Object-Based Predictive Modeling (OBPM) for Archaeology: Finding Control Places in Mountainous Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. ArchaeOBIA: Basic Principles and Semantic Model Design
2.2. Datasets
2.3. DTM Processing and Visualizations
3. Case Studies: Results and Discussion
3.1. The Western Asiago Plateau
3.1.1. Results
3.1.2. Discussion and Ground Survey Validation
3.2. The Brixen Basin
3.2.1. Results of the Fine-Tuning and Automatic Reapplication
3.2.2. Discussion and Remote Validation
4. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geisser, S. Predictive Inference: An Introduction; Springer: Boston, MA, USA, 1993; ISBN 978-0-412-03471-8. [Google Scholar]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-6848-6. [Google Scholar]
- Kohler, T.A.; Parker, S.C. Predictive Models for Archaeological Resource Location. Adv. Archaeol. Method Theory 1986, 9, 397–452. [Google Scholar]
- Verhagen, J.W.H.P. Case Studies in Archaeological Predictive Modelling; Leiden University Press: Leiden, The Netherlands, 2007; ISBN 9789087280079. [Google Scholar]
- De Guio, A. Cropping for a Better Future. Vegetation Indices in Archaeology. In Detecting and Understanding Historic Landscapes; Chavarria Arnau, A., Reynolds, A., Eds.; SAP: Mantova, Italy, 2015; pp. 109–152. ISBN 9788887115994. [Google Scholar]
- Wheatley, D.; Gillings, M. Spatial Technology and Archaeology; Taylor & Francis: Abingdon, UK, 2002; ISBN 978-0-203-35603-6. [Google Scholar]
- Whitley, T.G. GIS as an interpretative tool for addressing risk management and cognitive spatial dynamics in a slave society. In Proceedings of the CAA 2002. The Digital Heritage of Archaeology. Computer Applications and Quantitative Methods in Archaeology. Proceedings of the 30th Conference, Heraklion, Crete, 16–19 October April 2002, Archive of Monuments and Publications; Doerr, M., Sarris, A., Eds.; Hellenic Ministry of Culture: Heraklion, Greece, 2003; pp. 209–215. [Google Scholar]
- Predictive Modelling for Archaeological Heritage Management: A Research Agenda; van Leusen, P.M.; Kamermans, H. (Eds.) National Service for Archaeological Heritage: Amersfoort, The Netherlands, 2005. [Google Scholar]
- Archaeological Prediction and risk Management; Kamermans, H.; van Leusen, M.; Verhagen, P. (Eds.) Leiden University Press: Leiden, The Netherlands, 2009. [Google Scholar]
- Magnini, L.; Bettineschi, C. Theory and practice for an object-based approach in archaeological remote sensing. J. Archaeol. Sci. 2019, 107, 10–22. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Parnigotto, I. Condizioni ambientali e popolamento nel II millennio a.C. in Alto Adige: Gli esempi delle conche di Bressanone e Brunico. In Höhensiedlungen der Bronze- und Eisenzeit. Kontrolle der Verbindungswege über die Alpen—Abitati d’altura dell’età del Bronzo e del Ferro. Controllo delle vie di Comunicazione Attraverso le Alpi; Dal Ri, L., Gamper, P., Steiner, H., Eds.; Temi: Trento, Italy, 2010; pp. 307–324. [Google Scholar]
- Tecchiati, U. Dinamiche insediative e gestione del territorio in Alto Adige tra la fine del III e la fine del I millennio a.C. In Höhensiedlungen der Bronze- und Eisenzeit. Kontrolle der Verbindungswege über die Alpen—Abitati d’altura dell’età del Bronzo e del Ferro. Controllo delle vie di Comunicazione Attraverso le Alpi; Dal Ri, L., Gamper, P., Steiner, H., Eds.; Temi: Trento, Italy, 2010; pp. 487–559. [Google Scholar]
- Magnini, L.; Bettineschi, C.; De Guio, A.; Burigana, L.; Colombatti, G.; Bettanini, C.; Aboudan, A. Multisensor-Multiscale Approach in Studying the Proto-historic Settlement of Bostel in Northern Italy. Archeol. e Calc. 2019, 30, 347–365. [Google Scholar] [CrossRef]
- De Guio, A. Storie e scorie di formaggio e di rame… I siti pre-protostorici della Pedemontana dell’area vicentina. In Proceedings of the Conference “Lana, pecore, pastori. Tra il monte e il piano”; Rodighiero, C.F., Ed.; Attilio Fraccaro Editore: Bassano del Grappa, Italy, 2019; pp. 11–24. [Google Scholar]
- Wheeler, S.M.; Richardson, K.M. Hill-Forts of Northern France; Society of Antiquaries of London: London, UK, 1957. [Google Scholar]
- Kidd, A. Hillforts and churches: A coincidence of locations? Rec. Buckinghamsh. 2004, 44, 105–110. [Google Scholar]
- Jordá-Pardo, J.F.; Rey Castiñeira, J.; Picón Platas, I.; Abad Vidal, E.; Marín Suárez, C. Radiocarbon and Chronology of the Iron Age Hillforts of Northwestern Iberia. In Interpretierte Eisenzeiten. Fallstudien, Methoden, Theorie. Tagungsbeiträge der 3 Linzer Gespräche zur interpretativen Eisenzeitarchäologie. Studien zur Kulturgeschichte von Oberösterreich; Karl, R., Leskovar, J., Eds.; Oberösterreichisches Landesmuseum: Linz, Austria, 2009; pp. 81–98. [Google Scholar]
- Cook, M. Paradigms, Assumptions, Enclosure, and Violence: The Hillforts of Strathdon. J. Confl. Archaeol. 2013, 8, 77–105. [Google Scholar] [CrossRef]
- Vengalis, R. Old and middle iron Age settlements and hillforts. In A Hundred Years of Archaeological Discoveries in Lithuania; Zabiela, G., Baubonis, Z., Marcinkevičiūtė, E., Eds.; Society of the Lithuanian Archaeology: Vilnius, Lithuania, 2016; pp. 160–181. [Google Scholar]
- Hillforts: Britain, Ireland and the Nearer Continent; Papers from the Atlas of Hillforts of Britain and Ireland Conference, June 2017; Lock, G.; Ralston, I. (Eds.) Archaeopress: Summertown, UK, 2019. [Google Scholar]
- Lasanta, T.; Beltrán, O.; Vaccaro, I. Differences in landscape evolution between two Pre-pyrenean municipalities (Alquézar and Valle de Lierp) during the second half of the 20th century. Pirineos 2013, 168, 103–128. [Google Scholar] [CrossRef] [Green Version]
- Huang, G. Modeling Urban Spatial Growth in Mountainous Regions of Western China. Mt. Res. Dev. 2017, 37, 367–376. [Google Scholar] [CrossRef]
- Ding, Y.; Peng, J. Impacts of Urbanization of Mountainous Areas on Resources and Environment: Based on Ecological Footprint Model. Sustainability 2018, 10, 765. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Sevara, C.; Pregesbauer, M.; Doneus, M.; Verhoeven, G.; Trinks, I. Pixel versus object—A comparison of strategies for the semi-automated mapping of archaeological features using airborne laser scanning data. J. Archaeol. Sci. Rep. 2016, 5, 485–498. [Google Scholar] [CrossRef]
- Witharana, C.; Ouimet, W.B.; Johnson, K.M. Using LiDAR and GEOBIA for automated extraction of eighteenth–late nineteenth century relict charcoal hearths in southern New England. GISci. Remote Sens. 2018, 55, 183–204. [Google Scholar] [CrossRef]
- Davis, D.S.; Sanger, M.C.; Lipo, C.P. Automated mound detection using lidar and object-based image analysis in Beaufort County, South Carolina. Southeast. Archaeol. 2019, 38, 23–37. [Google Scholar] [CrossRef]
- Magnini, L.; Bettineschi, C.; De Guio, A. Object-based Shell Craters Classification from LiDAR-derived Sky-view Factor. Archaeol. Prospect. 2017, 24, 211–223. [Google Scholar] [CrossRef]
- Verhagen, P.; Drăguţ, L. Object-based landform delineation and classification from DEMs for archaeological predictive mapping. J. Archaeol. Sci. 2012, 39, 698–703. [Google Scholar] [CrossRef]
- Simplicity, Inference and Modelling; Zellner, A.; Keuzenkamp, H.A.; McAleer, M. (Eds.) Cambridge University Press: Cambridge, UK, 2002; ISBN 9780521803618. [Google Scholar]
- Crutchley, S. Light detection and ranging (lidar) in the Witham Valley, Lincolnshire: An assessment of new remote sensing techniques. Archaeol. Prospect. 2006, 13, 251–257. [Google Scholar] [CrossRef]
- Štular, B.; Kokalj, Ž.; Oštir, K.; Nuninger, L. Visualization of lidar-derived relief models for detection of archaeological features. J. Archaeol. Sci. 2012, 39, 3354–3360. [Google Scholar] [CrossRef]
- Burigana, L.; Magnini, L. Image processing and analysis of radar and lidar data: New discoveries in Verona southern lowland (Italy). STAR Sci. Technol. Archaeol. Res. 2017, 3, 490–509. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Lasaponara, R.; Masini, N. An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring. J. Cult. Herit. 2017, 23, 5–11. [Google Scholar] [CrossRef]
- Risbøl, O.; Gustavsen, L. LiDAR from drones employed for mapping archaeology—Potential, benefits and challenges. Archaeol. Prospect. 2018, 25, 329–338. [Google Scholar] [CrossRef]
- Crutchley, S. Using Airborn Lidar in Interpreting Archaeological Landscapes. In Detecting and Understanding Historic Landscapes; Chavarria Arnau, A., Raynolds, A., Eds.; SAP: Mantova, Italy, 2015; pp. 67–92. [Google Scholar]
- Petitta, M.; Wagner, J.; Costa, A.; Monsorno, R.; Innerebner, M.; Moser, D.; Zebisch, M. Solar Tyrol project: Using climate data for energy production estimation. The good practice of Tyrol in conceptualizing climate services. In Proceedings of the EGU General Assembly 2014, Vienna, Austria, 27 April–2 May 2014. [Google Scholar]
- Fu, P.; Rich, P.M. Design and implementation of the Solar Analyst: An ArcView extension for modeling solar radiation at landscape scales. In Proceedings of the Nineteenth Annual ESRI User Conference, San Diego, CA, USA, 26–30 July 1999; pp. 1–31. [Google Scholar]
- Fu, P.; Rich, P.M. The Solar Analyst 1.0 User Manual; Helios Environmental Modeling Institute: Reston, VA, USA, 2000. [Google Scholar]
- Fu, P.; Rich, P.M. A geometric solar radiation model with applications in agriculture and forestry. Comput. Electron. Agric. 2002, 37, 25–35. [Google Scholar] [CrossRef]
- Challis, K.; Forlin, P.; Kincey, M. A Generic Toolkit for the Visualization of Archaeological Features on Airborne LiDAR Elevation Data. Archaeol. Prospect. 2011, 18, 279–289. [Google Scholar] [CrossRef]
- Hesse, R. Visualisierung hochauflösender Digitaler Geländemodelle mit LiVT. In 3D-Anwendungen in der Archäologie: Computeranwendungen und quantitative Methoden in der Archäologie; Lieberwirth, U., Herzog, I., Eds.; Edition Topoi: Berlin, Germany, 2016; pp. 109–128. [Google Scholar]
- Kokalj, Ž.; Hesse, R. Airborne Laser Scanning Raster Data Visualization: A Guide to Good Practice; Zalozba ZRC: Ljubljana, Slovenia, 2017. [Google Scholar]
- Leonardi, G.; Ruta Serafini, M. L’abitato protostorico di Rotzo (Altipiano di Asiago). Preist. Alp. 1981, 17, 7–75. [Google Scholar]
- De Guio, A.; Bressan, C.; Ferrari, G.; Mantoan, R.; Gamba, M.; Migliavacca, M.; Padoan, C.; Nicosia, C. Bostel di Rotzo (VI)—stato di avanzamento delle ricerche. Quad. di Archeol. del Veneto 2011, 27, 168–183. [Google Scholar]
- Magnini, L.; Rovera, G.; De Guio, A.; Azzalin, G. Before and after the. In Military Geoscience in Peace and War; Bondesan, A., Ehlen, J., Eds.; Springer: Berlin/Heidelberg, Germany, under review.
- Tecchiati, U. Il frutto di un buio seme. Riflessioni sulla formazione del paesaggio antropizzato nel Neolitico e nell’età del Rame dell’alto bacino dell’Adige. Atti dell’Accademia Roveretana Degli Agiati 2012, 262, 61–102. [Google Scholar]
- Roghi votivi alpini. Archeologia e scienze naturali. In Alpine Brandopferplätze: Archäologische und naturwissenschaftliche Untersuchungen; Steiner, H., Ed.; Temi: Trento, Italy, 2010. [Google Scholar]
- Ballmer, A. Ritual Practice and Topographic Context. Considerations on the Spatial Forms of Memory in the Central Alps During the Late Bronze Age. In Between Memory Sites and Memory Networks. New Archaeological and Historical Perspectives; Hofmann, K.P., Bernbeck, R., Sommer, U., Eds.; Edition Topoi: Berlin, Germany, 2017; pp. 71–96. [Google Scholar]
- Rajala, U. The landscapes of power: Visibility, time and (dis)continuity in central Italy. Archeol. e Calc. 2004, 15, 393–408. [Google Scholar]
- Renfrew, C. Space, Time and Man. Trans. Inst. Br. Geogr. 1981, 6, 257–278. [Google Scholar] [CrossRef]
Multiresolution Segmentation: Scale 1200, Shape 0.1, Compactness 0.6 | |||
---|---|---|---|
Object Feature | Value | Class | |
1 | mean Solar Radiation | >= 1,285,123 kWh/m2 | CONTROL PLACES |
2 | CONTROL PLACES, mean Local Dominance | <55 | unclassified |
3 | CONTROL PLACES, mean Slope | >20° | unclassified |
4 | CONTROL PLACES, merge region | ||
5 | CONTROL PLACES, area | <0.2 ha | unclassified |
6 | unclassified, relative border to CONTROL PLACES | <0.3 (i.e., 30%) | CONTROL PLACES |
7 | CONTROL PLACES, merge region |
Multiresolution Segmentation: Scale 2400, Shape 0.1, Compactness 0.6 | |||
---|---|---|---|
Object Feature | Value | Class | |
1 | mean Solar Radiation | >=158,300 kWh/m2 | CONTROL PLACES |
2 | CONTROL PLACES, mean Local Dominance | <17.5 | unclassified |
3 | CONTROL PLACES, mean Slope | >20° | unclassified |
4 | CONTROL PLACES, merge region | ||
5 | CONTROL PLACES, area | <0.2 ha | unclassified |
6 | unclassified, relative border to CONTROL PLACES | <0.3 (i.e., 30%) | CONTROL PLACES |
7 | CONTROL PLACES, merge region |
OBPM Label | Name of the Area | Municipality | Online Geodatabase Id(S) | Major Archaeological Remains | General Chronology | Minor Traces | General Chronology |
---|---|---|---|---|---|---|---|
1 | Stiflerbüel or Stögerbühel | Naz-Sciavez/Natz-Schabs | 21614327 | surface material distribution | Bronze Age and Early Iron Age | - | - |
2 | Rodengo Castle | Rodengo/Rodeneck | 21649697; 21642609 | castle, later extension | Medieval | material distribution | Protohistory to Roman |
3 | Rodengo Castle | Rodengo/Rodeneck | 21628626; 21631007; 21612983; 21655613; 21658019; 21676634; 21660416; 21626015; 21618125; 21619378; 21612720; 21645618; 21654733; 21655423; 21649930; 21622501; 21640581; 21620275; 21624337 | church and cemetery | Medieval | material distribution | Protohistory to Roman |
5 | Cornale/Kirchbühel | Bressanone/Brixen | 21612550; 21634087 | hilltop settlement | Bronze Age | - | - |
7 | Aica-Col de Bovi | Naz-Sciavez/Natz-Schabs | 21661532; 21670409 | hilltop settlement | Bronze Age | - | - |
8 | Fiumes-Kirchbüel | Naz-Sciavez/Natz-Schabs | 21674639; 21672063 | hilltop settlement | Bronze Age | - | - |
9 | Fiumes-Maulwaldeck o Roßhimmel | Naz-Sciavez/Natz-Schabs | 21620759 | surface material distribution | Protohistory | - | - |
10 | Rodengo Castle | Rodengo/Rodeneck | 21628626; 21622264 | castle courtyard | Medieval | material distribution | Protohistory to Roman |
11 | Rodengo Castle | Rodengo/Rodeneck | 21653466; 21630408; 21673989; 21672850; 21651806; 21644875; 21670468; 21635340; 21621561; 21617352 | original castle | Medieval | material distribution | Protohistory to Roman |
14 | Punterbüel | Varna/Vahrn | 21620955 | probable hilltop settlement | Bronze Age | - | - |
15 | Nössing | Varna/Vahrn | 21633653; 21674031 | hilltop settlement | Bronze Age | - | - |
17 | Spelonca-Burgstallegg | Varna/Vahrn | 21658649; 21666306 | hilltop settlement (seasonal) | Bronze Age | - | - |
19 | Cornale/Putzerbühel | Bressanone/Brixen | 21616908; 21655385; 21669110; 21613253; 21621018; 21647169; 21661089; 21673685 | hilltop settlement | Bronze Age | - | - |
20 | Castel Salern | Varna/Vahrn | 21628477; 21676800 | castle | Medieval | - | - |
22 | Costa di Elvas—area 1 | Bressanone/Brixen | 21630412; 21629787; 21662848; 21615239; 21635779; 21644823; 21643693; 21619324; 21657864; 21650608 | hilltop settlement | Bronze Age to early Roman | - | - |
23 | Spelonca-Voisberg | Varna/Vahrn | 21611693 | castle | Medieval | settlement | Bronze Age |
27 | Elvas/Vogeltenne | Bressanone/Brixen | 21651445; 21663945 | cemetery | Bronze Age | - | - |
28 | Colcucco di Sotto /Guggenbichl | Bressanone/Brixen | 21650517; 21617271; 21652450; 21623748; 21659820; 21611063 | hilltop settlement | Bronze Age | - | - |
30 | Costa di Elvas—area 2 | Bressanone/Brixen | 21628640 | hilltop settlement | Bronze Age and Iron Age | - | - |
31 | Scaleres | Varna/Vahrn | 21610641; 21653486; 21675537; 21625715; 21656715; 21676522; 21672543 | church (St. Wolfgang) | Modern (XV cent. AD) | - | - |
33 | Pinatz—hilltop settlement | Bressanone/Brixen | 21618455; 21619461; 21643393; 21654211 | hilltop settlement | Bronze Age | - | - |
34 | Pinatz | Bressanone/Brixen | 21673425; 21626481; 21653094; 21615521; 21630815; 21630712; 21669106 | material distribution | Bronze Age | - | - |
36 | Tiles | Bressanone/Brixen | 21626665 | church (St. Cirillo) | Medieval | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magnini, L.; Bettineschi, C. Object-Based Predictive Modeling (OBPM) for Archaeology: Finding Control Places in Mountainous Environments. Remote Sens. 2021, 13, 1197. https://doi.org/10.3390/rs13061197
Magnini L, Bettineschi C. Object-Based Predictive Modeling (OBPM) for Archaeology: Finding Control Places in Mountainous Environments. Remote Sensing. 2021; 13(6):1197. https://doi.org/10.3390/rs13061197
Chicago/Turabian StyleMagnini, Luigi, and Cinzia Bettineschi. 2021. "Object-Based Predictive Modeling (OBPM) for Archaeology: Finding Control Places in Mountainous Environments" Remote Sensing 13, no. 6: 1197. https://doi.org/10.3390/rs13061197
APA StyleMagnini, L., & Bettineschi, C. (2021). Object-Based Predictive Modeling (OBPM) for Archaeology: Finding Control Places in Mountainous Environments. Remote Sensing, 13(6), 1197. https://doi.org/10.3390/rs13061197