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Abstract: Analyzing the spatiotemporal characteristics and causes of landscape pattern changes in
watersheds around big cities is essential for understanding the ecological consequence of urbanization
and provides a basic reference for the watershed management. This study used a land-use transition
matrix and landscape indices to explore the spatiotemporal change of land use and landscape
pattern over Liuxihe River basin of Guangzhou in the southeast of China from 1980 to 2015 with
multitemporal Landsat satellite data in response to the rapid urbanization process. Primary temporal
and spatial influencing factors were first quantitatively identified through grey relation analysis
(calculating correlation degree between land use changes and influencing factors) and Geodetector
(detecting landscape spatial heterogeneity and its driving factors), respectively. Considerable spatial
and temporal differences in land use and landscape pattern changes were observed herein, thus
determining the influencing factors of these differences in the Liuxihe River basin. These changes
were characterized by a large increase in construction land converted from cropland, particularly
in the middle and lower reaches of the basin from 2000 to 2010, causing dramatic fragmentation
and homogenization of the landscape pattern there. Meanwhile, the landscape pattern gradually
transitioned from an agricultural land use dominant landscape to a construction land use dominant
landscape in these regions. Furthermore, the rapid growth of a nonagricultural population and the
transformation of industry primarily caused the temporal changes of landscape pattern, and the
landscape spatial heterogeneity was mainly caused by the interaction of complicated geomorphology
and anthropogenic activities in different spatial locations, particularly after 2000. This study not
only provides an improved approach to quantifying the main spatiotemporal influencing factors
of landscape pattern changes during different time periods, but also offers a reference for decision-
makers to formulate optimal strategies on ecological protection and urban sustainable development
of different regions in this study area.

Keywords: landscape pattern; spatiotemporal changes; influencing factors; watershed; China SE;
satellite data

1. Introduction

The increasing expansion of big cities has been a common social and economic phe-
nomenon taking place all around the world, especially in the developing countries since
the 21st century [1,2]. This process, with no sign of slowing down, may be the most critical
anthropogenic force that has brought about dramatic changes in land use and landscape
pattern at local, regional, and global scales [3–5]. Numerous studies have found that
these immense changes can not only contribute to various environmental issues [6,7], but
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also affect the structure, function, and health of the ecosystem [8,9], and further threaten
the sustainable development of big cities [10,11]. Therein, watersheds around rapidly
urbanizing areas are more sensitive to these changes due to its richer and fragile natural
ecosystems [12]. Moreover, a watershed is a complete natural and unnatural circulation
unit, which is more conducive to conduct the ecological protection and restoration. The
problem related to landscape pattern changes in these kinds of watersheds has been re-
ceiving more and more attention from international scholars in recent decades [13,14].
Therefore, gaining a deep understanding of the processes and causes of landscape pattern
changes is crucial for protection, management, and sustainable planning of these areas
under rapid urbanization [15,16].

Previous studies have illustrated that the analysis of land use changes is usually
regarded as the basis for studying the landscape patterns change [17], because the landscape
pattern is usually defined as the spatial arrangement of various landscape patches of
different types, sizes, and shapes, which are classified by different land use types [18].
Changes in the landscape pattern were proved to be the results of changes in various
land use types [19]. Most scholars choose a land use transition matrix to reflect the
mutual transformation characteristics between any two different land use types [20,21],
and use landscape metrics to detect the characteristics of spatial-structural composition
and configuration in different landscape patches [22,23]. Therein, the former emphasizes
changes of land surface properties in different periods [24], and the latter stresses the
changes of potential ecological pattern [25]. When studying the changing characteristics of
landscape pattern, it is necessary to analyze land use changes first, and emphasize both the
temporal and spatial changes of them.

Currently, previous studies on the change of watershed landscape pattern in rapidly
urbanizing areas seldom quantified spatiotemporal processes and causes of landscape
pattern changes comprehensively. For example, Su et al. [26] analyzed the land use and
landscape pattern in a different period to reflect its spatiotemporal changes characteristics
and its causes, but ignored the overall spatial heterogeneity of landscape pattern. Zhang
et al. [27] and Shi et al. [28] systematically analyzed the spatiotemporal changes processes
of land use and landscape pattern in watersheds. The former study only quantified the
temporal influencing factors of land use changes, and the latter study described the tempo-
ral and spatial influencing factors respectively, but not quantitatively. In addition, when
analyzing the influencing factors of landscape pattern changes quantitatively, many studies
failed to solve the problem of insufficient multi-temporal land use data [29–31], nor did
they consider the interactive effects of different factors on the spatial landscape heterogene-
ity [32,33]. Some studies even analyzed the transition driving forces of different land use
types in different locations of different period to meet the requirements of large quantities
data for commonly used analysis methods [34]. But the causes of the spatial characteristics
of landscape pattern were ignored in this case. Considering the fact that the analysis of
both spatial and temporal causes were all important for guiding the management and
protection of the natural ecosystem in watershed [35]. There is no doubt that researchers
should carry out a systematic analysis on the process and cause of watershed landscape
pattern spatiotemporal changes quantitatively.

With the continuous improvement of the remote sensing technology, more and more
remote sensing data with different sensors, time periods, spectrum and spatial resolution
can be acquired [36]. It provides the most stable and accurate multi-temporal data source
for land use analysis, thus the land use and landscape pattern changes under the rapid
urbanization can be monitored and analyzed spatiotemporally [37]. There existed many
studies that using these kinds of data analyzed the land use change of different regions
in Guangzhou city [38,39], and compared the relationships between these changes and
urban expansion [40,41]. Liu et al. [31] also discussed the land use change and its causes
based on the Landsat satellite data with remote sensing technology. These researches all
illustrated the feasibility of using land use data provided by remote sensing technology
to analyze the changes of landscape patterns in Guangzhou city. Besides, along with the
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rapidly urban expansion of Guangzhou city, the intensive interaction between natural and
human elements in the LXH has brought about the large transition of construction land
from lots of forest and cropland [42]. The water quality and natural environment of the
LXH were degraded, especially in the downstream [43,44]. The Liuxihe River basin (LXH),
as the final ecological barrier on the northwest of Guangzhou city, is an important water
resource conservation area. Therefore, compared with areas divided by the administrative
units in Guangzhou city, analyzing the landscape pattern changes in the LXH has greater
ecological significance and protection value for Guangzhou.

This study mainly analyzes the spatiotemporal differences of process and causes on
landscape pattern changes under rapid urbanization of the Guangzhou city. The specific
objectives are: (1) To analyze the changes of different land use types in time and space;
(2) to characterize the spatial configuration of the landscape pattern in time and space;
(3) to establish the relationship between changes in different land use types and different
influencing factors temporally; and (4) to determine the impact of different factors on the
landscape heterogeneity. Thus, these differences in the spatiotemporal changes and causes
of landscape pattern in the LXH under the rapid urbanization since 1980 are revealed. The
decision-makers will be more clear about how to formulate an appropriate strategy for
planning and management.

2. Materials and Methods
2.1. Study Area

The Liuxihe River basin is in the rapidly developing and urbanizing city of Guangzhou,
southeast of China (Figure 1). The river, about 171 km in length with an area of 2300 km2,
flows through Guangzhou, and eventually empties into the Beijiang River, a tributary of
the Pearl River. The annual precipitation rate over the LXH is 1750 mm and more than 80%
of precipitation occurs from April to September. Its daily mean air temperature is about
20 ◦C and annual rate of evaporation is about 1200 mm [45]. The elevation of the LXH
falls gradually from northeast to southwest, characterized by mountains in the upstream,
hills in the midstream, and plains in the downstream, thus making the upstream more
difficult to develop than the middle and lower watershed. At present, the distribution of
land use in the LXH is characterized by forests in the upstream, croplands and orchards
in the midstream, and construction lands in the downstream. In addition, the speed of
the urbanization process in the midstream and downstream of the LXH is faster and
stronger than in the upstream [46]. The special location conditions, the unbalancing effect
of urbanization, the difference in natural topography, and the land uses/land covers all
make the LXH an appropriate case for the research processes and influencing factors for
spatiotemporal changes of watershed landscape pattern in rapidly urbanizing areas.

2.2. Data and Data Processing

Satellite images taken in 1980, 1990, 1995, 2000, 2005, 2008, 2010, and 2015 (Landsat
MSS/TM/ETM, Landsat 8) with a spatial resolution of 30 m were provided by Data
Center for Resources and Environmental Sciences, Chinese Academy of Sciences (http:
//www.resdc.cn, accessed on 30 December 2017). The method of visual interpretation was
used to derive thematic land use maps based on the land resource classification system of
Chinese academy of sciences [47]. Meanwhile, the accuracy of interpretation was improved
through reference data, such as geomorphic maps, vegetation maps, ground truth data
at different sample points, and local resident interview data. The calculated results of
Kappa coefficient were larger than 0.80, which verified the accuracy and reliability of
these land use maps [48]. This paper reclassified these land use maps into nine types
including cropland, forest, orchard, grassland, shrub, water, floodplain, construction land,
and unused land (Appendix A Table A1).

Besides, data from 1980 to 2015 about demographic factors, socioeconomic factors, and
urbanized activities of the LXH were collected from the Guangzhou Statistical Yearbook
(http://tjj.gz.gov.cn/, accessed on 1 April 2018) and the Outline of Guangzhou Urban
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Construction Overall Strategic Concept Plan (http://ghzyj.gz.gov.cn/, accessed on 30
October 2018), which is provided by the Chinese government. The detailed factors are
total population (TP), proportion of non-agricultural population (PNAP), gross domestic
product (GDP), proportion of primary industry (PPI), proportion of secondary industry
(PSI), proportion of tertiary industry (PTI), annual per capital income (APCI), and total
investment in real estate development (IRE).

Figure 1. The location and digital elevation map (DEM) of the Liuxihe River basin (LXH).

Spatial data such as topographical elements (digital elevation map (DEM) and SLOPE)
were obtained from NASA’s Earth Observing System Data and Information System
(https://search.earthdata.nasa.gov/search, accessed on 30 December 2018). And other
spatial data were obtained from Data Center for Resources and Environmental Sciences,
Chinese Academy of Sciences (Source: China, Satellite images, http://www.resdc.cn, ac-
cessed on 30 December 2018), including population density (TP), socioeconomic level
(GDP), urbanized activities (NLD), and land use intensity (LUIN). These main parameters
of the LXH with a spatial resolution of 1000 m (except for the DEM and SLOPE data with a
spatial resolution of 30 m) were all cut out by the ArcGIS software.

2.3. Methods
2.3.1. Selection of Landscape Metrics and Influencing Factors

• Landscape Metrics

The factor analysis method [49] was taken to screen the notable landscape metrics
from 23 frequently used metrics (Appendix B Figure A1). First, if the absolute value of
the correlation coefficient between two indices was more than 0.9, only one was used;
second, indices representing different aspects of landscape characteristics were selected
to reduce the information redundancy among them [50]. Five representative indices were
used in the final analysis, including the patch density (PD), aggregation index (AI), largest
patch index (LPI), area-weighted mean patch fractal dimension (AWMPFD), and Shannon’s
diversity index (SHDI). These landscape metrics were calculated for 1980, 1990, 2000,
2010, and 2015 using the public domain software FRAGSTATS 4.2 at both the class-level
and landscape-level in 14 different granularities (30 m, 50 m, 100 m, 200 m, 300 m, 400
m, 500 m, 600 m, 700 m, 800 m, 900 m, 1000 m, 1100 m, 1200 m). FRAGSTATS is a
computer software program designed to compute a wide variety of landscape metrics for

http://ghzyj.gz.gov.cn/
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categorical map patterns at different levels (the detailed introduction of this software can
be found at https://www.umass.edu/landeco/research/fragstats/fragstats.html, accessed
on 1 February 2018). Thus, the characteristic scale interval which is appropriate for spatial
analysis of the Liuxihe River basin was determined (Appendix B Figure A2). The calculation
formula and ecological significance of these indices are given in Table 1.

Table 1. Landscape metrics used in this study, their formula and ecological interpretation.

Index Definition Equation Ecological Significance Scale Level

Patch Density (PD) Number of patches per unit
area. PD = Ni/A

Representing the degree of
landscape fragmentation and

heterogeneity.
Land use class/landscape

Aggregation Index (AI)

By calculating the adjacent
matrix between different

types of patches, AI is used to
describe the aggregation

degree of different patches.

AI =
2 ln(m) +

m
∑

i=1

n
∑
j=1

Pij ln(Pij)

Representing the degree of
landscape connectivity and

fragmentation.
Land use class/landscape

Largest Patch Index (LPI)
Quantify the percentage of

the largest patches in the total
landscape area.

LPI =
Max(aij)

A (100)
Representing the degree of

landscape dominance. Land use class/landscape

Area-weighted Mean Patch
Fractal Dimension

(AWMPFD)

Fractal dimension theory is
used to measure the shape

and structure complexity of
patches and landscape
(ranging from 1 to 2).

AWMPFD =
m
∑

i=1

n
∑

j=1
[

2 ln(0.25pij)

ln(aij)
]

N

Representing the interference
degree of human activities to

some extent.
Land use class/landscape

Shannon’s Diversity Index
(SHDI) An index based on the

relative area proportion of
each landscape type and the
total number of types. It is

somewhat more sensitive to
rare patch types than

Simpson’s diversity index.

SHDI = −
m
∑

i=1
(Pi · ln Pi)

Representing the degree of
landscape heterogeneity and

diversity.
Landscape

Note: i = 1 . . . m patch types (classes); j = 1 . . . n patches; A = total area of each landscape type (m2); aij = area (m2) of patch ij;
Pij = perimeter (m) of patch ij; Ni = number of patches in the landscape of patch type (class) i; m = number of patch types (classes) present
in the landscape, excluding the landscape border if present; Pi = proportion of the landscape occupied by patch type (class) i.

• Land Use Transition Matrix

The changes in landscapes were detected by calculating each land use type transition
matrix of any two adjacent periods from 1980 to 2015. The following equation (Equation (1))
was applied to calculate the matrix:

p =


p11 p12 · · · p1j
p21 p22 · · · p2j

...
...

...
...

pi1 pi2 · · · pij

 (1)

where pij indicates the area in transition from landscape i to j. Each element of the transition

matrix meets two standards: (1) pij is non-negative, and (2)
n
∑

j=1
pij = 1.

For a better characterization of landscape changes, the transition matrix between any
two adjacent periods was displayed in a two-dimensional table by many researchers [51].
Therein, the diagonal entries of the table reflect the total size of persistent land use types
whereas the off-diagonal entries show the transition size of one land use type to another.
Besides, the gross gain and gross loss of each land use type were also displayed in the table,
which could be used to calculate the total exchange (sum of the gross gain and the gross
loss) and net change (the gross gain minus the gross loss).

• Selection of Landscape Change Influencing Factors

The influencing factors on the development of landscape pattern vary at different
spatial and temporal scales [52], which were categorized into natural and anthropogenic
factors in most of the related researches [53,54]. This study focused on the small-scale

https://www.umass.edu/landeco/research/fragstats/fragstats.html
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watershed around rapidly urbanization city in a short research period. In these areas,
anthropogenic factors such as population growth, socioeconomic activities, urbanization
activities, and related policies usually play a major role [29]. In terms of natural factors,
they are relatively stable and unchanged in short term compared with anthropogenic
factors [55], thus their impact on landscape changes can be ignored in this case [56–58].
Finally, only anthropogenic factors were selected to reflect the temporal influencing factors
in this study, including the total population (TP), the proportion of the non-agricultural
population (PNAP), gross domestic product (GDP), the proportion of the primary industry
(PPI), the proportion of the secondary industry (PSI), the proportion of the tertiary industry
(PTI), annual per capita income (APCI), and total investment in real estate development
(IRE). These factors are about the demographic, socioeconomic, and urbanized activities of
a region. Besides these, the policies related to the rapid urbanization were also considered.

In addition, researchers found that climate conditions had no significant influence on
the spatial distribution of landscape in a small-scale catchment [33], and topographical and
anthropogenic factors were commonly used to interpret the landscape spatial heterogeneity
in this case [28,59]. As we all know, the spatial difference of soil and hydrological conditions
always depend on topographical factors. Therefore, this study mainly analyzed the spatial
difference of topographical and anthropogenic factors on landscape spatial heterogeneity.
Herein, the spatially distributed data of GDP and TP were selected to represent the spatial
difference between socioeconomic level and population density. The nighttime light
(NLD) spatial data were used to represent the urbanization degree. Moreover, the spatial
distribution of the LUIN was calculated using the land use comprehensive degree index,
representing the urbanization activities related to land use changes. Additional details
on the calculation of land use comprehensive degree index can be found in Yu et al. [60].
Besides, the topographical variables (DEM and SLOPE) were also considered.

2.3.2. Quantifying the Influence on the Change of Landscape Pattern

Considering the spatiotemporal characteristics of land use and landscape pattern
changes and their interactions, this study mainly analyzed the factors that influence the
temporal change of land use types and spatial differences of landscape patterns (i.e., the
spatial heterogeneity of landscape). Since the data for each year could not be obtained, it
made the commonly used quantitative statistical analysis impractical. This study applied
grey correlation analysis to explore the impact of different influencing factors on land
use changes in an attempt to effectively solve the problem of insufficient sample data.
Meanwhile, spatial correlation analysis using the Geodetector was carried out to assess
the influence degree and interaction of each influencing factor toward different spatial
characteristics of landscape index.

• Grey Correlation Analysis

Grey correlation analysis is an impacting factor measurement method in the grey
system theory proposed by Deng [61] in 1982, which analyzes the uncertain relationship
between a main factor and all other influencing factors in a given system. It can complement
the defects of statistical analysis methods and can work with small amounts of irregular
data; it also negates the inconsistency between quantitative and qualitative results. The
analysis method mainly compares the time series of each influencing factor to determine
which one is dominant. That is, when the trend of changes between an independent
variable and a dependent variable is consistent or the degree of synchronization change is
high, a strong correlation results [62]. The relationship is often expressed by grey correlation
degree (Equation (2)). The greater the degree of grey correlation is, the more the influence
degree of the factor will be and vice versa.

γij =
1
n

n

∑
k=1

min
i

min
k

∆i(k) + ξmax
i

max
k

∆i(k)

∆i(k) + ξmax
i

max
k

∆i(k)
,∆i(k) =

∣∣xj(k)− xi(k)
∣∣ (2)
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where xi and xj are the independent variable series and the dependent variable series,
respectively; γij is the grey relational degree between independent variables xi and depen-
dent variables xj; ξ is the resolution coefficient, ξ ∈ (0, 1), and usually ξ takes a value of
0.5; k = 1, 2, · · · , n is the time series.

• Spatial Correlation Analysis

Spatial autocorrelation can be defined as the coincidence of value similarity with
location similarity, and is used to detect patterns of spatial association [63]. In this study,
the global Moran’s I index [64,65] (Equation (3)) was adopted to analyze the spatial autocor-
relation of each landscape metric in its characteristic scale interval (500~1200 m), providing
appropriate spatial scales for launching the bivariate spatial correlation analysis between
each landscape metric and the influencing factors (Appendix A Table A2).

I =
n

∑
i

∑
j

wij
×

∑
i

∑
j

wij(xi − x)

∑
i
(xi − x)

2 (3)

where wij is the spatial weight matrix between observation unit i and its neighboring units j:
i and j are established by diving the study area into uniform grids based on its appropriate
scale; xi and xj are the observed values of adjacent research area i and j, respectively; n is
the number of spatial units of the research area, and x is the average value of all observed
values in the sample. Index I ranges from −1 to 1, and as the absolute value of I increases,
the spatial correlation gets stronger. I = 0 indicates a random spatial distribution.

Further, bivariate Moran’s Ixy [66] (Equation (4)), which is based on the principle of
univariate spatial correlation, has been adopted on the specific scale of 1000 × 1000 m. On
this spatial scale, the analysis scale between each landscape metric and each influencing
factor can be unified. The spatial autocorrelation analysis of each landscape metric at
this scale was extremely significant. Through the spatial autocorrelation analysis, the
relationship between the landscape metric and spatial influencing factors was captured
and the strength of the association between the two variables was measured over the study
area.

Ixy =
n

∑
i

∑
j

wij
×

∑
i

∑
j

wij(xi − x)(yj − y)√
∑
i
(xi − x)

2
√

∑
j
(yj − y)

2
(4)

where Ixy also ranges from −1 to 1, xi is the attribute values of adjacent research areas i and
x, while xj is the attribute values of adjacent research areas j and y; x and y are the average
attribute values of x and y in the sample, respectively; and n is the number of the spatial
units of the research area.

• Geographical Detector Model

The geographical detector model (Geodetector), which is based on the theory of
spatial stratified heterogeneity [67], was used to analyze the interaction between landscape
metrics and various influencing factors in this study. First, we obtained the spatial data of
independent variables through discrete classification for various influencing factors using
the geometrical interval method [68–70], and then analyzed the influence of these variables
on each landscape metric of the same spatial scales via Geodetector.

Specifically, the factor force q in Equation (5), ranging from 0 to 1, quantified the
effect of different influencing factors on the spatial distribution of landscape metrics [32],
and reflected the degree of spatial stratified heterogeneity of the metrics. The larger the q
became, the more heterogeneous the landscape pattern.

q = 1− 1
Nσ2

L

∑
i=1

Niσ
2
i (5)
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where N and σ2 stand for the number of units and the variance of the dependent variable,
respectively; i = 1 · · ·L is the stratification of the dependent or independent variable;
Ni and σ2

i stand for the number of units and the variance of the dependent variable in
stratification layer i, respectively.

3. Results
3.1. Spatiotemporal Variations of Land Use Types

As shown in Figure 2, the overall landscape of the LXH is dominated by forests and
croplands, while other seven land use types (including forest, shrub, orchard, grassland,
water, floodplain and unused land) occupy a relatively small portion, accounting for less
than a quarter of the total basin. Clearly, it is noticed that the proportion change in land use
types were not large in general, but their temporal and spatial differences were obvious.
Therein, the proportion changes of cropland and construction land were more prominent
than any other land use types, particularly in the middle and lower watershed during 2000
and 2010. Temporally, the decreases of cropland and increases of construction land in this
decade were more than 50% of that in total 35 years (See subfigures b in Figure 2). Spatially,
it can be seen from the results of (c) in Figure 2 that the cropland decreased by 16.96% in
the lower watershed and 2.70% in the middle watershed, respectively. The construction
land increased by 17.78% in the lower watershed and 3.33% in the middle watershed,
respectively. Their changes were all less than 1% in the upper watershed.

Figure 2. The types of land use in the LXH (1980–2015) (a) Spatial distribution of land use; (b) Percent
coverage of the land use types; and (c) percent coverage of the land use types in the upper, middle
and lower watershed of the river basin.

More importantly, land use changes, characterized by the transition from one type to
another, were extremely prominent. From the land use conversion matrix between 1980
and 2015 in Table 2, it can be calculated that the total exchange area is 578.93 km2, or
24.71% of the total catchment area. Specifically, the conversions among cropland, forest,
orchard, water, and construction land comprised 94.78% of the total exchange. Among
them, construction land has increased by 158.67 km2 or 127.47%. Cropland and forest
have decreased by 146.33 km2 or 20.00% and 39.24 km2 or 3.08%, respectively. Other
changes were all less than 20.00 km2. It can be observed that cropland and forests primarily
contributed to land use exchanges and were the major land use types encroached on by
urbanization. Of the 158.67 km2 increases in construction land, 89.17% resulted from
conversion of cropland and 10.35% resulted from conversion of forests.
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Table 2. Land use types conversion matrix between 1980 and 2015 (km2).

1980
2015 2015

Total Gain
Cropland Forest Shrub Orchard Grassland Water Floodplain Construction Land Unused Land

Cropland 555.34 12.47 2.96 2.14 0.91 1.68 0.16 9.65 0.20 585.51 30.17
Forest 13.37 1213.02 1.13 2.09 2.52 2.11 0.13 1.79 1236.17 23.15
Shrub 2.64 1.66 57.76 0.07 0.09 0.09 0.28 0.01 62.60 4.83

Orchard 2.30 22.86 0.42 37.14 0.08 0.19 0.07 0.60 63.65 26.51
Grassland 1.11 4.32 0.13 0.73 36.11 0.08 0.06 42.55 6.44

Water 15.52 4.55 0.22 0.20 0.25 41.60 2.66 1.73 66.73 25.13
Floodplain 0.08 0.11 0.13 0.04 1.79 2.16 0.36

Construction land 141.48 16.43 3.59 4.84 2.57 3.57 0.15 110.35 0.16 283.14 172.78
Unused land 0.08 0.01 0.38 0.48 0.09

1980 Total 731.84 1275.40 66.30 47.34 42.53 49.37 4.96 124.47 0.76
Loss 176.50 62.38 8.53 10.20 6.42 7.77 3.17 14.12 0.38

Besides, there also exist great temporal and spatial differences in land use exchanges.
Temporally, the Sankey diagram in Figure 3 visualizes exchanges of each land use type over
different time periods. Therein, exchanges in almost all land use types during 2000–2010
are the most significant. Notably, the increase of construction land in this decade accounted
for more than 50% of the total increase in the entire period, and 78.11% of the construction
land increase came from conversion of cropland and 10.10% from conversion of forest.
Spatially, Figure 4 shows that the conversions mainly occurred in the middle and lower
reaches of the basin where a large amount of cropland was converted into construction
land. Particularly, the lower reaches experienced the most drastic changes in the river basin
regarding croplands and construction areas.

Figure 3. Comparison of exchanges of land use types in four time periods.

3.2. Spatiotemporal Variations of Landscape Patterns

The different landscape pattern indices were calculated at both landscape and land
use class levels on the specific scale of 1000 × 1000 m. The former represents the overall
spatial arrangement characteristics of each landscape patch, and the latter reflects the
spatial arrangement characteristics of each landscape patch in different types. That is,
the landscape pattern of each landscape patches at the class level can determine it at the
landscape level, but not vice versa.

Figure 5 shows that changes of those indices are all obvious at the landscape level.
For example, the landscape fragmentation index PD has an increasing trend and increased
by 8.03%, while AI shows a decreasing trend and decreased by 2.25%. Meanwhile, the
interference index AWMPFD and dominance index LPI decreased by 0.71% and 4.86%,
respectively. The diversity index SHDI shows an increasing trend and increased by 5.25%.
Temporally, these indices altogether indicated an increasing fragmentation and homoge-
nization in landscapes, intensified human interference, and a weakening dominance of the
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once-dominant landscape (forest and cropland) in the early years. Similar to the changes
in land use types, the decade from 2000–2010 experienced the most significant changes in
landscape pattern.

Figure 4. Spatial variations of land use type transition in different time intervals (1980–1990, 1990–2000, 2000–2010,
2010–2015 and 1980–2015).

Figure 5. Changes of landscape metrics (a) Shannon’s diversity index (SHDI), (b) patch density (PD), (c) aggregation index
(AI), (d) area-weighted mean patch fractal dimension (AWMPFD), and (e) largest patch index (LPI) at the landscape level
from 1980 to 2015.
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Moreover, similar to land use changes, landscape pattern also showed distinct spatial
characteristics, reflecting the landscape heterogeneity in the LXH. As shown in Figure 6,
the PD and SHDI are relatively small while AI, AWMPFD, and LPI are relatively large in
the upstream area. However, this pattern reverses in the middle and lower watershed. This
indicated that the landscape in the middle and lower watershed was more fragmented and
heterogeneous than the landscape in the upper watershed, with a higher interference and
lower dominance. Moreover, by comparing the values of these landscape metrics in 1980
and 2015 shown in subfigures c in Figure 6, we find that they are almost unchanged in
most regions, except for part of the middle and lower watershed where cropland had been
largely converted to construction land.

Figure 6. Spatial distribution of the changes in landscape metrics between (a) 1980 and (b) 2015, and (c) showed the results
of subtraction of the indices in 1980 from 2015.

At the land use class-level, it can be found that the PD and AI value of cropland
and forest changed more significantly than the other types during the total study period.
The PD of cropland and forest increased by 42.26% and 41.59%, and the AI decreased
by 1.68% and 0.21%, respectively. Meanwhile, the LPI values of cropland and forest
decreased by 67.45% and 3.07%, respectively. The LPI of construction land in 2015 was
12 times that of the LPI in 1980, second only to the LPI of cropland. Among all land use
types, the AWMPFD of cropland decreased most significantly, by 4.39% in total, while
the net change of the AWMPFD of other types was less than 1.00%. That is, the degree of
fragmentation, homogenization, and human alteration of cropland in this river basin was
the most significant of all terrains. At the same time, the degree of landscape dominance of
cropland was greatly reduced, while that of construction land was greatly improved. This
indicated that the fragmentation and homogenization of cropland was mainly contributed
by occupation of the construction land.
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3.3. Impacts of the Anthropogenic Factors on Temporal Landscape Changes

Since the effect of natural factors on landscape changes was minor compared with
anthropogenic factors in a short period of time, this paper selected eight anthropogenic
factors involving demographic factors, socioeconomic factors, and urbanized activities to
reflect their impacts on landscape changes temporally (refer to Figure 7 for detailed indices
and their change trends). Meanwhile, due to the difficulty of quantitatively expressing the
related policies, they were not included in the following quantitative analysis.

Figure 7. Temporal trends of influencing factors (a) Total population, (b) Proportion of non-
agricultural population, (c) Gross domestic product, (d) Proportion of primary industry, (e) Propor-
tion of secondary industry, (f) Proportion of tertiary industry, (g) Annual per capita income and (h)
Total investment in real estate development during 1980 to 2015.

First, from the Figures 7 and 8, it can be found that the temporal changes of some
influencing factors and land use types are non-linear; we chose the method of grey cor-
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relation analysis in this context. According to the results from the relational analysis in
Table 3, all the grey correlation coefficients are greater than 0.55, indicating that the changes
of these eight anthropogenic factors are all significantly correlated with the changes of
various land use types in the LXH temporally. More specifically, the four most correlated
factors on each land use type were the TP, the PNAP, the PSI, and the PTI, which were
demographic and socioeconomic factors and their correlations were all above 0.73. Among
them, for cropland and each natural land (forest, shrub, grassland, water, floodplain, and
unused land), the most correlated factors were PSI and TP; while for construction land,
the most correlated factors were PNAP and PTI. From the Figure 7, it is clear that the TP,
PNAP, and PTI all increase dramatically from 1980 to 2015 in the LXH. The PSI shows a
trend of first increasing and then decreasing, but it also increases on the whole. Therefore,
combined with the characteristics of the proportion changes in various land use types in
Figure 8, it can be concluded that the increase of construction land was mainly correlated
with the increase of non-agricultural population and the continuous development of the
tertiary industry in the LXH. The decreasing of cropland and each natural land was mainly
correlated with the increase of TP and the changes in secondary industry. This might be
attributed to the growing population (especially the growth of urban population) and
the transformation of industry (especially the growth of tertiary industry), which has
accelerated the encroachment on cropland and natural lands to meet the demands for
more construction land in the LXH [71,72]. Alternately, the other four influencing factors
were also crucial to the changes of different land use types, but they had less of an effect
compared with these main influencing factors.

Figure 8. Temporal trends of each land use type (a) Proportion changes of Cropland, (b) Proportion changes of Forest, (c)
Proportion changes of Shrub, (d) Proportion changes of Grassland, (e) Proportion changes of Floodplain, (f) Proportion
changes of Unused land, (g) Proportion changes of Orchard, (h) Proportion changes of Water and (i) Proportion changes of
Construction land during 1980 to 2015.



Remote Sens. 2021, 13, 1168 14 of 26

Table 3. Grey correlation coefficients of influencing factors on land use changes.

Grey
Correlation
Coefficients

TP PNAP GDP PPI PSI PTI APCI IRE

Degree Rank Degree Rank Degree Rank Degree Rank Degree Rank Degree Rank Degree Rank Degree Rank

Cropland 0.89 2 0.79 3 0.60 7 0.71 5 0.92 1 0.73 4 0.63 6 0.57 8
Forest 0.91 2 0.80 3 0.60 7 0.67 5 0.93 1 0.74 4 0.64 6 0.57 8
Shrub 0.90 2 0.80 3 0.60 7 0.68 5 0.93 1 0.74 4 0.64 6 0.57 8

Orchard 0.93 1 0.87 3 0.62 7 0.63 6 0.89 2 0.79 4 0.67 5 0.58 8
Grassland 0.91 2 0.81 3 0.60 7 0.67 5 0.92 1 0.74 4 0.63 6 0.56 8

Water 0.95 1 0.83 3 0.61 7 0.65 5 0.92 2 0.76 4 0.64 6 0.57 8
Floodplain 0.84 2 0.77 3 0.60 7 0.76 4 0.84 1 0.73 5 0.64 6 0.57 8

Construction
land 0.83 3 0.89 1 0.64 6 0.55 8 0.77 4 0.84 2 0.70 5 0.59 7

Unused land 0.87 2 0.80 3 0.61 7 0.74 5 0.91 1 0.75 4 0.65 6 0.58 8

3.4. Impacts of Anthropogenic and Natural Factors on Spatial Landscape Changes

Considering the fact that landscape pattern experienced the most significant changes
from 2000 to 2010, we took this period as an example to study the influencing factors
of spatial heterogeneity toward landscape pattern in this river basin. Table 4 manifests
the significant spatial correlation between each landscape metric and each investigated
influencing factor in 2000 and 2010 respectively. Among them, topographic elements DEM
and SLOPE were all spatially negatively correlated with PD and SHDI, and positively
correlated with AI, AWMPFD, and LPI. This indicated that in areas with low elevation and
gentle slopes, the degree of landscape fragmentation, landscape interference, and landscape
homogenization was stronger, and that the landscape dominance was weak. Table 4
also shows that all anthropogenic influencing factors (GDP, TP, and NLD) are positively
correlated with PD and SHDI, and negatively correlated with AI, AWMPFD, and LPI
spatially. This illustrates that the degree of landscape fragmentation, landscape interference,
and landscape homogenization is relatively strong in more developed regions. In terms of
the impact of land use changes brought by rapid urbanization on landscape patterns, the
LUIN was positively correlated with PD and SHDI spatially and negatively correlated with
AI, AWMPFD, and LPI. This reflected that areas with high LUIN were usually accompanied
with a relatively stronger degree of landscape fragmentation, landscape interference, and
landscape homogenization.

Table 4. Bivariate Moran’s I correlation analysis between landscape metrics and influencing factors
in the spatial dimension in 2000 and 2010.

Moran’s I
PD AI AWMPFD LPI SHDI

2000 2010 2000 2010 2000 2010 2000 2010 2000 2010

DEM −0.46 −0.39 0.38 0.32 0.51 0.42 0.46 0.39 −0.52 −0.44
Slope −0.30 −0.26 0.25 0.21 0.22 0.28 0.30 0.26 −0.33 −0.29
GDP 0.18 0.14 −0.14 −0.11 −0.21 −0.15 −0.18 −0.14 0.19 0.14
TP 0.15 0.11 −0.11 −0.08 −0.17 −0.12 −0.14 −0.11 0.15 0.11

NLD 0.30 0.23 −0.23 −0.19 −0.34 −0.25 −0.30 −0.23 0.33 0.26
LUIN 0.49 0.49 −0.40 −0.23 −0.53 −0.31 −0.49 −0.29 0.55 0.31

Note: Permutation test was used to test in this study, and the P value of each group of variables was equal to
0.001, indicating that the spatial correlation was significant under 99.9% confidence.

Geographic detector analysis showed that the interpretation of DEM on the spatial
distribution of each landscape metric was the largest among all influencing factors in 2000
or 2010, with the highest average q value being 0.28 or 0.23, followed by GDP, TP, and
NLD, while Slope had the lowest q value (Figure 9). Results indicated that the spatial
distribution of elevation was the key factor that induced the spatial heterogeneity of
landscape pattern, and the spatial distribution of socioeconomic level, population density,
and urbanized activities also played an important part. The analysis of interactions between
the influencing factors and landscape metrics (Figure 10) showed that the interpretation
of spatial distribution characteristics of landscape pattern by any two influencing factors
was greater than that of any single influencing factor, indicating that the formation of
spatial heterogeneity was the result of interactions between various influencing factors.
Specifically, from the subfigures a in Figure 10, the interaction between DEM and LUIN is
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the strongest among other factors. The interaction between LUIN and other four influencing
factors on each landscape metric was almost stronger than that between any other two
influencing factors in 2000. This indicated that the spatial differences of DEM and LUIN
jointly resulted in the spatial heterogeneity of landscape pattern in 2000, stronger than the
interactions between DEM and GDP, TP, NLD, Slope comparatively. However, compared
with the results from 2000, since the interaction between DEM and TP, GDP, and NLD
was strengthened, the interaction between DEM and LUIN was no longer the strongest
among the other factors in 2010 (see subfigures b in Figure 10). These indicated that the
spatial differences of the topographic elements and other influencing factors also jointly
contributed to the spatial heterogeneity of landscape pattern in 2010.

Figure 9. The force q among each influencing factor on each landscape pattern metric in (a) 2000 and (b) 2010.

Figure 10. The force q among any two influencing factors on each landscape pattern metric interactively in (a) 2000 and (b) 2010.

4. Discussion
4.1. Spatiotemporal Changes of Land Use and Landscape Pattern

The results of this study showed that in the LXH, there exist large spatial and temporal
differences in land use changes and landscape pattern changes. These changes appeared
to be more prominent in the middle and lower watershed, and their changing rates were
fastest during 2000 to 2010. Specifically, the land use change was featured by the increasing
transition of cropland and forest to construction land, and the fragmentation and homoge-
nization of landscape pattern was contributed to the encroachment of construction land on
forest and cropland. That is, the decrease of cropland and forest was accompanied with the
decreased degree of the cropland and forest landscape dominance and the increased degree
of the cropland and forest landscape fragmentation and homogenization. These further
proved the synchronization characteristics and interaction relationship between land use
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changes and landscape pattern changes proposed by scholars [17,19]. Thus, it is possible
for researchers to use the temporal change of a land use type to reflect the temporal change
pattern of a certain landscape type in a period of time.

Besides, our findings of the land use and landscape pattern changes are consistent
with the previous research in the whole Guangzhou city. For example, Zhang et al. [73]
and Gong et al. [74] also found that the increase of construction land in new urban areas of
Guangzhou city mainly came from cropland, forest, and other ecological land, especially
after 2000. Gong et al. [41] also confirmed that the fragmentation and homogenization of
cropland in Guangzhou was mainly contributed by the expansion of construction land.
However, their research paid more attention to the urbanization expansion pattern of
Guangzhou by comparing the changing differences of certain land use types and landscape
patterns in different jurisdictions, instead of focusing on these spatiotemporal changes
brought by urbanization [38,75]. Researches on the analysis of land use and landscape
pattern changes in a watershed under the urbanization expansion pattern also exist, which
provide theoretical basis and method reference for this study. But watersheds selected in
their studies are relatively large, spanning multiple cities [9,21]. As a case study in this
paper, the LXH was relatively small and in the range of Guangzhou city. Its middle and
lower watershed is adjacent to the central urban area of Guangzhou, while the upstream
area is far away from the central urban. This pushed the gradual widening of the difference
between the northern and southern parts of the watershed influenced by urbanization. Our
results also found that changes of land use and landscape pattern were different between
the northern and southern parts.

Moreover, analysis results above reflected that the time period from 2000 to 2010 and
the southern parts of the LXH with the most prominent changes should be taken seriously
by relevant stakeholders. First, changes of land use and landscape pattern in southern
parts of the LXH should be slow down and controlled, and the northern parts should be
protected timely under the rapidly urbanizing trends. Then, the special time period from
2000 to 2010 needs to pay much attention to in related researches about the LXH. It means
that this study gives not only a supplement to previous studies in these regions, but also is
of great value for managers, planners, and scholars to make appropriate strategies.

4.2. The Temporal and Spatial Influencing Factors

In terms of the influencing factors of the changes of land use types and landscape
patterns, previous studies mainly discussed the reasons for land use type conversion
at different locations [32,76] and in different time periods [21,29], but few analyzed the
factors responsible for the spatial heterogeneity of landscape patterns in river basins, nor
did they comprehensively quantify the factors that contributed to the spatiotemporal
change of land use types and landscape patterns. In this study, considering the fact that
various land use type changes emphasized the transition of different landscape patches
in different time periods, and that changes of landscape patterns reflected the difference
of spatial configuration characteristics in different landscape patches, we analyzed the
influencing factors on the temporal change of land use types and spatial heterogeneity
of landscape pattern, respectively. We found that there was a greater difference in the
spatiotemporal influencing factors of land use and landscape pattern changes in the LXH.
Thus, it is very important to propose a targeted protection and development strategy,
which can meet the current needs of the different regions in the LXH. Temporally, we
found that the demographic factors, socioeconomic factors, and urbanized activities were
important in shaping the temporal variations of land use types in this river basin, and
changes of major land use types were more sensitive to the increasing of non-agricultural
population and transformation of industry than any other factors. This was consistent
with the findings in other studies on the influencing factors of land use types changes
in other river basins [15,28]; they also found that the growth of urban population and
changes of industries contributed to the increase of construction land [4,77]. Moreover,
similar studies elsewhere underlined that government policy also played an important
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role in the change of land use types during different periods [78–80]. Although there
was no appropriate method for analyzing the impact of the related policies on land use
changes quantitatively, we found that various land use types in the LXH have undergone
significant changes in the last three decades after 1980, and these changes were particularly
dramatic after 2000. Zhang et al. [73] found that the implementation of China’s reform and
development policy in 1978 was an important driving force for economic development and
population migration of Guangzhou, pushing the continuous expansion of construction
land to gradually occupy the cropland, forest, shrub, and grassland in the suburbs. Thus,
the observed expansion of the construction land in the LXH after the early 1980s may be
attributed to the implementation of this policy. In addition, the overall urban development
master plan of Guangzhou in 2000 had put forward the strategy of expanding the urban area
to the north and built Guangzhou into an international metropolis by 2010, which could
further accelerate the expansion of construction land if practices continue. Correspondingly,
the land use types in the LXH changed significantly after 2000 compared with the pre-
2000 practices, accounting for more than 50% of the total variation in 35 years. Moreover,
Baiyun, Huadu, and Conghua districts in the north had successively merged into the
jurisdiction of Guangzhou in the year 2000, 2010, and 2015, respectively. The different
speed of urbanization in different regions altered the variation characteristics of land
use types. We also found that the lower watershed that contains the Baiyun and Huadu
districts had the largest proportion of cropland conversion to construction land, which
was five times higher than that of the upper and middle watershed. Therefore, apart from
the demographic factors, socioeconomic factors, and urbanized activities, the relevant
government policy, which is difficult to quantify, also significantly affected the variations
of land use types.

Focusing on the impact of various influencing factors on landscape pattern changes
in spatial dimension will be very useful in identifying and controlling the major driving
forces, guiding the watershed protective management and sustainable planning. How-
ever, most of the current studies adopted the classification method to describe the spatial
characteristics of landscape pattern and their influencing factors of different regions, and
seldom analyzed the spatial relationships among variables quantitatively [9,33]. In the
research of Ju et al. [70], the applicability of the geographic detector model in analyzing the
driving force of construction land expansion was proved, providing a quantitative method
for the analysis of the interaction among various spatial factors. But their research did not
conduct a comparative analysis of the spatial driving relationships in different periods.
Here, using the model of geographic detector by Wang et al. [69], this study compared
the impact of different influencing factors on spatial landscape heterogeneity during 2000
and 2010, when the most dramatic land use changes happened. It can be found that the
spatial distribution of LUIN and elevation were the two critical factors for the formation
of landscape heterogeneity in 2000 compared with other factors, while the interaction
between elevation and other human factors was strengthened in 2010; this illustrated that
elevation was always a basic factor that directly determined the spatial distribution of
landscape pattern. Liu et al. [61] also proposed that it was difficult for people to break
through existing natural obstacles in the hilly regions of southern China, and this difficulty
had largely restricted human activities. From Figure 11, it is clear that great differences
in the terrain conditions exist in this study. Because areas with high elevation or greater
slopes were difficult to develop and not suitable for urban construction, they were seldom
disturbed by human activities [33], so that the degree of landscape fragmentation and
homogenization in the upper reaches was low and the degree of landscape dominance
was high. Therefore, elevation was a prerequisite for the impact of anthropogenic factors
to occur. On the other hand, based on the difference of elevation in different regions of
LXH, the human influencing factors, such as population and socioeconomic and urbanized
activities, played an increasing role in the formation of the heterogeneous characteristics
of the landscape pattern after 2000. This may be due to the fact that the spatial difference
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of human influence factors increased significantly after 2000, as it shown in subfigure c in
Figure 11.

Figure 11. Spatial distributions of the selected influencing factors selected in this study in (a) 2000 and (b) 2010, and (c)
shows the results of the subtraction of each influencing factor between 2000 and 2010.

The above discussion illustrates that it is necessary to control the increasing trends of
non-agricultural population and the continuous development of secondary and tertiary
industry in the future, thus the demand for more construction land will be decreased.
Meanwhile, relevant policies should try to meet these demands. We also should pay much
attention to the southern parts of the LXH, and strengthen its adjustment ability to deal
with the intensive population density, higher GDP, and greater urban construction. For
example, the urban occupancy rate in these areas can be increased, artificial green land can
be increased, the native forest and grassland must be strictly protected, etc. This means
that establishing the spatiotemporal change trends and causes of land use and landscape
pattern in a rapidly urbanizing watershed is very important for guiding the diagnosing of
urbanization problems, clarifying the main protection areas and main control factors.

4.3. The Limitations and Potential Outlooks

This study produces a quantitative estimate of the spatiotemporal variations in land
use types and landscape patterns and analyzes the dominant influencing factors leading
to these changes in LXH quantitatively, which provides a systematic integration and
deepening of previous studies. The main land use maps used in this study interpreted
by the common method of visual interpretation, and their errors mainly came from the
personal subjective judgment of the interpreters and the similarity of the tones and textures
of the satellite image. Although these errors in the interpretation process were considered
and improved through some reference maps (including topographic maps, vegetation
maps, ground truth data at different sample points, and local resident interview data),
there also existed uncertainties in the data measurement and description [36]. These errors
will also affect the accuracy of the research results to some degree. Therefore, it is necessary
to compare any two measurement methods to improve the analysis accuracy of land use
maps and express them on different scales as much as possible in the future. Besides, due
to the scarcity of historical landscape information, e.g., land use maps from 1980 to 2015,
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Topography data and Nighttime Light Image Data in 2015, we were unable to accurately
establish the relationship between each land use type and different influencing factors,
nor could we compare the driving factors of spatial heterogeneity of landscape patterns in
each period. In addition, there are some factors that cannot be quantified, such as policy
factors, which make the analysis of influencing factors still not comprehensive enough. In
the future, it may be possible to construct a comprehensive model combining qualitative
and quantitative analysis on all possible influencing factors of land use changes.

Resolution of available spatial data set of spatial influencing factors was also a limita-
tion. We conducted the driving analysis between the influencing factors and landscape
indices at a 1 km grid. Although on this scale the influencing factors also had good spatial
correlation, the resolution limitation of influencing factors might affect the accuracy of
the analysis results to some degree. Therefore, spatial data with appropriate accuracy at
a higher resolution and longer periods could substantially improve the accuracy when
analyzing the change of landscape patterns and their driving forces. In that sense, models
of land use change would be a good alternative for such studies by simulating the land use
in different years to increase the range and length of land use data [81], and hence guide
the urbanization development of this region by analyzing the change of land use types and
landscape patterns in the future. Moreover, the extensive establishment of the real-time
monitoring data platform of different spatial influencing factors such as social economic ac-
tivities, population density, and urbanization activities in the future with higher resolution
will improve the accuracy of spatial analysis, thereby realizing its dynamic analysis.

Moreover, based on our comprehensive analysis of the spatiotemporal changes and
causes of landscape pattern in the LXH and its ecological and hydrological effects in related
researches [43], it is more urgent to establish specific strategies to guide the sustainable
development of LXH in the future. The Hellwig classification and measurement method
introduced by Hellwig in 1968 provides a decision-making method for formulating sus-
tainable development strategies based on the evaluating of urban development [82]. This
method was first applied in the sustainable decision-making process of urban green space
biodiversity management in Lublin, eastern of Poland, thus the main ecological areas
that should be protected can be established [83]. Then, other scholars used and extended
this method at different scales in European Union to formulate sustainable development
strategies based on the different goals. These application of the Hellwig method in different
researches prove its effectiveness in evaluating the level of development of different regions
in different fields at different scales, which provide a new direction for the future research
of establishing the sustainable development strategy in the LXH based on the analysis
of its changes about land use, landscape pattern, hydrological and ecological conditions
under the rapid urbanization. After that, the specific areas of the LXH under the rapid
urbanization process, in which its land use transition and landscape pattern fragmentation
should be extremely controlled can be found.

5. Conclusions

In this study, we analyzed the spatiotemporal changes of land use types and landscape
pattern of the LXH from 1980 to 2015 under the rapid urbanization of Guangzhou city, as
well as quantified the major influencing factors temporally and spatially. The main conclu-
sion can be concluded as one sentence that there exist great spatiotemporal differences in
land use and landscape pattern changes and its causes in the LXH during the past 35 years.
Specifically, it can be drawn as follows:

• The most obvious land use change was characterized as the large transition from
cropland to construction land, bringing about the fragmentation of cropland that was
encroached on by the construction land. The landscape pattern showed an increasing
trend of landscape fragmentation, homogenization, and landscape interference, and
a decreasing trend in landscape dominance. These changes mainly occurred in the
lower watershed, particularly between 2000 and 2010. Therein, these changes were
more than 50% in this decade compared with total 35 years.
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• Many influencing factors affected the temporal variations in landscapes, including
population growth, economic and industrial development, urbanized activities, and
relevant policies. Among them, changes of major land use types were more sensitive
to the increase of a non-agricultural population and transformation of industries than
other factors. In addition, the spatial distribution of land use types and elevation were
found to be the two key factors for the formation of landscape heterogeneity in 2000,
while the spatial distribution of the other three human factors and elevation gradually
became the same important factors after 2000.

• Our research shows that the temporal and spatial difference of changes in land use
and landscape pattern at a watershed with unbalance urbanization degree in different
regions was great. This is not only affected by the difference of the degree in socioe-
conomic level, population growth rate, and urbanizing expansion in different time
and space, but also determined by the related policies. Besides, the topographical
factors were also the basis of the formation on landscape pattern. When developing,
we need to consider both the geographical conditions and the urbanizing degree of
the watershed, thus a sustainable development strategy could be formulated and the
goals of protecting and restoring the watershed ecosystem can be achieved.

The findings are of great significance for review and outlook of the ecological protec-
tion and sustainable development of the watershed around the rapidly urbanizing areas. It
can not only allow decision-makers to clarify their main problems, but also guide them
to clarify the key protection areas and control indicators. However, the analysis of the
landscape patterns above was limited to the period from 1980 to 2015, and the comparison
of influencing factors on spatial landscape configurations focused only on 2000 and 2010.
Nonetheless, results in this study are insightful, although they could be more generalized
with the analysis over a longer period.
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Appendix A

Table A1. Description of land use types in the LXH.

Land Use Types Description

Cropland Arable agricultural land, including paddy fields and dry land

Forest Natural and semi-natural manmade woodland

Shrub Dwarf woodland (height < 2 m) and shrubbery

Orchard Intensively managed orchards (fruit orchards, mulberry orchards, tea
orchards) and plant nursery

Grassland Natural and artificial grassland

Water Rivers, creeks, canals, ponds, lakes, reservoirs, and bays

Floodplain Permanent and seasonal floodplains

Construction land Mainly urban and rural settlements, mining land, transportation land, and
other special construction land

Unused land Mainly land without vegetation cover and difficult to use, including bare
soil, sandy land, desert, saline, and landfills

Table A1 gives a detailed description of the content about each land use type in this
study, which can better display the classification standard of land use types.

Table A2. Analysis results of spatial autocorrelation of each landscape metric in different scales in
2000 and 2015 of LXH

Scales/(m ×m) PD AI AWMPFD LPI SHDI
2000 2015 2000 2015 2000 2015 2000 2015 2000 2015

500 × 500 m 0.47 0.47 0.45 0.45 0.46 0.47 0.47 0.46 0.47 0.47
600 × 600 m 0.47 0.47 0.45 0.45 0.46 0.47 0.47 0.46 0.47 0.47
700 × 700 m 0.46 0.46 0.45 0.45 0.46 0.46 0.46 0.46 0.46 0.46
800 × 800 m 0.46 0.46 0.43 0.43 0.45 0.46 0.46 0.45 0.46 0.46
900 × 900 m 0.46 0.46 0.43 0.43 0.45 0.46 0.46 0.45 0.46 0.46

1000 × 1000 m 0.44 0.44 0.42 0.42 0.43 0.44 0.44 0.43 0.44 0.44
1100 × 1100 m 0.44 0.44 0.41 0.41 0.43 0.44 0.44 0.43 0.44 0.44
1200 × 1200 m 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44 0.44

Note: Permutation test was used to test in this study, and the P value of each landscape metrics in
different scales was equal to 0, indicating that the spatial correlation was significant under 99.9%
confidence. The Z value of them were all >1.96, reflecting that there exists extremely significant
spatial autocorrelation among these landscape metrics in different spatial scales.

Table A2 reflects the degree of spatial autocorrelation about each landscape metric
selected in this paper. It confirms that the spatial autocorrelation of these landscape metrics
is extremely significant in different spatial scales ranging from 500 to 1200 m. Therefore, it
can be proved that these spatial scales are all appropriate for analyzing the bivariate spatial
correlation between each landscape metric and each influencing factor.

Appendix B

This Figure A1 is provided to screen the notable landscape metrics from 23 frequently
used metrics. It demonstrates the correlation between any two kinds of landscape metrics
among these 23 metrics above. Clearly, most of them were highly correlated with each
other. Thus, when the absolute value of correlation coefficient between two indices is
more than 0.9, only one is used; second, indices representing different aspects of landscape
characteristics were selected to reduce the information redundancy among them. Finally,
five representative indices were selected in this paper, including patch density (PD), aggre-
gation index (AI), largest patch index (LPI), area-weighted mean patch fractal dimension
(AWMPFD), and Shannon’s diversity index (SHDI), which represent different aspects of
landscape characteristics.
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Figure A1. Results of the factor analysis among 23 common metrics.

Figure A2 presents the changing value of five selected landscape metrics at landscape-
level in 14 different granularities (including 30 m, 50 m, 100 m, 200 m, 300 m, 400 m, 500 m,
600 m, 700 m, 800 m, 900 m, 1000 m, 1100 m, 1200 m). It proves that 500~1200 m was
the common characteristics interval of these landscape metrics. Thus, the spatial scale for
analyzing the spatial autocorrelation of each landscape metric has been established.
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