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Abstract: Changes in the land use/cover alter the Earth system processes and affect the provision of
ecosystem services, posing a challenge to achieve sustainable development. In the past few decades,
the Yellow River (YR) basin faced enormous social and environmental sustainability challenges
associated with environmental degradation, soil erosion, vegetation restoration, and economic
development, which makes it important to understand the long-term land use/cover dynamics
of this region. Here, using three decades of Landsat imagery (17,080 images) and incorporating
physiography data, we developed an effective annual land use/cover mapping framework and
provided a set of 90 m resolution continuous annual land use/cover maps of the YR basin from 1986
to 2018 based on the Google Earth Engine and the Classification and Regression Trees algorithm.
The independent random sampling validations based on the field surveys (640 points) and Google
Earth (3456 points) indicated that the overall accuracy of these maps is 78.3% and 80.0%, respectively.
The analysis of the land system of the YR basin showed that this region presents complex temporal
and spatial changes, and the main change patterns include no change or little change, cropland loss
and urban expansion, grassland restoration, increase in orchard and terrace, and increase in forest
during the entire study period. The major land use/cover change has occurred in the transitions
from forests, grasslands, and croplands to the class of orchard and terrace (19.8% of all change
area), which not only increase the greenness but also raised the income, suggesting that YR progress
towards sustainable development goals for livelihood security, economic growth, and ecological
protection. Based on these data and analysis, we can further understand the role of the land system
in the mutual feedback between society and the environment, and provide support for ecological
conservation, high-quality development, and the formulation of sustainable management policies in
this basin, highlighting the importance of continuous land use/cover information for understanding
the interactions between the human and natural systems.

Keywords: Google Earth Engine; Landsat; land use/cover change; Loess Plateau; Yellow River basin

1. Introduction

A long-standing global challenge for achieving sustainable development is how to
satisfy the ever-growing demands of humans while maintaining the integrity of ecosys-
tems [1]. Land use/cover is an important source of information to understand the complex
interaction between human activities and the ecological environment [2], which is both

Remote Sens. 2021, 13, 1299. https://doi.org/10.3390/rs13071299 https://www.mdpi.com/journal/remotesensing

https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://doi.org/10.3390/rs13071299
https://doi.org/10.3390/rs13071299
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/rs13071299
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/13/7/1299?type=check_update&version=1


Remote Sens. 2021, 13, 1299 2 of 24

the cause and consequence of global environmental change [3,4]. The transformation of
the Earth’s biosphere is reflected in the change of the land system, which is considerably
altering Earth system processes, including surface energy balance [5], water cycle [6], and
the carbon cycle [7]. As the growing global population and more requires of forestry
and agricultural products, the intense land use/cover changes (LUCC) driven by human
activities will further intensify, which will put tremendous pressure on the structure and
function of ecosystems as well as the provision of ecosystem services [8,9]. Meanwhile, the
demand for land-based harvestable biomass (e.g., food, fuel, and fiber) will surge in the
coming decades [10], which is the challenge of managing trade-offs between maintaining
the capacity of the ecosystem and human needs [3,11]. Therefore, a better understanding
of the long-term gradual changes in land use/cover is critical to advance our knowledge of
global sustainability and the coupled human-nature system.

As the fastest growing economy in the world, China has 18% of the world’s popu-
lation [12]. Recent research reports that China and India led in global greening through
land-use management [13]. The increase in leaf area of China was mainly from forests
and croplands. Thanks to the implementation of large-scale ecological conservation and
restoration programs by the government, The Huang He, or Yellow River (YR) basin and
particularly its middle parts (the Loess Plateau) exhibited the largest vegetation greening
trend in China [14,15]. The YR basin is an important ecological corridor in China but
with a fragile ecological environment and severe rural poverty, which is a global hotspot
of competition between human and natural systems and it is suffering from soil erosion
and environmental degradation [16]. With the combined effects of environmental factors,
ecological conservation programs, and socio-economic, the vegetation cover and land
use/cover of this arid and semiarid area experienced a dramatic transformation [17,18].
In recent years, with great pressure from rapid population rise, resource consumption,
and environmental change, the dynamic changes of social systems and ecological systems
have become more intensive and complex. The potential competition between ecosystems
and humans also has become increasingly fierce, which seriously threatens the sustain-
able development of this region [19–21]. However, the long-term change process of the
environmental pattern in the YR basin is still not clear, and the implementation effects of
environmental conservation programs also need long-term monitoring and evaluation. It
is highly desirable to generate continuous time series of LUCC information to reveal the
change process and characteristics of the land system of the YR basin.

In fact, there are already many land use/cover products, which have been applied to
different fields in the YR basin. As listed in Table S1, most of the previous studies on the
YR basin used a fixed (single) or short time period of the land use/cover map. Although
several global land use/cover products exist, these data products cannot have a high spatial
resolution at the same time as high temporal resolution, and vice versa. In the past three
decades, the YR basin has witnessed large-scale environmental damage and restoration,
which deeply affected the regional land-system [18,22]. More importantly, the YR basin has
large terrain undulations and strong surface heterogeneity which affect the trend of LUCC
and the response of the ecological system a lot [23,24]. Research on the relevant processes of
the basin puts forward higher requirements on the continuity and accuracy of the data. On
the other hand, the classification strategy and scheme with existing data cannot accurately
describe the transformation of special land features in this area, and a spatially explicit
assessment and optimization for ecosystem services based on land use/cover management
cannot be achieved feasibly.

The objectives of this study are: (1) provide a set of continuous annual land use/cover
maps of the YR basin; (2) analyze land use/cover dynamics, and discuss the characteristics
and potential causes of LUCC; (3) evaluate the effects of environmental conservation pro-
grams such as the Grain for Green (GFG) program [25] and discover the environmental
crisis that may be hidden behind LUCC. These maps produced by this study can provide a
research basis for other key scientific issues related to land system and ecological environ-
ment changes in the YR basin. Such detailed and multifaceted LUCC analyses can provide
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new insights into regional dynamics, which are important for scientists and policy makers
for assessing several issues associated with environmental sustainability and human and
natural systems.

2. Materials and Methods
2.1. Study Area

The YR, the cradle of Chinese civilization, is a major source of freshwater for approxi-
mately 107 million people and consists of 12.6 million hectares of cultivated land which
provide 18% of the food production in China [26]. The main crops planted in the YR
basin are wheat and maize, some soybeans and rice are also planted. It has complicated
landforms which comprise mountains, basins, sub-plateaus, gullies, hills, and alluvial
plains ranging in elevation from −52 to 6254 m. This basin is characterized by a continental
climate, with a subordinate arid climate in the western part, a semiarid climate in the
middle part, and a semi-humid climate in the eastern part. Due to various landforms and
climate types, the YR has formed many ecosystems suitable for numerous kinds of life
and vegetation. The Loess Plateau, the middle part of the YR basin, is one of the four
major plateaus in China. This region is an important energy (e.g., coal, gas, and oil) and
chemical industry base in North China. As a result of thousands of years of soil erosion and
environmental problems, 70% of the Loess Plateau has become a region dominated by hills
and gullies. To mitigate serious environmental problems, a series of conservation programs,
such as the GFG program and the Natural Forest Conservation (NFC) program [27], have
been widely implemented within this region by the Chinese government. These programs
have greatly altered the landscape, with the vegetation cover on the Loess Plateau having
doubled from 1999 to 2013 (31.6% to 59.6%) [14].

The study area combines the boundaries of the YR basin and the entire Loess Plateau
with a buffer zone of 10 km, and the total area of the whole region is 967,000 km2 or roughly
one-tenth of the territory of China (Figure 1). The YR basin is critical for China’s socio-
economic development as well as ecosystem conservation. Over the past few decades, the
economy, population, and grain production of the YR basin have all increased rapidly. In
the context of drastic human activities and climate change, the YR basin has also witnessed
regional greening and reduction of runoff and sediment (Figure 1). These changes not only
put great pressure on the land system of the YR basin, but also brought huge challenges to
the managers of the area in guaranteeing the security of food, energy, and water. Therefore,
the study area needs detailed information about the land use/cover dynamic to promote
conservation of the ecosystem and improve people’s lives in this water-limited region.

2.2. Methods and Data in Google Earth Engine

Aiming at the production of continuous annual land use/cover data, this study
proposed an effective land use/cover classification framework, including Landsat data
filtering and anomalous data repair methods, feature variable selection, result optimization,
and assessment strategies. The entire workflow was based on the Google Earth Engine
(GEE) platform, including data preprocessing, annual land use/cover data production, and
LUCC analysis (Figure 2). The data used were mainly from filtered and repaired Landsat
data which included six spectral bands (i.e., blue, green, red, near infrared, shortwave
infrared 1, shortwave infrared 2), and digital elevation data of Shuttle Radar Topography
Mission (SRTM) [28] (with variables elevation, slope, and topographic diversity). Besides,
four spectral indices calculated based on Landsat data were also added to improve the
classification performance. We chose the Classification and Regression Trees (CART) [29]
as the classification method. Through space-time optimizing strategy, the time series of the
mapping results were optimized and smoothed. Finally, after validation, the continuous
annual land use/cover of the YR basin was produced. Then, the land use/cover transition
matrix and transition network were used to analyze the spatiotemporal changes and
transition characteristics of various land use/cover classes in this basin during the past
33 years.
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Figure 1. Location of the Yellow River basin and the Loess Plateau. The data source of average temperature and the average
total precipitation of the study area is ERA5 (the fifth generation European Centre for Medium-Range Weather Forecasts
atmospheric reanalysis of the global climate). The data source of the average leaf area index of the study area is AVHRR
(Advanced Very High-Resolution Radiometer). The total runoff and total sediment data are from the statistical data of the
Huayuankou hydrological station (the boundary between the middle and lower reaches of the YR). The data of the regional
sum of Gross Domestic Product (GDP), population, and grain production come from the statistical yearbook.
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Figure 2. Workflow for the long-term annual land use/cover production and land use/cover change analysis in this study.
Major modules include data preprocessing, annual land use/cover data production, and land use/cover change analysis.

GEE is a planetary-scale database and data processing platform driven by Google
Cloud Computing, which contains petabyte-scale remote sensing images and geoscientific
datasets. Meanwhile, it has planetary-scale processing capabilities, providing researchers
and developers with a convenient and fast platform for data acquisition, processing, and
analysis [30]. Therefore, GEE provides a powerful tool for data-driven scientific research
and has been widely used to monitor the changes in land use/cover in a single class such as
forest [31,32], cropland [33,34], water body [35,36], and urban [37,38] or all land use/cover
classes [39,40] over many areas around the world or for the entire globe. This study used
33 years of historical Landsat images and other auxiliary datasets to map the annual land
use/cover of the YR basin during 1986–2018 (Table 1).

Table 1. Datasets used in this study. All are available on the GEE platform. USGS represent United States Geological Survey.

Dataset GEE ID Dataset Provider Period Spatial Resolution

USGS Landsat 5 Surface
Reflectance Tier 1 LANDSAT/LT05/C01/T1_SR USGS 1986–2011 30 m

USGS Landsat 7 Surface
Reflectance Tier 1 LANDSAT/LE07/C01/T1_SR USGS 2012 30 m

USGS Landsat 8 Surface
Reflectance Tier 1 LANDSAT/LC08/C01/T1_SR USGS 2013–2018 30 m

SRTM Digital Elevation
Data USGS/SRTMGL1_003 NASA/USGS/JPL-

Caltech 2000 30 m

Global SRTM Topographic
Diversity CSP/ERGo/1_0/Global/SRTM_topoDiversity Conservation

Science Partners 2000 270 m

The Landsat satellite images provide the longest temporal data of space-based earth
surface observations [41]. Due to the failure of the Landsat 7 Scan Line Corrector, all
Landsat 7 ETM + images have the problem of data loss gaps and are not directly ready
for use after 31 May 2003 [42]. We used surface reflectance data of Landsat 5 from 1986 to
2011, Landsat 7 in 2012, and Landsat 8 from 2013 to 2018, which have been atmospherically
corrected using the Landsat Ecosystem Disturbance Adaptive Processing System [43],
and include a cloud, shadow, water, and snow mask produced using the C Function of
Mask [44]. The SRTM V3 product was provided by the National Aeronautics and Space
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Administration (NASA) Jet Propulsion Laboratory (JPL) at a resolution of 1 arc-second
and the elevation information can be further calculated to reflect the terrain. Global SRTM
Topographic Diversity was based on the 30 m SRTM digital elevation data and represents
the variety of moisture and temperature conditions available to species at local habitat,
which expresses the theory that a higher variety of topo-climate niches can support species
persistence and higher diversity [24]. Combining the long-time series of remote sensing
images and these physiography variables can help distinguish different vegetation types
growing on the ground with different characteristics.

2.3. Classification Scheme

The land use/cover classification scheme used mainly followed the classes in the
International Geosphere-Biosphere Programme (IGBP) classification scheme according to
the capability of the data used and the regional features of the YR basin [45] (Table 2). The
grassland ecosystem is one of the most important ecosystems of the study area, and there
are certain differences in the climatic conditions of grassland distribution. Specifically, most
of the grasslands on the Loess Plateau grow in the xeric environments, whereas alpine
meadow with high coverage is the main grassland type in the source regions of the YR.
Therefore, we divided the grasslands into low, medium, and high coverage grasslands
according to the vegetation coverage. Taking into account the widely distributed terraces
and large numbers of economic forests (e.g., fruit trees) in the YR basin, our classification
scheme has an additional class of orchard and terrace. In other words, we separated
agricultural lands into two types, croplands as well as orchard and terrace classes. Finally,
the classification scheme in our study defined 15 classes and detailed descriptions of each
class can be found in Table 2.

Table 2. The classification scheme of this study.

First-Degree Class Second-Degree Class Abbreviation Description

Forests

Deciduous Broadleaf Forests DBF Dominated by deciduous broadleaf trees (canopy >
2 m). Tree cover > 60%.

Evergreen Needleleaf Forests ENF Dominated by evergreen conifer trees (canopy >
2 m). Tree cover > 60%.

Mixed Forests MF
Dominated by neither deciduous nor evergreen
(24–36% to 50–50% of each) tree type (canopy >

2 m). Tree cover > 60%.

Shrublands Shrublands Shrub Dominated by woody perennials (1–2 m height) >
60% cover.

Grasslands

Low Coverage Grasslands LCG Herbaceous plants with low coverage (<30%),
usually covered by annuals xerophyte grasslands.

Medium Coverage Grasslands MCG Herbaceous plants with medium coverage
(30~60%).

High Coverage Grasslands HCG Herbaceous plants with high coverage (>60%),
usually covered by perennial temperate grasslands

Agricultural Lands

Croplands Crop Dominated by herbaceous annuals (<2 m). At least
80% cultivated cereal crops.

Orchard and Terrace OT
Mosaics of agricultural or artificial vegetation

growing on sloping land, including orchards and
terraces.

Urban and Built-up Urban and Built-up UB
At least 60% of area is covered by building
materials, transportation lands, and other

impervious surface area.
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Table 2. Cont.

First-Degree Class Second-Degree Class Abbreviation Description

Water Bodies

Surface Water Water At least 60% of area is covered by water located on
top of the Earth’s surface.

Wetlands Wet Permanently inundated lands with 30–60% water
cover and > 10% vegetated cover.

Snow and Ice Snow At least 60% of area is covered by snow and ice.

Desert and
Low-vegetated

Lands

Desert and Bare soil DB At least 60% of area is covered by desert or bare
rock and soil.

Low-vegetated Lands LV
At least 60% of area is low-vegetated lands with

less than 10% vegetation, such as tundra and
saline-alkali soil.

2.4. Classification Method and Strategy

To composite more high-quality and clear images, we filtered out Landsat scenes with
high cloud coverage (“Cloud cover filtering” in Figure 2). Finally, 17,080 Landsat scenes
(cloud cover percentage less than 10%) were achieved from 1986 to 2018 in the study area
(Figure S1). The images used are more distributed in high latitudes (37◦N–43◦N) than
in low latitudes (31◦N–37◦N), including 12957 scenes Landsat 5, 527 scenes Landsat 7,
and 3596 scenes Landsat 8 images. Despite the comparative good quality, anomalies of
Landsat still occurred occasionally, which may affect classification results. Here, two types
of anomalous data need to be filtered and repaired (“Detect and remove anomalous data”
in Figure 2). The first type is the so-called Christmas tree anomaly (Figure S2a). When
the image was viewed in 3-band Red Green Blue (RGB) combination, the anomalous data
appeared as red, green, and blue pixels at the edge of the image scene. We clipped the
anomalous data directly using an inner buffer of 3000 m for each image scene, which will
not affect the classification results. The second type of anomalous data is well-known as a
caterpillar track (Figure S2b). The first three bands (Blue, Green, and Red) of the caterpillar
track were often negative, and some large outliers were found in Band 6 of brightness
temperature (B6), which were usually equal to or greater than 20,000. In most cases, the
caterpillar tracks run throughout the whole image scene. Therefore, we used the buffer
tool to construct an annulus region from −5000 m to −15,000 m (Figure S2c) and obtained
the maximum of the B6 of pixels value in the annulus. If this maximum value was greater
than 15,000, we marked it as anomalous data and would not use it in the classification.
Besides, data gaps may occur for pixels covered by few Landsat scenes when masking
cloud and cloud shadow pixels. We also need to fill the gaps of Landsat 7 images. To repair
these two cases of missing data (“Fill and repair missing data” in Figure 2), we blended the
original data onto an image by applying a morphological mean filter (ee.Image.blend() in
GEE Application Programming Interface (API)), then, we got the repaired image that not
only retained the original data but also filled the gaps (Figure S2d).

Aiming at a sufficient amount of good quality Landsat scenes for classification for a
target year, referred to the practice in previous studies [40,46], we choose 24 months as the
chosen time window to composite the annual image for the target year (“Temporal filtering”
in Figure 2). For the YR basin, we tried six composite methods including simple composite,
greenest pixel composite, least-cloudy pixel composite, medoid composite [47], mean
composite, and median composite on GEE (Figure S3). Among them, the median composite
is a method that has a better effect and saves calculation memory [48] (“Composite images
with median reducer” in Figure 2). Median composite is a kind of pixel-based image
compositing method that can eliminate the influence of extreme values due to clouds and
shadows and can avoid the edge effects between Landsat scenes. 33 annual maps of the
study area were composited by all filtered and repaired Landsat scenes using median
composite.
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Including ancillary environmental data and various spectral indices during the classi-
fication has been demonstrated to improve land type mapping accuracy [49,50]. Among
them, vegetation indexes such as Normalized Difference Vegetation Index (NDVI) can help
the classifier to distinguish vegetation types from the perspective of vegetation phenol-
ogy [51]. To find appropriate data and spectral indices as feature sets for classification, we
combined the Landsat 6 spectral bands with other ancillary data or various spectral indices
calculated from the Landsat 6 spectral bands. The accuracy of the classifier was assessed
using these data as the feature set in the year 2010. We selected the top 7 combinations of
accuracy from 16 combinations to participate in the classification (“Feature variable” in
Figure 2), which could improve the classification accuracy (Table S2). Finally, the data or
bands involved in the classification included Landsat 6 spectral bands, elevation, slope,
topographic diversity, Normalized Difference Built-up Index (NDBI) [52] (Equation (1)),
Normalized Difference Moisture Index (NDMI) [53] (Equation (2)), Soil Adjusted Veg-
etation Index (SAVI) [54] (Equation (3)), NDVI [55,56] (Equation (4)), maximum NDVI
(NDVI_max) (95th percentiles of NDVI for each pixel in target years), and minimum NDVI
(NDVI_min) (5th percentiles of NDVI for each pixel in target years). The confusion matrix
of the final combination classifier (Table S3) proved that these feature sets can distinguish
these 15 land use/cover classes well.

NDBI =
Rshortwave infrared 1 − Rnear infrared
Rshortwave infrared 1 + Rnear infrared

(1)

NDMI =
Rnear infrared − Rshortwave infrared 1
Rnear infrared + Rshortwave infrared 1

(2)

SAVI =
Rnear infrared − Rred

Rnear infrared + Rred + L
× (1 + L); (L = 0.6) (3)

NDVI =
Rnear infrared − Rred
Rnear infrared + Rred

(4)

where R represents the surface reflectance of the corresponding Landsat band. In Equation
(3), the correction factor (L) values differed with vegetation density. The value of L ranges
from 0.25 to 1. The higher the vegetation density has the lower the value of L. According to
the vegetation status of the study area, we set L as 0.6.

We selected reference samples evenly distributed within the study area every year.
The training sample polygons were manually drawn in GEE and visually judged by the
RGB true color composite image of Landsat and high-resolution images in Google Earth,
and also referenced the Moderate-resolution Imaging Spectroradiometer (MODIS) Land
Cover Type product. In these sample regions, we extracted the values of pixels in the
feature set for the classifier’s training. The distribution of these sample polygons in time
and class was shown in Figure S4.

To identify the best suitable classification method for land use/cover mapping over
the study area, we took the year 2010 as a testing example. The test feature sets included
6 spectral bands of Landsat 5 and 977 reference sample regions. To assess the accuracy
of the classifier, 80% of the reference samples were used for training and the remaining
20% were used for validation. The classification methods involved in testing can be used
directly in GEE (Table S4). The Random Forest and the Support Vector Machine were
not available for classification work because of the large study area (~1 million km2) and
more classes (15 classes), and the user memory limitations which usually resulted into
the internal server error of GEE. By comparing the accuracy of different classification
methods, the CART, which saves user memory and has higher accuracy, was chosen as our
classifier [57]. The CART classifier is formed by the collection of rules based on variables in
the dataset and produces either classification or regression trees, depending on whether
the dependent variable is continuous or categorical, respectively. The CART classifier
constructs a prediction model from the training data, partitions the data space recursively,
fits each partition prediction model to predict continuous test variables and target variables,
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and obtains a decision tree model. Aiming at avoiding the over-fitting problem in the
classification process, the CART algorithm uses cross-validation to prune the decision tree.
If the branch maintains a low error rate, it is retained, otherwise, it is deleted, and finally,
an optimal binary tree that takes into account the complexity and the error rate is obtained.
In each year’s classification, we use random 80% of the reference samples to participate in
training, and the remaining 20% is used to verify the training accuracy of the classifier.

In order to optimize the land use/cover classification results, we used the classifier to
execute classification 10 times for each year and composited these 10 maps using a reducer
that computes the mode of the inputs (ee.Reducer.mode() in GEE API). This was taken
to get 1 annual map from the 10 runs. The main purpose of this operation is to eliminate
the uncertainty of the CART method. Next, to adjust temporal consistency, we used the
sliding window in the multi-year time series of classification results which will update the
focal year’s land use/cover class label to the mode values of the class label time series for
the time period. We tested the 3 and 5-year sliding windows with reference samples in 33
years and found the 5-year sliding window was more effective (Figure S5). By using this
approach, we smoothed the time series of the mapping results to avoid noise interference
as much as possible. Finally, we created the optimized annual land use/cover map series
of the YR basin (Processes of “Annual land use/cover data production” in Figure 2).

2.5. Data Assessment and Analysis

The annual land use/cover maps of the YR basin were assessed using two indepen-
dent validation points sets (“Validation” in Figure 2). First, we collected field survey data
during 2015, 2017, 2018, and 2019 with 640 ground samples totally which were mainly from
Shaanxi, Shanxi, Inner Mongolia, and Ningxia province (Figure S6). Second, given that the
long-term field data for validating historical LUCC are hard to obtain, we used the stratified
random sampling approach to collect 3456 validation samples from high-resolution histor-
ical images in Google Earth, which is a practical sampling method that can satisfy most
of the accuracy assessment objectives and the desirable design criteria [58,59]. Limited
by the initiation of the commercial era of high spatial resolution satellites (approximately
2000), high-resolution remote sensing images before 2001 are difficult to obtain. Therefore,
we performed a stratified random sampling validation on the last 18 LUCC maps which
will have small standard errors in the accuracy and area estimates and benefit a full-scale
accuracy assessment of the maps [58,59]. 600 validation points were selected in 2018 due to
the ease of obtaining high-resolution images in this year. In 2001–2017, a stratified random
sampling with the following criteria was designed:

1. Independent sampling: Validation sample points are created independently from
training data. All validation points are visually interpreted manually according to the
high-resolution images of the corresponding year. If there is no high-resolution image
in the corresponding year, refer to the high-resolution image near this point in time or
the Landsat image of the corresponding year.

2. Random sampling: Each validation points of each year are spatially independent and
randomly distributed in the study area.

3. Stratified sampling: The sample unit for the validation sample was a pixel of 90-m
resolution. The sample size was designed to be 168 validation points per year, and a
certain number of points will be selected in each class.

4. Balanced sampling: Stratified sampling with proportional allocation balances the
proportion of each land use/cover class sample to close to the proportion of the area
of each class from the map to be validated. To compromise between favoring user’s
versus producer’s and overall accuracies, we increased the sample size in the rarer
classes (No less than 85 per class, that is no less than 5 points per class per year).
Finally, 2856 samples (168*17) were sampled in 17 years.

Meanwhile, our land use/cover map was compared with the seven existing land
use/cover products in the first-degree classes (Table S5), including forests, shrublands,
grasslands, agricultural lands, urban and built-up, water bodies, and desert and low-
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vegetated lands. We statistically compared the total area of each land use/cover class in
the study area and selected a region covered by multiple classes of land use/cover in the
middle reaches of the YR basin to compare the spatial differences in detail.

The land use/cover dynamic detection and analysis methods used in this study mainly
include the following:

1. Statistics of the area of each land use/cover class. Use the “ee.Image.pixelArea()” in
GEE API to implement the area calculation using equal-area projection.

2. Construction of land use/cover transition matrix and transition network between
multiple maps. Implement transition type mask extraction and area statistics in GEE.

3. Detection method of area ratio change trend in grids. Use ridge regression to obtain
the changing trend in the area ratio of each grid (0.5◦) for each class. Furthermore,
use the k means algorithm to cluster these change trends, and get several types of
LUCC patterns in the study area.

4. Drawing of the spatiotemporal map of land use/cover classes transition. Display the
temporal and geographical distribution of land class transition on the map.

3. Results
3.1. Annual Mapping Results and Assessment

The land use/cover mapping result of the YR basin in 2018 is shown in Figure 3a.
During the study time period, the dominant land use/cover class was grasslands, including
the high coverage grasslands (18.8%) in the headwaters of the YR basin, the medium
coverage grasslands (12.5%) in the northwestern part of the study area, and the arid low
coverage grasslands (11.6%) in the middle of the Loess Plateau (Figure 3a,b). This was
followed by agricultural lands, which were mainly distributed on the plains and hillsides
bordering the plains, with croplands and orchard and terrace accounting for 14.78% and
14.78% of the total area, respectively.

Among 33 maps, the performance of the classifiers was stable, and the mean training
accuracy of these classifiers was 0.9031 (Figure S7). The mean training accuracy before 2001
was 0.8967. After 2000, the mean training accuracy was 0.9084 which higher than before
2001. We counted the number of land use/cover class unique values in 10 classifications
for each pixel each year and 95.25% of the pixels were distributed between 1 and 2 (Figure
S8), indicating that the classifiers were robust within most of the study area.

The year and class distribution of these 4096 validation points were shown in
Figure 4a,b. The overall accuracy of the 640 field validation point set is 78.3%. Due
to their uneven distribution of space and classes, they cannot be used to accurately assess
these maps. Therefore, the following confusion matrix analysis is only for the remaining
3456 validation points collected from Google Earth. The validation results indicated that
this data set achieved an overall accuracy of 80% for the second-degree classification scheme
(15 land use/cover classes). The confusion matrix showed that the classifier performed
better in evergreen needleleaf forests, high coverage grasslands, and mixed forests (F1-score
were 0.94, 0.92, and 0.90, respectively) but a slightly worse performance for the urban and
built-up, orchard and terrace, and low coverage grasslands classes (F1-score were 0.55, 0.73,
and 0.74) (Table 3 and Figure S9). There were some misclassifications between croplands,
orchard and terrace, and urban and built-up, which are all classes that are relatively affected
by human activities. Besides, orchard and terrace were easily misclassified to deciduous
broadleaf forests because they may be both planted with deciduous vegetation and mostly
distributed on the hillside. Low coverage grasslands were easily misclassified to croplands
because the spectral characteristics of herbaceous plants with low coverage were similar to
farmland after harvest.
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Figure 3. (a) Spatial distribution of land use/cover of the Yellow River basin in 2018 and (b) the average area percentage of
each land use/cover class during the study time period. The abbreviation of each class in Figure 3b can be found in Table 2.
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Figure 4. (a) The year and geographical distribution of validation points sets. (b) The class and geographical distribution
of validation points sets. Including 3456 random validation points on Google Earth and 640 ground points from the field
survey.

When comparing with seven other data products, it was found that our land use/cover
data has high consistency with GlobeLand30 and CGLS-LC100 in terms of spatial details
and land area statistics (Figures S10 and S11). Both of them can distinguish water bodies,
urban and built-up, and agricultural lands better with the finer spatial resolution. Com-
pared to other data products, our land use/cover map can better distinguish between the
croplands in the flat areas and the OT distributed on the sloped land where the land is more
affected by human activities. Furthermore, the FROM-GLC (2010) has obvious edge effects
between Landsat scenes and scenes and caterpillar track damage, which be repaired in this
study (Figure S10). The areas of shrublands, urban and built-up, water bodies, and desert
and low-vegetated lands in all other datasets were not much different from this study.
However, there were obvious differences in the total area of agricultural lands (croplands
and OT) and grasslands, which may be caused by differences in the class definition in the
different classification schemes. Such as, MCD12Q1-V6 has larger grasslands and smaller
agricultural lands, which is contrary to that of GlobCover. Then, we collected statistical
data on the available cropland area of 292 counties within the study area from 1990 to 2014
and compared the area of cropland in six land use/cover products for different periods
(Figure S12). The results showed that the croplands in our land use/cover data displayed
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a good consistency with the statistical data, indicated by a relatively larger coefficient of
determination (R2) and smaller root mean square errors (RMSE). In general, the annual
land use/cover map series of the YR basin from 1986 to 2018 with high accuracies have a
reasonable consistency with other land use/cover products and statistics, which can be
used to explore regional land use/cover and its changes patterns.

Table 3. Confusion matrix of 3456 independent stratified random sampling validation points set from 2001 to 2018. UA
denotes user’s accuracy, PA denotes producer’s accuracy, F1-score is the weighted harmonic mean of PA and UA, and bold
numbers represent correctly classified ones.

Prediction

Class DBF ENF MF Shrub LCG MCG HCG Crop OT UB Water Wet Snow DB LV PA

R
ef

er
en

ce

DBF 160 0 1 6 1 3 0 2 25 3 1 0 0 0 0 79%

ENF 1 80 1 2 1 0 0 0 1 0 0 0 0 0 0 93%

MF 1 1 130 1 1 0 0 1 0 0 0 0 0 0 0 96%

Shrub 2 0 1 67 5 0 2 0 4 1 0 0 0 0 0 82%

LCG 4 0 3 0 205 14 12 4 10 6 1 1 4 1 0 77%

MCG 0 0 2 0 2 225 13 6 12 2 1 0 0 0 1 85%

HCG 2 2 2 0 2 2 430 5 11 0 0 4 2 0 0 93%

Crop 8 0 5 4 51 31 5 332 30 25 4 10 0 4 2 65%

OT 9 2 8 4 8 42 0 15 269 1 0 3 0 0 4 74%

UB 0 0 0 0 8 5 0 6 10 44 0 0 0 0 1 59%

Water 0 0 0 0 0 0 0 0 1 3 77 18 1 1 1 75%

Wet 0 0 0 0 0 0 1 0 0 0 0 46 0 0 0 98%

Snow 0 0 0 0 0 0 7 1 0 0 0 2 71 1 2 85%

DB 0 0 0 0 5 2 3 1 1 0 1 1 3 76 0 82%

LV 0 0 1 0 0 0 3 1 0 0 0 0 4 2 73 87%

UA 86% 94% 84% 80% 71% 69% 90% 89% 72% 52% 91% 54% 84% 89% 87% 80%

F1-score 0.82 0.94 0.90 0.81 0.74 0.77 0.92 0.75 0.73 0.55 0.82 0.70 0.84 0.85 0.87

Support 202 86 135 82 265 264 462 511 365 74 102 47 84 93 84

3.2. Land Use/Cover Change Patterns

During the study period, the land use/cover of the YR basin changed substantially in
terms of both spatial patterns and area. The geographical distribution of change in area
ratio and the land use/cover transition matrix were computed to detect the transition of
different land use/cover classes (Figure 5 and Table 4). The land use/cover transition
matrix showed that land use/cover changes mainly occurred in the transition from forests,
grasslands, and croplands to the class of OT, accounting for 19.77% of the total change
area (69,586 km2). Another obvious case was the transition of croplands to UB, accounting
for 5.74% of the total change (20,200 km2). The areas where UB increased and croplands
decreased were mainly distributed along the middle and lower reaches of the YR. Obvious
decreases in water bodies were found in the YR source region. Area of the desert and
low-vegetated lands have also decreased in the northwestern YR basin. More obviously,
the area of OT increased significantly in the hilly areas on the Loess Plateau. Five LUCC
patterns were clustered, manifesting different characteristics of change (Figure 5i), which
are as follows: (1) no change or little change, (2) cropland loss and urban expansion, (3)
grassland restoration, (4) increase in orchard and terrace, and (5) increase in forest.
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Figure 5. Geographical distribution of the YR basin with significant (p < 0.05) change in area ratio per year during 1986–2018
for each class: (a) forests, (b) shrublands, (c) grasslands, (d) croplands, (e) orchard and terrace, (f) urban and built-up, (g)
water bodies, and (h) desert and low-vegetated lands. Grey grids show the areas with a statistically insignificant change
slope or change ratio below 0.1 % y−1 (−0.1 to 0.1). Insets in each graph show the annual area (104 km2) of each class from
1986 to 2018. (i) Geographical distribution of five LUCC patterns in the YR basin. Italic indicates the average change rate of
the corresponding pattern.
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Table 4. Land use/cover transition matrix of the study area. Cell values represent the area (104 km2) of land use/cover
transitions from 1986 to 2018, and bold numbers represent correctly classified ones

Class
2018

DBF ENF MF Shrub LCG MCG HCG Crop OT UB Water Wet Snow DB LV Total

19
86

DBF 3.54 0.01 1.18 1.04 0.05 0.44 0.17 2.38 0.01 0.04 8.87

ENF 0.01 0.03 0.11 0.02 0.17

MF 0.85 0.05 2.59 0.32 0.01 0.01 0.16 0.26 0.28 0.06 4.58

Shrub 0.57 0.54 0.61 0.01 0.03 0.67 2.43

LCG 0.11 0.06 0.04 7.54 1.39 0.41 1.43 0.17 0.01 0.38 0.15 11.68

MCG 0.06 0.02 0.01 0.96 6.48 0.71 1.35 0.16 0.01 0.36 0.79 10.91

HCG 0.01 0.81 0.04 0.02 15.93 0.29 0.02 0.01 0.01 0.13 0.17 0.83 18.26

Crop 0.09 0.07 0.02 0.66 0.72 0.07 9.32 1.52 2.02 0.06 0.09 0.14 0.10 14.88

OT 0.70 0.53 0.55 0.39 0.23 0.33 10.40 0.15 0.02 0.03 13.33

UB 0.01 0.14 0.07 0.58 0.23 1.26 0.14 0.02 0.03 0.03 2.52

Water 0.01 0.01 0.04 0.16 0.02 0.19 0.42 0.05 0.01 0.02 0.94

Wet 0.02 0.49 0.02 0.01 0.03 0.03 0.08 0.03 0.02 0.07 0.80

Snow 0.01 0.48 0.44 0.01 0.94

DB 0.77 0.23 0.18 0.25 0.23 0.02 0.02 0.06 1.84 0.41 4.01

LV 0.03 0.15 0.45 0.37 0.09 0.07 0.07 0.01 0.01 0.01 0.11 0.99 2.35

Total 5.94 0.09 5.96 2.61 10.75 10.09 17.71 12.60 18.38 4.31 0.73 0.28 0.66 3.05 3.51 96.67

3.3. The Transition from Multiple Land Use/Cover Classes to Orchard and Terrace

Generally, OT has increased by 50,512 km2 (38%) from 1986 to 2018, as a result of a net
gain of 79,710 km2 balanced by a loss of 29,198 km2. We further mapped the spatiotemporal
distribution of the transition from forests, grasslands, and croplands to OT with more details
in Figure 6a and Figure S13. It was found that the transition from forests to OT mainly
occurred in the marginal area of primary forests, indicating that human activities gradually
intruded into natural forests. By contrast, the transition from grasslands to OT mainly
occurred in the northern Shaanxi and eastern Gansu province, while the transition from
croplands to OT mainly occurred on the slopes at the junction of plains and mountains. We
further explored the transition sources and destination of the OT during the past 33 years
(Figure 6b). Again, accompanied by mutual transition with other land use/cover classes,
the area of OT was gradually increasing, with substantial gains in two remarked periods of
1995–2003 and 2013–2018. From 1995 to 2003, 18,823 km2 of grasslands and 8518 km2 of
croplands were converted to OT, whereas the substantial increase in OT was the transition
from forests from 2013 to 2018 (29,635 km2).
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Figure 6. The transition of multiple land use/cover classes to orchard and terrace (OT). (a) Spatiotemporal distribution of
the transition of forests, grasslands, and croplands to OT. (b) Land use/cover transition network of all the pixels in the
study area for different periods. The numbers within the cycles in Figure 6b are the area (104 km2) of each class in the
corresponding year. The lines represent the amount of land use/cover transition area and their colors are the same as the
source of transition.

4. Discussion
4.1. Limitations

According to the accuracy assessment, it can be seen that this annual land use/cover
products of the YR basin are reliable and accurate, and that the annual land use/cover
mapping framework is effective. However, there are still some deficiencies in this mapping
framework.

Our land use/cover products were first limited by Landsat images quality and quan-
tity, which was influenced by satellite sensors and clouds [60]. The source region of the YR
with high-altitude is a representative example, where is covered by heavy clouds. Besides,
due to the low temporal resolution (i.e., 16 days) and known issues of Landsat 7, the
missing data was inevitable to be filled. All of which will reduce the accuracy of image
classification and LUCC detection. On the other hand, the annual maps were composited
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from scenes at different times in the chosen time window and the spectral differences of
different time-series Landsat images will lead to some uncertainties. Although we have
performed time-consistent post-processing of the classification results, the interannual
fluctuations in data cannot be completely avoided. In addition, with rapid urbanization
and industrialization, coupled with specific climatic conditions and topographic features,
severe fog-haze has appeared in some cities in China [61], which will also affect the accu-
racy of land use/cover classification [62]. A typical example was a distinction between UB
and croplands distributed around Taiyuan, which is located between Taihang Mountain
and Lvliang Mountain. The geographic features of mountainous regions are not conducive
to the dissipation of fog-haze, thus leading to an overestimation of the UB area.

Secondly, the training sample data used were manually drawn on GEE referring to
Google Earth images and Landsat annual composite images. The image of quality is not
high and there are few high-resolution reference images for judgment, especially in earlier
years (before 2000). The error in artificial judgment, imperfections in the sample size, and
mixed pixels may induce uncertainties in the classification [63]. Besides, in data validation,
limited by the error in manual judgment and the uneven distribution of verification points
in time, there are also certain uncertainties in the assessment of land use/cover maps. This
uncertainty will further cause errors and some uncertain effects in the estimate and analysis
of the area of each class in the subsequent analysis [58,64].

Thirdly, the classification scheme of our study integrated land use/cover. Natural
forests and planted ecological forests were classified as forests while the economic forest
was classified as orchard and terrace. In the OT class, there were arbors, such as apple
and apricot, and shrubs such as jujube and grapes. In the early stages of plant growth, the
biophysical properties of artificially planted ecological and economic trees are quite difficult
to be captured by remote sensing observations, which caused some misclassifications
among OT, forests, and shrublands.

In recent years, many land use/cover mapping methods with sophisticated algorithms
and data processing have been developed, such as seasonal composite image classifica-
tion [65], multi-temporal data classification [66], Object-Oriented classification [67], and
Maximum Likelihood and Spectral Angle Mapper classification [68] (See more methods in
Table S6). Here, the processing of the annual land use/cover map was completely based on
the powerful cloud storage and cloud computing capabilities of the GEE platform with free
and direct access satellite images and classification methods (CART), which can mitigate
the pressure of local data storage and data processing. Although the above limitations
and methodological deficiencies, our workflow and analysis strategy can flexibly and
effectively be used to map the land use/cover dynamics in such hot spot basins.

4.2. Land Use/Cover Dynamics and Potential Causes

Our mapping can reveal the important role of forest management in altering land
use/cover in the region over the 33 years. Namely, forest firstly showed a gradual decrease
from 1986 to 1998, then increased until 2012. After 2012, it went down year by year (Figure
5a and Figure S14). This may be related to the following reasons. Firstly, as stated earlier,
the Chinese government has initiated the GFG program since 1999 over the study area,
the Loess Plateau, in particular. The large-scale afforestation has led to a rapid increase in
forests during the period 1999–2012, which was also consolidated by many previous studies
in this area [17,69]. The forest loss after 2012 was mainly concentrated in the continuous
poverty-stricken mountainous areas, such as Liupan Mountain and Lvliang Mountain.
In these regions, once the compensation from the government is inadequate or will end,
farmers live in these mountainous and hilly areas may again convert afforestation on their
lands back to agricultural land [22,70–72]. On the other hand, the spatial pattern of land
use/cover change and transition network have indicated that most of the loss forest have
converted to OT (Figure S14a), which reflect the change in the policy of the GFG program.
Specifically, compared to the first round of the GFG program (1990–2010), to lift groups of
destitute communities out of poverty and promote rural economic development, the second
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round of this program (initiated in 2014) encouraged farmers to develop economic trees
as a priority (not ecological forests) by enhancing its financial compensation (increased
by 300 yuan per 667 m2). This may have resulted in a forest loss, which was further
corroborated by the rapid increase in OT after 2014 (Figures 5a and 6b). The same reasons
can be explained for the changes in grassland. The analysis results show that the forests
and grassland in the study area have been lost due to changes in land use under the
strong human activities. The physical and chemical properties of these land have also
changed [73]. As the restored ecological forest and restored economic forest have different
ecosystem services from natural forest [74], some ecological and environmental problems
may arise. Therefore, long-term and continuous monitoring of the LUCC is critical for
determining the effects of the existing GFG program, which also reminds us that we need
to continue to protect and consolidate the results of the GFG program. While improving
the quality and efficiency of agriculture and guaranteeing farmers’ income, we also need
to further strengthen the protection of natural and ecological forests, improve land use
efficiency, and realize the scientific and sustainable use of land resources.

Besides the transition from forests, grassland and cropland also contributed to the
increase in OT (Figure 6). Previous studies have shown that a large number of fruits have
been planted in the Loess Plateau during recent years, such as apple, jujube, and peach.
Statistics also showed that the fruit area and fruit production in the plateau increased by
1-fold and 3-fold, respectively, from 1998 to 2016. This land use/cover transition indicated
the agricultural economic structure of YR had changed. It was confirmed by a recent
study which has stated that the ratio of fruit production to the total crops on the Loess
Plateau increased from 14% to 23%, while grain crops decreased from 44% to 37% over
the period 2000–2015 [75]. These economic trees not only increased the greenness but
also raised the income [69,76]. YR will achieve a win-win scenario balancing the smooth
implementation of the government’s environmental protection policy and increase in
farmers’ income. For example, a study in a small watershed on the Loess Plateau has
shown that fruit sales as a percentage of total income increased dramatically by 59%, which
may be existed in similar rural areas [77]. The massive increase in OT suggested that YR
progress towards sustainable development goals for livelihood security, economic growth,
and ecosystem conservation. In fact, China has made great efforts for achieving global
Sustainable Development Goals (SDGs) via a diverse range of policy instruments [22,78].
A recent study has shown that investment in the 16 major sustainability programs for the
land-system in China was far exceeded other globally important national sustainability
programs [22,79]. These programs have substantially improved agricultural production
efficiency, natural environment, and the quality of life in rural areas through agricultural
production and cultivated land protection, forest ecosystem protection, and grassland
restoration, which promotes the sustainable development of human and natural systems
and reflects a great achievement of policy and governance of China. The land use/cover
transition of our findings was just a specific embodiment of one aspect. All of which
reflected the rapid land use/cover dynamics with intense human activities in a short
time on the YR basin, highlighting the importance of annual maps of land use/cover for
understanding the interaction between human and natural systems.

Our findings showed that cropland has experienced a slightly decreasing trend from
1986 to 1995, followed by an obviously increasing trend from 1996 to 2000 (Figure 5d and
Figure S15). After that, this increasing trend has been markedly reversed. These temporal
changes were also confirmed by the statistical data (Figure S15d). This may stem from the
following fact. Since the economic reform was implemented in 1978, China has witnessed
a large-scale urban expansion and dramatic decline in croplands. Coupled with the serious
environmental issues from land desertification and soil erosion, the arable area decreased
slowly. Since the 1990s, due to the rapid population growth and the improvement of living
standards, the demand for food consumption has increased but arable land resources were
limited. To curb the continuous reduction of arable land and ensure food security, the
Chinese government proposed a series of cropland protection policies (e.g., the Arable
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Land Requisition-Compensation Balance policy) in the late 1990s [80]. Driven by local
governments and economic interests, a large number of grasslands and unused land have
been reclaimed as cropland [81], especially in Shanxi, Inner Mongolia, Qinghai, Ningxia,
and Gansu province (Figure S15b,d). The continuous and widespread decrease of cropland
after 1999 was mainly because of the implementation of the well-known GFG program and
the accelerating urban expansion (Figure 5f). The rapid development of the socio-economy
has promoted the continuous improvement of the level of urbanization and industrial-
ization in the YR basin. Unfortunately, the expansion of these cities largely encroached
upon cropland (Figure S16). The continued expansion of urbanization has posed great chal-
lenges to guaranteeing local and regional food security [14,82]. Therefore, to meet the food
demand by the ever-growing population, the increase in the harvested area through agri-
cultural intensification with better land management practices should be considered, while
avoiding over-farming and agricultural pollution, which is the prerequisite for sustainable
development in this region.

Spatially contiguous hotspots of gain in grasslands and decrease of the desert and
low-vegetated lands were found in the Mu Us Desert, confirming the effectiveness of the
large-scale vegetation restoration induced by China’s national policies for the ecosystem,
such as the NFC program and the GFG program. Our finding that the area of DB has
decreased over the study areas from 1986 to 2018 also suggests a net increase in vegetation
cover. However, some regions on the YR basin still faced land degradation concerns. The
headwaters of the YR basin, which is called the water tower of this basin, contributed
35% of total water resources in the basin [83]. The total area of lakes and swamps of this
region is approximate 2000 km2. Our land use/cover record witnessed severe water body
shrinkage (Figure 5g), most of which degraded into low-vegetated lands (Figure 5h) or
high coverage grasslands (Figure 5c). The decline of the water body area will potentially
shift this fragile ecosystem to an irreversible state [84]. This shows that the land system
and water security of the Yellow River basin are still under threat.

5. Conclusions

Accurate and long-term land use/cover data is critical for land conservation and
management in the YR basin. We analyzed all the available Landsat imagery (17,080 images)
using the GEE platform and CART algorithm to produce a set of annual land use/cover
data at 90 m resolution spanning the 33 years from 1986 to 2018. The classification scheme
is adjusted based on the capability of the data used and the characteristics of the YR basin.
Accuracy was improved by multi-source incorporating feature sets, Landsat data filtering
and anomalous data repair methods, feature variable selection, and result optimization
strategy. The assessment based on 640 validation points collected from field surveys and
3456 independent stratified random sampling validation points collected in Google Earth
indicated that the overall accuracy of these maps is 78.3% and 80.0%, respectively.

Results demonstrated that land use/cover of the YR basin presents complicated spa-
tial and temporal transitions during the entire study period, which was mainly driven
by political, social, and economic factors. Five LUCC patterns were clustered, manifest-
ing different characteristics of change, which are as follows: no change or little change,
cropland loss and urban expansion, grassland restoration, increase in orchard and terrace,
and increase in forest. The land use/cover transition matrix analysis showed that the
primary LUCC was mainly due to an increase of orchard and terrace resulted from forests,
grasslands, and croplands (19.8% of all changes area) and the urban expansion with a
loss of cropland (5.7% of all changes area). Substantial gains in orchard and terrace in the
period of 1995–2003 were mainly converted from grasslands and croplands, whereas in
2013–2018 is mostly from forests. These economic trees planted on orchard and terrace
not only increased the greenness, but also raised the income, suggesting that YR progress
towards the sustainable development goals for livelihood security, economic growth, and
ecological protection. However, the conversion of ecological forests to economic forests
may cause some ecological and environmental problems, which also reminds us that we
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need to continue to protect the natural and ecological land, improve land use efficiency,
and realize the scientific and sustainable use of land resources.

The mapped LUCC captured the modification of Earth’s terrestrial surface on this
strong coupled human-nature system and provide insights into the impacts of environmen-
tal policy and socio-economic activities on land. The data-driven approach we used here,
which is based on high-resolution satellite data and physiography data built by landforms
and lithology, can flexibly and effectively be used to model the land use/cover dynamics
in other hotspot basins. The land use/cover dynamics and their change patterns provide
important information in facilitating the formulation of effective strategies for sustainable
and high-quality development in the YR basin and similar regions.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13071299/s1, Figure S1: Geographical distribution of Landsat scenes used; Figure S2: (a)
Christmas tree anomaly. (b) Caterpillar tracks run throughout the whole image scene. (c) Statistically
monitor the annulus area to identify the scene which has caterpillar tracks. The purpose of using
annulus instead of rectangular bounds of image scene is to save GEE user memory. (d) The gap
filling of missing data and Landsat 7 gaps; Figure S3: Comparison of 6 composite methods image
effects achieved in GEE on two areas; Figure S4: The distribution of training sample polygons
in time and class; Figure S5: Moving the sliding window to adjust temporal consistency and the
accuracy is calculated by reference samples in each year; Figure S6: The geographical distribution
of ground points for validation. These points were collected during the field survey in 2015, 2017,
and 2018 within the Yellow River basin. Insets are the illustration of some points; Figure S7: Training
accuracy of classifiers and the number of Landsat scenes used in each year. The accuracy range is
determined by the maximum and minimum value of 10 times classifications in each year; Figure S8:
Average of the count of unique values in 10 classifications for each pixel each year for 33 years. The
classifiers are more stable in areas with smaller values; Figure S9: Normalized confusion matrix of
3456 independent stratified random sampling validation points set from 2001 to 2018; Figure S10:
Comparison of different land use/cover datasets within a region in the middle reaches of the Yellow
River in 2010 and 2015. The data of this study divides agricultural lands into croplands and orchard
and terrace classes; Figure S11: The difference in area between other land use/cover products and this
study in the first-degree classes (this study—other product); Figure S12: Comparisons between the
estimated croplands areas in each product and those obtained from the statistical dataset in different
time periods; Figure S13: Examples of the transition of forests (a), grasslands (b), and croplands (c)
to orchard and terrace (OT) on Google Earth images, respectively; Figure S14: Change in forests
from 1986 to 2018. (a) Land use/cover transition network of all the pixels in the study area for
different periods. The numbers within the cycles in the figure is the area (104 km2) of each class in the
corresponding year. Geographical distribution of the change of forests area ratio during (b) 1986–1998,
(c) 1998–2012, and (d) 2012–2018 in the Yellow River basin. The change in area ratio was obtained in
each grid (0.5◦); Figure S15: Change in croplands from 1986 to 2018. (a) Land use/cover transition
network of all the pixels in the study area for different periods. The numbers within the cycles in
the figure is the area (104 km2) of each class in the corresponding year. Geographical distribution of
the change of croplands area ratio during (b) 1986–2001 and (c) 2001–2018 in the Yellow River basin.
The change in area ratio was obtained in each grid (0.5◦). (d) The change of croplands area on Loess
Plateau from 1990 to 2014 which got from statistical data. The 1980S represents the average value
from 1980 to 1989; Figure S16: Geographical distribution of croplands to urban and built-up in six
major cities of Yellow River basin: (a) Zhengzhou, (b) Xi’an, (c) Taiyuan, (d) Lanzhou, (e) Hohhot, and
(f) Xining; Table S1: Land cover and land use data used in related studies on the Yellow River basin.
The Cbers denotes China-Brazil Earth Resources Satellite; Table S2: The accuracy of different band
combinations. The values in the table represent the F1-score (the weighted harmonic mean of the
producer’s and user’s accuracy) of each classifier in each class. Orange represents the corresponding
classifier is better than the classifier with only using Landsat 6 spectral bands and blue represents
the opposite case. The bands marked by * are the band combination for final classification. Aspect,
landforms, Continuous Heat-Insolation Load Index (CHILI), and Multi-Scale Topographic Position
Index (mTPI) are calculated from SRTM data. Enhanced Vegetation Index (EVI), Green Chlorophyll
Vegetation Index (GCVI), and Atmospherically Resistant Vegetation Index (ARVI) are calculated
from Landsat bands; Table S3: Confusion matrix of validation for test classifier in 2010. The overall

https://www.mdpi.com/article/10.3390/rs13071299/s1
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accuracy is 90% and the Kappa coefficient is 0.89. UA denotes user’s accuracy, PA denotes producer’s
accuracy, and bold numbers represent correctly classified ones; Table S4: Test results for different
classification methods; Table S5 Land use/cover datasets for comparison; Table S6: List of related
land use/cover mapping articles.
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