 | 44 | 0 | 0 | 0 | 0 | 1 | 59% | |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 77 | 18 | 1 | 1 | 1 | 75% | |
Wet | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 46 | 0 | 0 | 0 | 98% | |
Snow | 0 | 0 | 0 | 0 | 0 | 0 | 7 | 1 | 0 | 0 | 0 | 2 | 71 | 1 | 2 | 85% | |
DB | 0 | 0 | 0 | 0 | 5 | 2 | 3 | 1 | 1 | 0 | 1 | 1 | 3 | 76 | 0 | 82% | |
LV | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 1 | 0 | 0 | 0 | 0 | 4 | 2 | 73 | 87% | |
UA | 86% | 94% | 84% | 80% | 71% | 69% | 90% | 89% | 72% | 52% | 91% | 54% | 84% | 89% | 87% | 80% | |
F1-score | 0.82 | 0.94 | 0.90 | 0.81 | 0.74 | 0.77 | 0.92 | 0.75 | 0.73 | 0.55 | 0.82 | 0.70 | 0.84 | 0.85 | 0.87 | ||
Support | 202 | 86 | 135 | 82 | 265 | 264 | 462 | 511 | 365 | 74 | 102 | 47 | 84 | 93 | 84 |
Class | 2018 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DBF | ENF | MF | Shrub | LCG | MCG | HCG | Crop | OT | UB | Water | Wet | Snow | DB | LV | Total | ||
1986 | DBF | 3.54 | 0.01 | 1.18 | 1.04 | 0.05 | 0.44 | 0.17 | 2.38 | 0.01 | 0.04 | 8.87 | |||||
ENF | 0.01 | 0.03 | 0.11 | 0.02 | 0.17 | ||||||||||||
MF | 0.85 | 0.05 | 2.59 | 0.32 | 0.01 | 0.01 | 0.16 | 0.26 | 0.28 | 0.06 | 4.58 | ||||||
Shrub | 0.57 | 0.54 | 0.61 | 0.01 | 0.03 | 0.67 | 2.43 | ||||||||||
LCG | 0.11 | 0.06 | 0.04 | 7.54 | 1.39 | 0.41 | 1.43 | 0.17 | 0.01 | 0.38 | 0.15 | 11.68 | |||||
MCG | 0.06 | 0.02 | 0.01 | 0.96 | 6.48 | 0.71 | 1.35 | 0.16 | 0.01 | 0.36 | 0.79 | 10.91 | |||||
HCG | 0.01 | 0.81 | 0.04 | 0.02 | 15.93 | 0.29 | 0.02 | 0.01 | 0.01 | 0.13 | 0.17 | 0.83 | 18.26 | ||||
Crop | 0.09 | 0.07 | 0.02 | 0.66 | 0.72 | 0.07 | 9.32 | 1.52 | 2.02 | 0.06 | 0.09 | 0.14 | 0.10 | 14.88 | |||
OT | 0.70 | 0.53 | 0.55 | 0.39 | 0.23 | 0.33 | 10.40 | 0.15 | 0.02 | 0.03 | 13.33 | ||||||
UB | 0.01 | 0.14 | 0.07 | 0.58 | 0.23 | 1.26 | 0.14 | 0.02 | 0.03 | 0.03 | 2.52 | ||||||
Water | 0.01 | 0.01 | 0.04 | 0.16 | 0.02 | 0.19 | 0.42 | 0.05 | 0.01 | 0.02 | 0.94 | ||||||
Wet | 0.02 | 0.49 | 0.02 | 0.01 | 0.03 | 0.03 | 0.08 | 0.03 | 0.02 | 0.07 | 0.80 | ||||||
Snow | 0.01 | 0.48 | 0.44 | 0.01 | 0.94 | ||||||||||||
DB | 0.77 | 0.23 | 0.18 | 0.25 | 0.23 | 0.02 | 0.02 | 0.06 | 1.84 | 0.41 | 4.01 | ||||||
LV | 0.03 | 0.15 | 0.45 | 0.37 | 0.09 | 0.07 | 0.07 | 0.01 | 0.01 | 0.01 | 0.11 | 0.99 | 2.35 | ||||
Total | 5.94 | 0.09 | 5.96 | 2.61 | 10.75 | 10.09 | 17.71 | 12.60 | 18.38 | 4.31 | 0.73 | 0.28 | 0.66 | 3.05 | 3.51 | 96.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Q.; Liang, W.; Fu, B.; Zhang, W.; Yan, J.; Lü, Y.; Yue, C.; Jin, Z.; Lan, Z.; Li, S.; et al. Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine. Remote Sens. 2021, 13, 1299. https://doi.org/10.3390/rs13071299
Ji Q, Liang W, Fu B, Zhang W, Yan J, Lü Y, Yue C, Jin Z, Lan Z, Li S, et al. Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine. Remote Sensing. 2021; 13(7):1299. https://doi.org/10.3390/rs13071299
Chicago/Turabian StyleJi, Qiulei, Wei Liang, Bojie Fu, Weibin Zhang, Jianwu Yan, Yihe Lü, Chao Yue, Zhao Jin, Zhiyang Lan, Siya Li, and et al. 2021. "Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine" Remote Sensing 13, no. 7: 1299. https://doi.org/10.3390/rs13071299
APA StyleJi, Q., Liang, W., Fu, B., Zhang, W., Yan, J., Lü, Y., Yue, C., Jin, Z., Lan, Z., Li, S., & Yang, P. (2021). Mapping Land Use/Cover Dynamics of the Yellow River Basin from 1986 to 2018 Supported by Google Earth Engine. Remote Sensing, 13(7), 1299. https://doi.org/10.3390/rs13071299