Analysis of the Spatiotemporal Changes in Watershed Landscape Pattern and Its Influencing Factors in Rapidly Urbanizing Areas Using Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Data Processing
2.3. Methods
2.3.1. Selection of Landscape Metrics and Influencing Factors
- Landscape Metrics
- Land Use Transition Matrix
- Selection of Landscape Change Influencing Factors
2.3.2. Quantifying the Influence on the Change of Landscape Pattern
- Grey Correlation Analysis
- Spatial Correlation Analysis
- Geographical Detector Model
3. Results
3.1. Spatiotemporal Variations of Land Use Types
3.2. Spatiotemporal Variations of Landscape Patterns
3.3. Impacts of the Anthropogenic Factors on Temporal Landscape Changes
3.4. Impacts of Anthropogenic and Natural Factors on Spatial Landscape Changes
4. Discussion
4.1. Spatiotemporal Changes of Land Use and Landscape Pattern
4.2. The Temporal and Spatial Influencing Factors
4.3. The Limitations and Potential Outlooks
5. Conclusions
- The most obvious land use change was characterized as the large transition from cropland to construction land, bringing about the fragmentation of cropland that was encroached on by the construction land. The landscape pattern showed an increasing trend of landscape fragmentation, homogenization, and landscape interference, and a decreasing trend in landscape dominance. These changes mainly occurred in the lower watershed, particularly between 2000 and 2010. Therein, these changes were more than 50% in this decade compared with total 35 years.
- Many influencing factors affected the temporal variations in landscapes, including population growth, economic and industrial development, urbanized activities, and relevant policies. Among them, changes of major land use types were more sensitive to the increase of a non-agricultural population and transformation of industries than other factors. In addition, the spatial distribution of land use types and elevation were found to be the two key factors for the formation of landscape heterogeneity in 2000, while the spatial distribution of the other three human factors and elevation gradually became the same important factors after 2000.
- Our research shows that the temporal and spatial difference of changes in land use and landscape pattern at a watershed with unbalance urbanization degree in different regions was great. This is not only affected by the difference of the degree in socioeconomic level, population growth rate, and urbanizing expansion in different time and space, but also determined by the related policies. Besides, the topographical factors were also the basis of the formation on landscape pattern. When developing, we need to consider both the geographical conditions and the urbanizing degree of the watershed, thus a sustainable development strategy could be formulated and the goals of protecting and restoring the watershed ecosystem can be achieved.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Land Use Types | Description |
---|---|
Cropland | Arable agricultural land, including paddy fields and dry land |
Forest | Natural and semi-natural manmade woodland |
Shrub | Dwarf woodland (height < 2 m) and shrubbery |
Orchard | Intensively managed orchards (fruit orchards, mulberry orchards, tea orchards) and plant nursery |
Grassland | Natural and artificial grassland |
Water | Rivers, creeks, canals, ponds, lakes, reservoirs, and bays |
Floodplain | Permanent and seasonal floodplains |
Construction land | Mainly urban and rural settlements, mining land, transportation land, and other special construction land |
Unused land | Mainly land without vegetation cover and difficult to use, including bare soil, sandy land, desert, saline, and landfills |
Scales/(m × m) | PD | AI | AWMPFD | LPI | SHDI | |||||
---|---|---|---|---|---|---|---|---|---|---|
2000 | 2015 | 2000 | 2015 | 2000 | 2015 | 2000 | 2015 | 2000 | 2015 | |
500 × 500 m | 0.47 | 0.47 | 0.45 | 0.45 | 0.46 | 0.47 | 0.47 | 0.46 | 0.47 | 0.47 |
600 × 600 m | 0.47 | 0.47 | 0.45 | 0.45 | 0.46 | 0.47 | 0.47 | 0.46 | 0.47 | 0.47 |
700 × 700 m | 0.46 | 0.46 | 0.45 | 0.45 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 |
800 × 800 m | 0.46 | 0.46 | 0.43 | 0.43 | 0.45 | 0.46 | 0.46 | 0.45 | 0.46 | 0.46 |
900 × 900 m | 0.46 | 0.46 | 0.43 | 0.43 | 0.45 | 0.46 | 0.46 | 0.45 | 0.46 | 0.46 |
1000 × 1000 m | 0.44 | 0.44 | 0.42 | 0.42 | 0.43 | 0.44 | 0.44 | 0.43 | 0.44 | 0.44 |
1100 × 1100 m | 0.44 | 0.44 | 0.41 | 0.41 | 0.43 | 0.44 | 0.44 | 0.43 | 0.44 | 0.44 |
1200 × 1200 m | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 | 0.44 |
Appendix B
References
- Deng, J.S.; Wang, K.; Hong, Y.; Qi, J.G. Spatio-temporal dynamics and evolution of land use change and landscape pattern in response to rapid urbanization. Landsc. Urban Plan. 2009, 92, 187–198. [Google Scholar] [CrossRef]
- Sui, D.Z.; Zeng, H. Modeling the dynamics of landscape structure in Asia’s emerging desakota regions: A case study in Shenzhen. Landsc. Urban Plan. 2002, 53, 37–52. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, C.; Wang, G.; Bao, S. An integrated sustainable development approach to modeling the eco-environmental effects from urbanization. Ecol. Indic. 2011, 11, 1599–1608. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, T.; Liu, Z.; Kong, X.; Li, J.; Tan, R. A comparative analysis of urban and rural construction land use change and driving forces: Implications for urban-rural coordination development in Wuhan, Central China. Habitat Int. 2015, 47, 113–125. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F.; Erb, K.H.; Hertel, T.W. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [Google Scholar] [CrossRef]
- Luo, P.; Mu, D.; Xue, H.; Ngo-Duc, T.; Dang-Dinh, K.; Takara, K.; Nover, D.; Schladow, G. Flood inundation assessment for the Hanoi Central Area, Vietnam under historical and extreme rainfall conditions. Sci. Rep. 2018, 8, 12623. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, P.; Zhang, S.; Sun, B. Spatiotemporal analysis of hydrological variations and their impacts on vegetation in semiarid areas from multiple satellite data. Remote Sens. 2020, 12, 4177. [Google Scholar] [CrossRef]
- Edge, C.B.; Fortin, M.J.; Jackson, D.A.; Lawrie, D.; Stanfield, L.; Shrestha, N. Habitat alteration and habitat fragmentation differentially affect beta diversity of stream fish communities. Landsc. Ecol. 2017, 32, 647–662. [Google Scholar] [CrossRef]
- Tang, J.; Li, Y.; Cui, S.; Xu, L.; Ding, S.; Nie, W. Linking land-use change, landscape patterns, and ecosystem services in a coastal watershed of southeastern China. Glob. Ecol. Conserv. 2020, 23, e01177. [Google Scholar] [CrossRef]
- Xiao, J.; Shen, Y.; Ge, J.; Tateishi, R.; Tang, C.; Liang, Y.; Huang, Z. Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing. Landsc. Urban Plan. 2006, 75, 69–80. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G. Analyzing spatial restructuring of land use patterns in a fast growing region using remote sensing and GIS. Landsc. Urban Plan. 2004, 69, 335–354. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Kharel, G.; Zou, C.B. Impact of Climate Variability and Landscape Patterns on Water Budget and Nutrient Loads in a Peri-urban Watershed: A Coupled Analysis Using Process-based Hydrological Model and Landscape Indices. Environ. Manag. 2018, 61, 954–967. [Google Scholar] [CrossRef]
- Liu, J.; Shen, Z.; Chen, L. Assessing how spatial variations of land use pattern affect water quality across a typical urbanized watershed in Beijing, China. Landsc. Urban Plan. 2018. [Google Scholar] [CrossRef]
- Shen, Z.; Hou, X.; Li, W.; Aini, G.; Chen, L.; Gong, Y. Impact of landscape pattern at multiple spatial scales on water quality: A case study in a typical urbanised watershed in China. Ecol. Indic. 2015. [Google Scholar] [CrossRef]
- Zhao, R.; Chen, Y.; Shi, P.; Zhang, L.; Pan, J.; Zhao, H. Land use and land cover change and driving mechanism in the arid inland river basin: A case study of Tarim River, Xinjiang, China. Environ. Earth Sci. 2013, 68, 591–604. [Google Scholar] [CrossRef]
- Mallinis, G.; Koutsias, N.; Arianoutsou, M. Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban mountainous areas of Athens metropolitan area, Greece. Sci. Total Environ. 2014, 490, 262–278. [Google Scholar] [CrossRef]
- Křováková, K.; Semerádová, S.; Mudrochová, M.; Skaloš, J. Landscape functions and their change—A review on methodological approaches. Ecol. Eng. 2015, 75, 378–383. [Google Scholar] [CrossRef]
- Forman, R.T.T. Some general principles of landscape and regional ecology. Landsc. Ecol. 1995. [Google Scholar] [CrossRef]
- Li, X.; Lu, L.; Cheng, G.; Xiao, H. Quantifying landscape structure of the Heihe River Basin, north-west China using FRAGSTATS. J. Arid Environ. 2001. [Google Scholar] [CrossRef]
- Teixeira, Z.; Teixeira, H.; Marques, J.C. Systematic processes of land use/land cover change to identify relevant driving forces: Implications on water quality. Sci. Total Environ. 2014, 470–471, 1320–1335. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.; Zhou, P.; Jia, P.; Liu, Z.; Wei, L.; Tian, H. Spatial driving forces of dominant land use/land cover transformations in the Dongjiang River watershed, Southern China. Environ. Monit. Assess. 2016, 188. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Azizi, P.; Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. Sci. Total Environ. 2019, 655, 707–719. [Google Scholar] [CrossRef]
- Pan, D.; Domon, G.; Marceau, D.; Bouchard, A. Spatial pattern of coniferous and deciduous forest patches in an Eastern North America agricultural landscape: The influence of land use and physical attributes. Landsc. Ecol. 2001. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018. [Google Scholar] [CrossRef]
- Da Silva, A.M.; Huang, C.H.; Francesconi, W.; Saintil, T.; Villegas, J. Using landscape metrics to analyze micro-scale soil erosion processes. Ecol. Indic. 2015, 56, 184–193. [Google Scholar] [CrossRef]
- Su, S.; Hu, Y.; Luo, F.; Mai, G.; Wang, Y. Farmland fragmentation due to anthropogenic activity in rapidly developing region. Agric. Syst. 2014, 131, 87–93. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, N.; Liu, M.; Hu, Y.M. Landscape pattern and driving forces in the upper reaches of Minjiang River, China. In Proceedings of the 2010 3rd International Congress on Image and Signal Processing, Yantai, China, 16–18 October 2010; Volume 5, pp. 2189–2193. [Google Scholar] [CrossRef]
- Shi, Y.; Xiao, J.; Shen, Y.; Yamaguchi, Y. Quantifying the spatial differences of landscape change in the Hai River Basin, China, in the 1990s. Int. J. Remote Sens. 2012, 33, 4482–4501. [Google Scholar] [CrossRef]
- Su, S.; Wang, Y.; Luo, F.; Mai, G.; Pu, J. Peri-urban vegetated landscape pattern changes in relation to socioeconomic development. Ecol. Indic. 2014, 46, 477–486. [Google Scholar] [CrossRef]
- Zhang, F.; Kung, H.T.; Johnson, V.C. Assessment of land-cover/land-use change and landscape patterns in the two national nature reserves of Ebinur Lake Watershed, Xinjiang, China. Sustainability 2017, 9, 724. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yu, Q.; Wei, C. Spatial-Temporal Dynamic Analysis of Land Use and Landscape Pattern in Guangzhou, China: Exploring the Driving Forces from an Urban Sustainability Perspective. Sustainability 2019, 11, 6675. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Li, J.; Li, Y. Spatiotemporal characteristics and driving mechanisms of arable land in the Beijing-Tianjin-Hebei region during 1990–2015. Socioecon. Plann. Sci. 2019. [Google Scholar] [CrossRef]
- Wang, L.J.; Wu, L.; Hou, X.Y.; Zheng, B.H.; Li, H.; Norra, S. Role of reservoir construction in regional land use change in Pengxi River basin upstream of the Three Gorges Reservoir in China. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef] [Green Version]
- López-Barrera, F.; Manson, R.H.; Landgrave, R. Identifying deforestation attractors and patterns of fragmentation for seasonally dry tropical forest in central Veracruz, Mexico. Land Use Policy 2014, 41, 274–283. [Google Scholar] [CrossRef]
- McSherry, L.; Steiner, F.; Ozkeresteci, I.; Panickera, S. From knowledge to action: Lessons and planning strategies from studies of the upper San Pedro basin. Landsc. Urban Plan. 2006, 74, 81–101. [Google Scholar] [CrossRef]
- Piovan, S.E. Remote Sensing. In The Geohistorical Approach; Springer Geography; Springer: Cham, Switzerland, 2020; pp. 171–197. [Google Scholar] [CrossRef]
- Southworth, J.; Nagendra, H.; Tucker, C. Fragmentation of a landscape: Incorporating landscape metrics into satellite analyses of land-cover change. Landsc. Res. 2002. [Google Scholar] [CrossRef]
- Yu, X.; Ng, C. An integrated evaluation of landscape change using remote sensing and landscape metrics: A case study of Panyu, Guangzhou. Int. J. Remote Sens. 2006. [Google Scholar] [CrossRef]
- He, Y.; Wang, W.; Chen, Y.; Yan, H. Assessing spatio-temporal patterns and driving force of ecosystem service value in the main urban area of Guangzhou. Sci. Rep. 2021. [Google Scholar] [CrossRef]
- Guo, L.; Xia, B.; Liu, W.; Jiang, X. Spatio-temporal change and gradient differentiation of landscape pattern in Guangzhou City during its urbanization. Chin. J. Appl. Ecol. 2006, 17, 1671–1676. [Google Scholar]
- Gong, J.; Hu, Z.; Chen, W.; Liu, Y.; Wang, J. Urban expansion dynamics and modes in metropolitan Guangzhou, China. Land Use Policy 2018. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, T.; Cai, C.; Li, C.; Liu, Y.; Bao, Y.; Guan, W. Landscape pattern and transition under natural and anthropogenic disturbance in an arid region of northwestern China. Int. J. Appl. Earth Obs. Geoinf. 2016, 44, 1–10. [Google Scholar] [CrossRef]
- Zhao, P.; Xia, B.; Hu, Y.; Yang, Y. A spatial multi-criteria planning scheme for evaluating riparian buffer restoration priorities. Ecol. Eng. 2013, 54, 155–164. [Google Scholar] [CrossRef]
- Li, Q.; Xu, X.L.; Huang, J.R. Length-weight relationships of 16 fish species from the Liuxihe national aquatic germplasm resources conservation area, Guangdong, China. J. Appl. Ichthyol. 2014, 30, 434–435. [Google Scholar] [CrossRef]
- Zhang, C.; Xia, B.; Lin, J. A basin-scale estimation of carbon stocks of a forest ecosystem characterized by spatial distribution and contributive features in the Liuxihe River basin of pearl river delta. Forests 2016, 7, 299. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.J.; Ng, C.N. Spatial and temporal dynamics of urban sprawl along two urban-rural transects: A case study of Guangzhou, China. Landsc. Urban. Plan. 2007, 79, 96–109. [Google Scholar] [CrossRef]
- Jiyuan, L.; Mingliang, L.; Xiangzheng, D.; Dafang, Z.; Zengxiang, Z.; Di, L. The land use and land cover change database and its relative studies in China. J. Geogr. Sci. 2002, 12, 275–282. [Google Scholar] [CrossRef]
- Liu, J.; Liu, M.; Tian, H.; Zhuang, D.; Zhang, Z.; Zhang, W.; Tang, X.; Deng, X. Spatial and temporal patterns of China’s cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sens. Environ. 2005, 98, 442–456. [Google Scholar] [CrossRef]
- Riitters, K.H.; O’Neill, R.V.; Hunsaker, C.T.; Wickham, J.D.; Yankee, D.H.; Timmins, S.P.; Jones, K.B.; Jackson, B.L. A factor analysis of landscape pattern and structure metrics. Landsc. Ecol. 1995. [Google Scholar] [CrossRef]
- Cushman, S.A.; McGarigal, K.; Neel, M.C. Parsimony in landscape metrics: Strength, universality, and consistency. Ecol. Indic. 2008, 8, 691–703. [Google Scholar] [CrossRef]
- Pontius, R.G.; Shusas, E.; McEachern, M. Detecting important categorical land changes while accounting for persistence. Agric. Ecosyst. Environ. 2004. [Google Scholar] [CrossRef]
- Schneeberger, N.; Bürgi, M.; Hersperger, A.M.; Ewald, K.C. Driving forces and rates of landscape change as a promising combination for landscape change research-An application on the northern fringe of the Swiss Alps. Land Use Policy 2007. [Google Scholar] [CrossRef]
- Su, C.; Fu, B.; Lu, Y.; Lu, N.; Zeng, Y.; He, A.; Halina, L. Land use change and anthropogenic driving forces: A case study in Yanhe River Basin. Chin. Geogr. Sci. 2011, 21, 587–599. [Google Scholar] [CrossRef]
- Kavian, A.; Jafarian Jeloudar, Z. Land use/cover change and driving force analyses in parts of northern Iran using RS and GIS techniques. Arab. J. Geosci. 2011, 4, 401–411. [Google Scholar] [CrossRef]
- Fang, G.; Zhang, Y.; Yang, J. Evolution of urban landscape pattern in Suzhou City during 1987–2009. Appl. Mech. Mater. 2012, 178–181, 332–336. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Zhang, B.; Song, K.; Guo, Z.; Liu, D.; Li, F. Landscape dynamics and driving factors in Da’an County of Jilin Province in Northeast China During 1956–2000. Chin. Geogr. Sci. 2008. [Google Scholar] [CrossRef]
- Bürgi, M.; Straub, A.; Gimmi, U.; Salzmann, D. The recent landscape history of Limpach valley, Switzerland: Considering three empirical hypotheses on driving forces of landscape change. Landsc. Ecol. 2010, 25, 287–297. [Google Scholar] [CrossRef]
- Hersperger, A.M.; Bürgi, M. Going beyond landscape change description: Quantifying the importance of driving forces of landscape change in a Central Europe case study. Land Use Policy 2009, 26, 640–648. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Shen, J.; Fu, X.; Xiao, R.; Wu, J. Landscape pattern changes at a catchment scale: A case study in the upper Jinjing river catchment in subtropical central China from 1933 to 2005. Landsc. Ecol. Eng. 2014, 10, 263–276. [Google Scholar] [CrossRef]
- Yu, G.; Li, M.; Tu, Z.; Yu, Q.; Jie, Y.; Xu, L.; Dang, Y.; Chen, X. Conjugated evolution of regional social-ecological system driven by land use and land cover change. Ecol. Indic. 2018, 89, 213–226. [Google Scholar] [CrossRef]
- Ju-Long, D. Control problems of grey systems. Syst. Control. Lett. 1982. [Google Scholar] [CrossRef]
- Chen, M.; Lu, Y.; Ling, L.; Wan, Y.; Luo, Z.; Huang, H. Drivers of changes in ecosystem service values in Ganjiang upstream watershed. Land Use Policy 2015, 47, 247–252. [Google Scholar] [CrossRef]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970. [Google Scholar] [CrossRef]
- Moran, P.A. Notes on continuous stochastic phenomena. Biometrika 1950. [Google Scholar] [CrossRef]
- Cui, C.; Wang, J.; Wu, Z.; Ni, J.; Qian, T. The socio-spatial distribution of leisure venues: A case study of karaoke bars in Nanjing, China. ISPRS Int. J. Geo-Inf. 2016, 5, 150. [Google Scholar] [CrossRef] [Green Version]
- Wartenberg, D. Multivariate Spatial Correlation: A Method for Exploratory Geographical Analysis. Geogr. Anal. 1985, 17, 263–283. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010. [Google Scholar] [CrossRef]
- Ju, H.; Zhang, Z.; Zuo, L.; Wang, J.; Zhang, S.; Wang, X.; Zhao, X. Driving forces and their interactions of built-up land expansion based on the geographical detector—A case study of Beijing, China. Int. J. Geogr. Inf. Sci. 2016, 30, 2188–2207. [Google Scholar] [CrossRef]
- Kromroy, K.; Ward, K.; Castillo, P.; Juzwik, J. Relationships between urbanization and the oak resource of the Minneapolis/St. Paul Metropolitan area from 1991 to 1998. Landsc. Urban. Plan. 2007, 80, 375–385. [Google Scholar] [CrossRef]
- Gong, C.; Yu, S.; Joesting, H.; Chen, J. Determining socioeconomic drivers of urban forest fragmentation with historical remote sensing images. Landsc. Urban. Plan. 2013, 117, 57–65. [Google Scholar] [CrossRef]
- Zhang, H.; Ning, X.; Shao, Z.; Wang, H. Spatiotemporal pattern analysis of China’s cities based on high-resolution imagery from 2000 to 2015. ISPRS Int. J. Geo-Inf. 2019, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Gong, J.; Jiang, C.; Chen, W.; Chen, X.; Liu, Y. Spatiotemporal dynamics in the cultivated and built-up land of Guangzhou: Insights from zoning. Habitat Int. 2018. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Zhao, Y.; Xin, Q. Monitoring annual urbanization activities in Guangzhou using Landsat images (1987–2015). Int. J. Remote Sens. 2017, 38, 1258–1276. [Google Scholar] [CrossRef]
- Garcia, A.S.; Ballester, M.V.R. Land cover and land use changes in a Brazilian Cerrado landscape: Drivers, processes, and patterns. J. Land Use Sci. 2016, 11, 538–559. [Google Scholar] [CrossRef]
- Yin, K.; Li, X.; Zhang, G.; Xiao, L. Analysis of socio-economic driving forces on built-up area expansion in Xiamen. Int. J. Sustain. Dev. World Ecol. 2010. [Google Scholar] [CrossRef]
- Wang, S.Y.; Liu, J.S.; Ma, T.B. Dynamics and changes in spatial patterns of land use in Yellow River Basin, China. Land Use Policy 2010. [Google Scholar] [CrossRef]
- Biazin, B.; Sterk, G. Drought vulnerability drives land-use and land cover changes in the Rift Valley dry lands of Ethiopia. Agric. Ecosyst. Environ. 2013. [Google Scholar] [CrossRef]
- Gebremicael, T.G.; Mohamed, Y.A.; van der Zaag, P.; Hagos, E.Y. Quantifying longitudinal land use change from land degradation to rehabilitation in the headwaters of Tekeze-Atbara Basin, Ethiopia. Sci. Total Environ. 2018, 622–623, 1581–1589. [Google Scholar] [CrossRef]
- Zubair, O.A.; Ji, W.; Weilert, T.E. Modeling the impact of urban landscape change on urban wetlands using similarityweighted instance-based machine learning and Markov model. Sustainability 2017, 9, 2223. [Google Scholar] [CrossRef] [Green Version]
- Pomianek, I.; Chrzanowska, M. A spatial comparison of semi-urban and rural gminas in Poland in terms of their level of socio-economic development using Hellwig’s method. Bull. Geogr. 2016, 33, 103–117. [Google Scholar] [CrossRef] [Green Version]
- Łopucki, R.; Kiersztyn, A. Urban green space conservation and management based on biodiversity of terrestrial fauna—A decision support tool. Urban. For. Urban. Green. 2015, 14, 508–518. [Google Scholar] [CrossRef]
- Reiff, M.; Surmanová, K.; Balcerzak, A.P.; Pietrzak, M.B. Multiple criteria analysis of European union agriculture. J. Int. Stud. 2016, 9, 62–74. [Google Scholar] [CrossRef]
- Roszkowska, E.; Filipowicz-Chomko, M. Measuring Sustainable Development Using an Extended Hellwig Method: A Case Study of Education. Soc. Indic. Res. 2021, 153, 299–322. [Google Scholar] [CrossRef]
Index | Definition | Equation | Ecological Significance | Scale Level |
---|---|---|---|---|
Patch Density (PD) | Number of patches per unit area. | Representing the degree of landscape fragmentation and heterogeneity. | Land use class/landscape | |
Aggregation Index (AI) | By calculating the adjacent matrix between different types of patches, AI is used to describe the aggregation degree of different patches. | Representing the degree of landscape connectivity and fragmentation. | Land use class/landscape | |
Largest Patch Index (LPI) | Quantify the percentage of the largest patches in the total landscape area. | Representing the degree of landscape dominance. | Land use class/landscape | |
Area-weighted Mean Patch Fractal Dimension (AWMPFD) | Fractal dimension theory is used to measure the shape and structure complexity of patches and landscape (ranging from 1 to 2). | Representing the interference degree of human activities to some extent. | Land use class/landscape | |
Shannon’s Diversity Index (SHDI) | An index based on the relative area proportion of each landscape type and the total number of types. It is somewhat more sensitive to rare patch types than Simpson’s diversity index. | Representing the degree of landscape heterogeneity and diversity. | Landscape |
1980 | 2015 | 2015 Total | Gain | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Cropland | Forest | Shrub | Orchard | Grassland | Water | Floodplain | Construction Land | Unused Land | |||
Cropland | 555.34 | 12.47 | 2.96 | 2.14 | 0.91 | 1.68 | 0.16 | 9.65 | 0.20 | 585.51 | 30.17 |
Forest | 13.37 | 1213.02 | 1.13 | 2.09 | 2.52 | 2.11 | 0.13 | 1.79 | 1236.17 | 23.15 | |
Shrub | 2.64 | 1.66 | 57.76 | 0.07 | 0.09 | 0.09 | 0.28 | 0.01 | 62.60 | 4.83 | |
Orchard | 2.30 | 22.86 | 0.42 | 37.14 | 0.08 | 0.19 | 0.07 | 0.60 | 63.65 | 26.51 | |
Grassland | 1.11 | 4.32 | 0.13 | 0.73 | 36.11 | 0.08 | 0.06 | 42.55 | 6.44 | ||
Water | 15.52 | 4.55 | 0.22 | 0.20 | 0.25 | 41.60 | 2.66 | 1.73 | 66.73 | 25.13 | |
Floodplain | 0.08 | 0.11 | 0.13 | 0.04 | 1.79 | 2.16 | 0.36 | ||||
Construction land | 141.48 | 16.43 | 3.59 | 4.84 | 2.57 | 3.57 | 0.15 | 110.35 | 0.16 | 283.14 | 172.78 |
Unused land | 0.08 | 0.01 | 0.38 | 0.48 | 0.09 | ||||||
1980 Total | 731.84 | 1275.40 | 66.30 | 47.34 | 42.53 | 49.37 | 4.96 | 124.47 | 0.76 | ||
Loss | 176.50 | 62.38 | 8.53 | 10.20 | 6.42 | 7.77 | 3.17 | 14.12 | 0.38 |
Grey Correlation Coefficients | TP | PNAP | GDP | PPI | PSI | PTI | APCI | IRE | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Degree | Rank | Degree | Rank | Degree | Rank | Degree | Rank | Degree | Rank | Degree | Rank | Degree | Rank | Degree | Rank | |
Cropland | 0.89 | 2 | 0.79 | 3 | 0.60 | 7 | 0.71 | 5 | 0.92 | 1 | 0.73 | 4 | 0.63 | 6 | 0.57 | 8 |
Forest | 0.91 | 2 | 0.80 | 3 | 0.60 | 7 | 0.67 | 5 | 0.93 | 1 | 0.74 | 4 | 0.64 | 6 | 0.57 | 8 |
Shrub | 0.90 | 2 | 0.80 | 3 | 0.60 | 7 | 0.68 | 5 | 0.93 | 1 | 0.74 | 4 | 0.64 | 6 | 0.57 | 8 |
Orchard | 0.93 | 1 | 0.87 | 3 | 0.62 | 7 | 0.63 | 6 | 0.89 | 2 | 0.79 | 4 | 0.67 | 5 | 0.58 | 8 |
Grassland | 0.91 | 2 | 0.81 | 3 | 0.60 | 7 | 0.67 | 5 | 0.92 | 1 | 0.74 | 4 | 0.63 | 6 | 0.56 | 8 |
Water | 0.95 | 1 | 0.83 | 3 | 0.61 | 7 | 0.65 | 5 | 0.92 | 2 | 0.76 | 4 | 0.64 | 6 | 0.57 | 8 |
Floodplain | 0.84 | 2 | 0.77 | 3 | 0.60 | 7 | 0.76 | 4 | 0.84 | 1 | 0.73 | 5 | 0.64 | 6 | 0.57 | 8 |
Construction land | 0.83 | 3 | 0.89 | 1 | 0.64 | 6 | 0.55 | 8 | 0.77 | 4 | 0.84 | 2 | 0.70 | 5 | 0.59 | 7 |
Unused land | 0.87 | 2 | 0.80 | 3 | 0.61 | 7 | 0.74 | 5 | 0.91 | 1 | 0.75 | 4 | 0.65 | 6 | 0.58 | 8 |
Moran’s I | PD | AI | AWMPFD | LPI | SHDI | |||||
---|---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2000 | 2010 | 2000 | 2010 | 2000 | 2010 | 2000 | 2010 | |
DEM | −0.46 | −0.39 | 0.38 | 0.32 | 0.51 | 0.42 | 0.46 | 0.39 | −0.52 | −0.44 |
Slope | −0.30 | −0.26 | 0.25 | 0.21 | 0.22 | 0.28 | 0.30 | 0.26 | −0.33 | −0.29 |
GDP | 0.18 | 0.14 | −0.14 | −0.11 | −0.21 | −0.15 | −0.18 | −0.14 | 0.19 | 0.14 |
TP | 0.15 | 0.11 | −0.11 | −0.08 | −0.17 | −0.12 | −0.14 | −0.11 | 0.15 | 0.11 |
NLD | 0.30 | 0.23 | −0.23 | −0.19 | −0.34 | −0.25 | −0.30 | −0.23 | 0.33 | 0.26 |
LUIN | 0.49 | 0.49 | −0.40 | −0.23 | −0.53 | −0.31 | −0.49 | −0.29 | 0.55 | 0.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Liu, B.; Wang, H.; Hu, M. Analysis of the Spatiotemporal Changes in Watershed Landscape Pattern and Its Influencing Factors in Rapidly Urbanizing Areas Using Satellite Data. Remote Sens. 2021, 13, 1168. https://doi.org/10.3390/rs13061168
Zhu Z, Liu B, Wang H, Hu M. Analysis of the Spatiotemporal Changes in Watershed Landscape Pattern and Its Influencing Factors in Rapidly Urbanizing Areas Using Satellite Data. Remote Sensing. 2021; 13(6):1168. https://doi.org/10.3390/rs13061168
Chicago/Turabian StyleZhu, Zhenjie, Bingjun Liu, Hailong Wang, and Maochuan Hu. 2021. "Analysis of the Spatiotemporal Changes in Watershed Landscape Pattern and Its Influencing Factors in Rapidly Urbanizing Areas Using Satellite Data" Remote Sensing 13, no. 6: 1168. https://doi.org/10.3390/rs13061168
APA StyleZhu, Z., Liu, B., Wang, H., & Hu, M. (2021). Analysis of the Spatiotemporal Changes in Watershed Landscape Pattern and Its Influencing Factors in Rapidly Urbanizing Areas Using Satellite Data. Remote Sensing, 13(6), 1168. https://doi.org/10.3390/rs13061168