Land Subsidence in Wuhan Revealed Using a Non-Linear PSInSAR Approach with Long Time Series of COSMO-SkyMed SAR Data
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Datasets
3.2. PSInSAR and Non-Linearities
3.3. Analysis of the Soft Soil Consolidation Degree
4. Results
Cumulative Deformation Map
5. Analysis and Discussion
5.1. Deformation Analysis of Soft Soil Area
5.2. Urban Rail Transit
5.3. Urban Construction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wuhan Bureau Statistics. Statistical Yearbook of Wuhan. 2019. Available online: http://www.stats.gov.cn/tjsj/ndsj/2019/indexeh.htm (accessed on 26 February 2021).
- Ning, G.; Chen, G.; Xu, S.; Xiao, Y. Engineering geological research on the underground space of Wuhan city. Hydrogeol. Eng. Geol. 2006, 33, 29–35. [Google Scholar]
- He, B.; Zhong, S.; Luo, Q.; Zhan, B.; Chen, C. Characteristics of karst development and karst treatments. Sci. Technol. Eng. 2017, 17, 336–342. [Google Scholar]
- Fan, S. A Discussion on Karst Collapse in Wuhan (Hubei). Resour. Environ. Eng. 2006, 20, 608–616. [Google Scholar]
- Li, X.; Xiao, S.; Tang, H.; Peng, J. A GIS-based monitoring and early warning system for cover-collapse sinkholes in karst terrane in Wuhan, China. Nat. Hazards Earth Syst. Sci. Discuss. 2017, 1–28. [Google Scholar] [CrossRef]
- Zhou, L.; Guo, J.; Hu, J.; Li, J.; Xu, Y.; Pan, Y.; Shi, M. Wuhan surface subsidence analysis in 2015-2016 based on sentinel-1A data by SBAS-InSAR. Remote Sens. 2017, 9, 982. [Google Scholar] [CrossRef] [Green Version]
- Benattou, M.; Balz, T.; Liao, M. Measuring surface subsidence in Wuhan, China with Sentinel-1 data using PSInSAR. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2018, 42, 73–77. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Y.; Jin, M.; Jing, Y.; Liu, Y.; Liu, Y.; Sun, W.; Wei, J.; Chen, Y. Monitoring land subsidence in wuhan city (China) using the SBAS-INSAR method with radarsat-2 imagery data. Sensors 2019, 19, 743. [Google Scholar] [CrossRef] [Green Version]
- Bai, L.; Jiang, L.; Wang, H.; Sun, Q. Spatiotemporal characterization of land subsidence and uplift (2009-2010) over Wuhan in Central China revealed by TerraSAR-X InSAR analysis. Remote Sens. 2016, 8, 350. [Google Scholar] [CrossRef] [Green Version]
- Costantini, M.; Bai, J.; Malvarosa, F.; Minati, F.; Vecchioli, F.; Wang, R.; Hu, Q.; Xiao, J.; Li, J. Ground deformations and building stability monitoring by COSMO-SkyMed PSP SAR interferometry: Results and validation with field measurements and surveys. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 6847–6850. [Google Scholar] [CrossRef]
- Holzer, T.L. Man-Induced Land Subsidence; Geological Society of America: Boulder, CO, USA, 1984. [Google Scholar]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, Y. Road Surface Deformation Assessment of Chengdu, China Using PS-InSAR Technique and Sentinel-1 Multi-Temporal SAR Datasets. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 2006–2009. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Motagh, M.; Walter, T.R.; Sharifi, M.A.; Fielding, E.; Schenk, A.; Anderssohn, J.; Zschau, J. Land subsidence in Iran caused by widespread water reservoir overexploitation. Geophys. Res. Lett. 2008, 35, 33814. [Google Scholar] [CrossRef] [Green Version]
- Guo, J.; Zhou, L.; Yao, C.; Hu, J. Surface Subsidence Analysis by Multi-Temporal InSAR and GRACE: A Case Study in Beijing. Sensors 2016, 16, 1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cigna, F.; Tapete, D. Satellite InSAR survey of structurally-controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. Remote Sens. Environ. 2021, 254, 112254. [Google Scholar] [CrossRef]
- Han, Y.; Zou, J.; Lu, Z.; Qu, F.; Kang, Y.; Li, J. Ground deformation of wuhan, china, revealed by multi-temporal insar analysis. Remote Sens. 2020, 12, 3788. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Luzi, G.; Crippa, B. Measuring thermal expansion using X-band persistent scatterer interferometry. ISPRS J. Photogramm. Remote Sens. 2015, 100, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tan, Y.; Li, L.; Yu, Z.; Lan, H. Study of Land Surface Composition of Wuhan City based on Linear Spectral Mixture Analysis. Remote Sens. Technol. Appl. 2013, 28, 780–784. [Google Scholar]
- Wu, H.L.; Cheng, W.C.; Shen, S.L.; Lin, M.Y.; Arulrajah, A. Variation of hydro-environment during past four decades with underground sponge city planning to control flash floods in Wuhan, China: An overview. Undergr. Space 2020, 5, 184–198. [Google Scholar] [CrossRef]
- Wang, X.; Lai, J.; He, S.; Garnes, R.S.; Zhang, Y. Karst geology and mitigation measures for hazards during metro system construction in Wuhan, China. Nat. Hazards 2020, 103, 2905–2927. [Google Scholar] [CrossRef]
- Luo, X.J. Division of “Six Belts and Five Types” of carbonate region and control of karst geological disaster in Wuhan. J. Hydraul. Eng. 2014, 45, 171–179. [Google Scholar]
- Chen, Z.; Chen, S.; Wu, L. Experimental analysis of soft soil characteristic in Wuhan. Resour. Environ. Eng. 2015, 29, 974–977. [Google Scholar]
- Zhang, X.; Tang, H.; Qin, Z. Study on the imperilments of soft foundation and land subsidence in Wuhan. Geol. Sci. Technol. Inf. 2003, 22, 95–99. [Google Scholar]
- Natural Wuhan Resources and Planning Bureau. Wuhan City Geological Disaster Prevention Plan (2016–2020); Natural Wuhan Resources and Planning Bureau: Wuhan, China, 2018.
- Covello, F.; Battazza, F.; Coletta, A.; Lopinto, E.; Fiorentino, C.; Pietranera, L.; Valentini, G.; Zoffoli, S. COSMO-SkyMed an existing opportunity for observing the Earth. J. Geodyn. 2010, 49, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Caltagirone, F.; Capuzi, A.; Coletta, A.; De Luca, G.F.; Scorzafava, E.; Leonardi, R.; Rivola, S.; Fagioli, S.; Angino, G.; Labbate, M.; et al. The COSMO-SkyMed dual use earth observation program: Development, qualification, and results of the commissioning of the overall constellation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2754–2762. [Google Scholar] [CrossRef]
- Battagliere, M.; Covello, F.; Coletta, A. COSMO-SkyMed background mission: Overview, objectives and results. In Proceedings of the 63rd International Astronautical Congress, Naples, Italy, 1–5 October 2012; pp. 1–5. [Google Scholar]
- European Space Agency. Sentinel-1 Observation Scenario; European Space Agency: Paris, France, 2014. [Google Scholar]
- Roccheggiani, M.; Piacentini, D.; Tirincanti, E.; Perissin, D.; Menichetti, M. Detection and monitoring of tunneling induced ground movements using Sentinel-1 SAR interferometry. Remote Sens. 2019, 11, 639. [Google Scholar] [CrossRef] [Green Version]
- Perissin, D.; Wang, Z.; Lin, H. Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers. ISPRS J. Photogramm. Remote Sens. 2012, 73, 58–67. [Google Scholar] [CrossRef]
- Milillo, P.; Giardina, G.; Perissin, D.; Milillo, G.; Coletta, A.; Terranova, C. Pre-Collapse Space Geodetic Observations of Critical Infrastructure: The Morandi Bridge, Genoa, Italy. Remote Sens. 2019, 11, 1403. [Google Scholar] [CrossRef] [Green Version]
- Stramondo, S.; Bozzano, F.; Marra, F.; Wegmuller, U.; Cinti, F.R.; Moro, M.; Saroli, M. Subsidence induced by urbanisation in the city of Rome detected by advanced InSAR technique and geotechnical investigations. Remote Sens. Environ. 2008, 112, 3160–3172. [Google Scholar] [CrossRef]
- Pratesi, F.; Tapete, D.; Del Ventisette, C.; Moretti, S. Mapping interactions between geology, subsurface resource exploitation and urban development in transforming cities using InSAR Persistent Scatterers: Two decades of change in Florence, Italy. Appl. Geogr. 2016, 77, 20–37. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Oommen, T.; Lu, Z.; Wang, T.; Kim, J.W. Consolidation settlement of Salt Lake County tailings impoundment revealed by time-series InSAR observations from multiple radar satellites. Remote Sens. Environ. 2017, 202, 199–209. [Google Scholar] [CrossRef]
- Xue, S.; Li, S.; Lin, R. The back analysis of consolidation coefficient of soft soil foundation changing with time. Sci. Technol. Eng. 2007, 17, 245–250. [Google Scholar]
- Seo-Woo, P.; Sang-Hoon, H. Nonlinear Modeling of Subsidence from a Decade of InSAR Time Series. Geophys. Res. Lett. 2020, 48. [Google Scholar] [CrossRef]
- Xu, H. Dynamic Reaction Property and Distribution of Soft Soil in the Urban District of Wuhan. Soil Eng. Found. 1997, 11, 8–12. [Google Scholar]
- Zhang, X. Soil Mechanic; China Communications Press: Beijing, China, 2011. [Google Scholar]
- Cigna, F.; Jordan, H.; Bateson, L.; McCormack, H.; Roberts, C. Natural and Anthropogenic Geohazards in Greater London Observed from Geological and ERS-1/2 and ENVISAT Persistent Scatterers Ground Motion Data: Results from the EC FP7-SPACE PanGeo Project. Pure Appl. Geophys. 2015, 172, 2965–2995. [Google Scholar] [CrossRef] [Green Version]
- Tanveer, H.; Balz, T.; Cigna, F.; Tapete, D. Monitoring 2011–2020 traffic patterns in Wuhan (China) with COSMO-SkyMed SAR, amidst the 7th CISM military world games and COVID-19 outbreak. Remote Sens. 2020, 12, 1636. [Google Scholar] [CrossRef]
Parameters | Description |
---|---|
Product type | L1A, single-look complex slant (SCS) products |
Imaging Modes | StripMap HIMAGE |
Operating Band | X Band |
Wavelength (cm) | 3.1 |
Polarization | Single, HH |
Revisit frequency (day) | 10 (average) |
Orbit direction | Ascending |
Looking direction | Right |
Range resolution (m) | 3 |
Azimuth resolution (m) | 3 |
Ground swath width (km) | 40 |
Number of images | 286 |
Date of earliest image used | 16 June 2012 |
Date of latest image used | 3 November 2019 |
PS Point | Final Deformation (mm) | Consolidation Degree of Soft Soil (%) | ||||||
---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | ||
A | −90.8 | 3.77 | 6.28 | 74.31 | 88.83 | 91.11 | 92.22 | 95.66 |
B | −139.4 | 3.56 | 17.12 | 68.95 | 89.63 | 90.93 | 93.10 | 94.67 |
C | −80.0 | 7.37 | 18.56 | 69.36 | 89.24 | 89.68 | 89.74 | 90.67 |
D | −167.0 | 1.47 | 8.40 | 62.90 | 90.01 | 92.15 | 95.03 | 96.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Balz, T.; Cigna, F.; Tapete, D. Land Subsidence in Wuhan Revealed Using a Non-Linear PSInSAR Approach with Long Time Series of COSMO-SkyMed SAR Data. Remote Sens. 2021, 13, 1256. https://doi.org/10.3390/rs13071256
Jiang H, Balz T, Cigna F, Tapete D. Land Subsidence in Wuhan Revealed Using a Non-Linear PSInSAR Approach with Long Time Series of COSMO-SkyMed SAR Data. Remote Sensing. 2021; 13(7):1256. https://doi.org/10.3390/rs13071256
Chicago/Turabian StyleJiang, Haonan, Timo Balz, Francesca Cigna, and Deodato Tapete. 2021. "Land Subsidence in Wuhan Revealed Using a Non-Linear PSInSAR Approach with Long Time Series of COSMO-SkyMed SAR Data" Remote Sensing 13, no. 7: 1256. https://doi.org/10.3390/rs13071256
APA StyleJiang, H., Balz, T., Cigna, F., & Tapete, D. (2021). Land Subsidence in Wuhan Revealed Using a Non-Linear PSInSAR Approach with Long Time Series of COSMO-SkyMed SAR Data. Remote Sensing, 13(7), 1256. https://doi.org/10.3390/rs13071256