Estimating Ecological Responses to Climatic Variability on Reclaimed and Unmined Lands Using Enhanced Vegetation Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Vegetation and Meteorological Data
2.3. Methods
2.3.1. Evaluating Temporal Effects of Climatic Variables on Vegetation
Category | Variable | Unit |
---|---|---|
Day of year | Day of year | / |
Year of reclamation or restoration | Year of reclamation or restoration | / |
Rainfall | Accumulated rainfall during past mR days * | 0.1 mm |
nR days lagged 10 day accumulated rainfall | 0.1 mm | |
Accumulated nonrunoff rainfall (≤20 mm) during past mR1 days ** | 0.1 mm | |
nR1 days lagged 10 day accumulated nonrunoff rainfall (≤20 mm) | 0.1 mm | |
Temperature | Mean temperature during past mT days | 0.1 °C |
nT days lagged 10 day mean temperature | 0.1 °C | |
Mean minimal temperature during past mT1 days | 0.1 °C | |
nT1 days lagged 10 day mean minimal temperature | 0.1 °C | |
Mean maximal temperature during past mT2 days | 0.1 °C | |
nT2 days lagged 10 day mean maximal temperature | 0.1 °C | |
Relative humidity | Mean relative humidity during past mH days | 1% |
nH days lagged 10 day mean relative humidity | 1% | |
Sunshine hours | Mean sunshine hours during past mS days | 0.1 h |
nS days lagged 10 day mean sunshine hours | 0.1 h | |
Wind speed | Mean wind speed during past mW days | 0.1 m/s |
nW days lagged 10 day mean wind speed | 0.1 m/s | |
Maximal wind speed during past mW1 days | 0.1 m/s | |
nW1 days lagged 10 day maximal wind speed | 0.1 m/s | |
Vapour pressure | Mean vapour pressure during past mV days | 0.1 hPa |
nV days lagged 10 day mean vapour pressure | 0.1 hPa |
2.3.2. Selecting Variables
2.3.3. Exploring Contributions of Explanatory Variables
3. Result
3.1. Temporal Effects of Climatic Variables
3.2. Climatic Drivers and Contributions to EVI Variation
4. Discussion
4.1. Factors of Changed Vegetation Responses
4.1.1. Rainfall
4.1.2. Wind Speed
4.1.3. Temperature
4.1.4. Air Humidity
4.1.5. Impaired Resilience of Reclaimed Ecosystem
4.2. Changed Ecological Response to Regional Climatic Pattern—A Common Phenomenon on Reclaimed Mining Lands
4.3. Negative Impacts on Reclaimed Ecosystems
4.4. Implications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Appendix B
References
- Kalyvas, G.; Gasparatos, D.; Papassiopi, N.; Massas, I. Topsoil pollution as ecological footprint of historical mining activities in Greece. Land Degrad. Dev. 2018, 29, 2025–2035. [Google Scholar] [CrossRef]
- Yang, J.Z. Remote Sensing Monitoring of Mine Geological Environment in China; Geological Publishing House: Beijing, China, 2016. (In Chinese) [Google Scholar]
- Ministry of Housing and Urban-rural Development of the People’s Republic of China. China Urban-Rural Construction Statistical Yearbook 2017; China Planning Press: Beijing, China, 2017; p. 89. (In Chinese)
- Whitehorse Mining Initiative (WMI). The Whitehorse Mining Initiative Leadership Council Accord—Final Report; WMI: Ottawa, ON, Canada, 1994. [Google Scholar]
- Grant, C.; Loch, R.; McCaffrey, N.; Anstee, S.; Doley, D. Mine Rehabilitation: Leading Practice Sustainable Development Program for the Mining Industry; Commonwealth of Australia: Canberra, ACT, Australia, 2016.
- Office of Surface Mining Reclamation and Enforcement (OSMRE). Public Law 95-87, Surface Mining Control and Reclamation Act of 1977; U.S. Department of the Interior: Washington, DC, USA, 2012.
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nat. Cell Biol. 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; De Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef]
- Parmesan, C.; Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nat. Cell Biol. 2003, 421, 37–42. [Google Scholar] [CrossRef]
- IPCC Climate Change 2007: Impacts, Adaptation and Vulnerability. Contributionof Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2007; p. 976. [Google Scholar]
- Welham, C.; Seely, B. Oil Sands Terrestrial Habitat and Risk Modelling for Disturbance and Reclamation—Phase II Report; OSRIN Report No. TR-15; University of Alberta’s Education & Research Archive: Edmonton, AB, Canada, 2011; p. 93. [Google Scholar]
- Hodgkinson, J.; Littleboy, A.; Howden, S.; Moffat, K.; Loechel, B. Climate Adaptation in the Australian Mining and Exploration Industries; Climate Adaptation Flagship Working Paper #5; CSIRO: Kenmore, QLD, Australia, 2010. [Google Scholar]
- Audet, P.; Pinno, B.D.; Thiffault, E. Reclamation of boreal forest after oil sands mining: Anticipating novel challenges in novel environments. Can. J. For. Res. 2015, 45, 364–371. [Google Scholar] [CrossRef] [Green Version]
- Sklenicka, P.; Prikryl, I.; Svoboda, I.; Lhota, T. Non-productive principles of landscape rehabilitation after long-term open-cast mining in north-west Bohemia. J. S. Afr. Inst. Min. Metall. 2004, 104, 83–88. [Google Scholar]
- Welham, C.; Seely, B. Oil Sands Terrestrial Habitat and Risk Modelling for Disturbance and Reclamation: The Impact of Climate Change on Tree Regeneration and Productivity—Phase III Report; OSRIN Report No. TR-36; University of Alberta’s Education & Research Archive: Edmonton, AB, Canada, 2013; p. 65. [Google Scholar]
- Rooney, R.C.; Robinson, D.T.; Petrone, R. Megaproject reclamation and climate change. Nat. Clim. Chang. 2015, 5, 963–966. [Google Scholar] [CrossRef]
- Mason, L.M.; Unger, C.; Lederwasch, A.J.; Razian, H.; Wynne, L.E.; Giurco, D. Adapting to Climate Risks and Extreme Weather: A Guide for Mining and Minerals Industry Professionals; National Climate Change Adaptation Research Facility: Gold Coast, Australia, 2013; p. 76. [Google Scholar]
- Alam, M.; Barbour, S.; Elshorbagy, A.; Huang, M. The Impact of Climate Change on the Performance of Oil Sands Reclama-tion Covers: A Comparison of Multiple General Circulation Models and Representative Concentration Pathways. In Proceedings of the 70th Canadian Geotechnical Conference (GeoOttawa 2017), Ottawa, ON, Canada, 1–4 October 2017. [Google Scholar]
- Zheng, Y.; Han, J.; Huang, Y.; Fassnacht, S.R.; Xie, S.; Lv, E.; Chen, M. Vegetation response to climate conditions based on NDVI simulations using stepwise cluster analysis for the Three-River Headwaters region of China. Ecol. Indic. 2018, 92, 18–29. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens. 2003, 24, 2345–2364. [Google Scholar] [CrossRef]
- Piao, S.; Mohammat, A.; Fang, J.; Qiang, C.; Feng, J. NDVI-based increase in growth of temperate grasslands and its responses to climate changes in China. Glob. Environ. Chang. 2006, 16, 340–348. [Google Scholar] [CrossRef]
- Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African Sahel and their relationship to climate. Glob. Environ. Chang. 2017, 15, 394–404. [Google Scholar] [CrossRef]
- De Jong, R.; Schaepman, M.E.; Furrer, R.; De Bruin, S.; Verburg, P.H. Spatial relationship between climatologies and changes in global vegetation activity. Glob. Chang. Biol. 2013, 19, 1953–1964. [Google Scholar] [CrossRef]
- Munson, S.M.; Webb, R.H.; Housman, D.C.; Veblen, K.E.; Nussear, K.E.; Beever, E.A.; Hartney, K.B.; Miriti, M.N.; Phillips, S.L.; Fulton, R.E.; et al. Long-term plant responses to climate are moderated by biophysical attributes in a North American desert. J. Ecol. 2015, 103, 657–668. [Google Scholar] [CrossRef]
- Witwicki, D.L.; Munson, S.M.; Thoma, D.P. Effects of climate and water balance across grasslands of varying C 3 and C 4 grass cover. Ecosphere 2016, 7. [Google Scholar] [CrossRef]
- Liancourt, P.; Spence, L.A.; Song, D.S.; Lkhagva, A.; Sharkhuu, A.; Boldgiv, B.; Helliker, B.R.; Casper, P.B.B. Plant re-sponse to climate change varies with topography, interactions with neighbors, and ecotype. Ecology 2013, 94, 444–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gremer, J.R.; Andrews, C.; Norris, J.R.; Thomas, L.P.; Munson, S.M.; Duniway, M.C.; Bradford, J.B. Increasing tempera-ture seasonality may overwhelm shifts in soil moisture to favor shrub over grass dominance in Colorado Plateau drylands. Oecologia 2018, 188, 1195–1207. [Google Scholar] [CrossRef]
- Wu, D.H.; Zhao, X.; Liang, S.L.; Zhou, T.; Huang, K.C.; Tang, B.J.; Zhao, W.Q. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
- Horion, S.; Cornet, Y.; Erpicum, M.; Tychon, B. Studying interactions between climate variability and vegetation dynamic using a phenology based approach. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 20–32. [Google Scholar] [CrossRef]
- Ding, Y.; Li, Z.; Peng, S. Global analysis of time-lag and -accumulation effects of climate on vegetation growth. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102179. [Google Scholar] [CrossRef]
- Nicholson, S.; Farrar, T. The influence of soil type on the relationships between NDVI, rainfall, and soil moisture in semiarid Botswana. I. NDVI response to rainfall. Remote Sens. Environ. 1994, 50, 107–120. [Google Scholar] [CrossRef]
- Lei, J.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar]
- Gremer, J.R.; Bradford, J.B.; Munson, S.M.; Duniway, M.C. Desert grassland responses to climate and soil moisture suggest divergent vulnerabilities across the southwestern United States. Glob. Chang. Biol. 2015, 21, 4049–4062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, A.B.; Kumar, P.; Tcheng, D. A data mining approach for understanding topographic control on climate-induced inter-annual vegetation variability over the United States. Remote Sens. Environ. 2005, 98, 1–20. [Google Scholar] [CrossRef]
- Smith, S.D.; Herr, C.A.; Leary, K.L.; Piorkowski, J.M. Soil-plant water relations in a Mojave Desert mixed shrubcommuni-ty: A comparison of three geomorphic surfaces. J. Arid. Environ. 1995, 29, 339–351. [Google Scholar] [CrossRef]
- McLaughlin, B.C.; Blakey, R.; Weitz, A.P.; Feng, X.; Brown, B.J.; Ackerly, D.D.; Dawson, T.E.; Thompson, S.E. Weather underground: Subsurface hydrologic processes mediate tree vulnerability to extreme climatic drought. Glob. Chang. Biol. 2020, 26, 3091–3107. [Google Scholar] [CrossRef]
- Singh, C.; Lan, W.E.; Fetzer, I.; Rockstrm, J.; Ent, R.V.D. Rootzone storage capacity reveals drought coping strategies along rainforest-savanna transitions. Environ. Res. Lett. 2020, 15, 124021. [Google Scholar] [CrossRef]
- Froend, R.; Sommer, B. Phreatophytic vegetation response to climatic and abstraction-induced groundwater drawdown: Examples of long-term spatial and temporal variability in community response. Ecol. Eng. 2010, 36, 1191–1200. [Google Scholar] [CrossRef]
- Ciruzzi, D.M. Tree Growth Response to Drought along a Depth to Groundwater Gradient in Northern Wisconsin. In Proceedings of the AGU Fall Meeting, New Orleans, LA, USA, 11–15 December 2017. [Google Scholar]
- Doley, D.; Audet, P.; Mulligan, D. Examining the Australian context for post-mined land rehabilitation: Reconciling a paradigm for the development of natural and novel ecosystems among post-disturbance landscapes. Agric. Ecosyst. Environ. 2012, 163, 85–93. [Google Scholar] [CrossRef]
- Doley, D.; Audet, P. Adopting novel ecosystems as suitable rehabilitation alternatives for former mine sites. Ecol. Process. 2013, 2, 22. [Google Scholar] [CrossRef] [Green Version]
- Welham, C.; Seely, B. Oil Sands Terrestrial Habitat and Risk Modeling for Disturbance and Reclamation—Phase I Report; OSRIN Report No. TR-8; University of Alberta’s Education & Research Archive: Edmonton, AB, Canada, 2010; p. 109. [Google Scholar]
- Ngugi, M.R.; Neldner, V.J.; Doley, D.; Kusy, B.; Moore, D.; Richter, C. Soil moisture dynamics and restoration of self-sustaining native vegetation ecosystem on an open-cut coal mine. Restor. Ecol. 2015, 23, 615–624. [Google Scholar] [CrossRef]
- Bateman, A.; Lewandrowski, W.; Stevens, J.C.; Muñoz-Rojas, M. Ecophysiological Indicators to Assess Drought Responses of Arid Zone Native Seedlings in Reconstructed Soils. Land Degrad. Dev. 2016, 29, 984–993. [Google Scholar] [CrossRef]
- Wang, J.; Guo, L.; Bai, Z.; Yang, L. Using computed tomography (CT) images and multi-fractal theory to quantify the pore distribution of reconstructed soils during ecological restoration in opencast coal-mine. Ecol. Eng. 2016, 92, 148–157. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Underwood, J.; Ebinger, M. Physical and hydrological characteristics of reclaimed minesoils in south-eastern Ohio. Soil Sci. Soc. Am. J. 2004, 68, 1352–1359. [Google Scholar] [CrossRef]
- Moffat, A.J.; McNeill, J.D. During mineral extraction. In Reclaiming Disturbed Land for Forestry; HMSO: London, UK, 1994; pp. 28–29. [Google Scholar]
- Marashi, A.R.A.; Scullion, J. In Porosity and hydrological changes in surface mine soils. In Proceedings of the ISCO 2004—13th International Soil Conservation Organisation Conference “Conserving Soil and Water for Society”, Brisban, Australia, 4–9 July 2004. [Google Scholar]
- Acton, P.M.; Fox, J.F.; Campbell, J.E.; Jones, A.L.; Rowe, H.; Martin, D.; Bryson, S. Role of Soil Health in Maintaining En-vironmental Sustainability of Surface Coal Mining. Environ. Sci. Technol. 2011, 45, 10265–10272. [Google Scholar] [CrossRef]
- Rushton, S. Development of earthworm populations on pasture land reclaimed from open-cast coal mining. Pedobiologia 1986, 29, 27–32. [Google Scholar]
- Zipper, C.E.; Burger, J.A.; Barton, C.D.; Skousen, J.G. Rebuilding Soils on Mined Land for Native Forests in Appalachia. Soil Sci. Soc. Am. J. 2013, 77, 337–349. [Google Scholar] [CrossRef] [Green Version]
- Starnes, L.B.; Gasper, D.C. Effects of surface mining on aquatic resources in North America. Fisheries 1995, 20, 90904. [Google Scholar]
- Evans, D.M.; Zipper, C.E.; Hester, E.T.; Schoenholtz, S.H. Hydrologic Effects of Surface Coal Mining in Appalachia (U.S.). JAWRA J. Am. Water Resour. Assoc. 2015, 51, 1436–1452. [Google Scholar] [CrossRef]
- Naeth, M.A.; Chanasyk, D.; Burgers, T. Vegetation and soil water interactions on a tailings sand storage facility in the athabasca oil sands region of Alberta Canada. Phys. Chem. Earth Parts A/B/C 2011, 36, 19–30. [Google Scholar] [CrossRef]
- Hawkins, J.W. Predictability of surface mine spoil hydrologic properties in the Appalachian Plateau. Ground Water 2004, 42, 119–125. [Google Scholar] [CrossRef]
- Duan, M.; House, J.; Chang, S.X. Limiting factors for lodgepole pine (Pinus contorta) and white spruce (Picea glauca) growth differ in some reconstructed sites in the Athabasca oil sands region. Ecol. Eng. 2015, 75, 323–331. [Google Scholar] [CrossRef]
- Jung, K.; Duan, M.; House, J.; Chang, S.X. Textural interfaces affected the distribution of roots, water, and nutrients in some reconstructed forest soils in the Athabasca oil sands region. Ecol. Eng. 2014, 64, 240–249. [Google Scholar] [CrossRef]
- A Maigret, T.; Cox, J.J.; Yang, J. Persistent geophysical effects of mining threaten ridgetop biota of Appalachian forests. Front. Ecol. Environ. 2019, 17, 85–91. [Google Scholar] [CrossRef]
- Wickham, J.; Wood, P.B.; Nicholson, M.C.; Jenkins, W.; Druckenbrod, D.; Suter, G.W.; Strager, M.P.; Mazzarella, C.; Galloway, W.; Amos, J. The Overlooked Terrestrial Impacts of Mountaintop Mining. Bioscience 2013, 63, 335–348. [Google Scholar] [CrossRef]
- Toy, T.J.; Chuse, W.R. Topographic reconstruction: A geomorphic approach. Ecol. Eng. 2005, 24, 29–35. [Google Scholar] [CrossRef]
- Sears, A.E. Hydrologic Response and Erosion Modeling of Geomorphic Landform Reclamation in Mountainous Terrain; West Virginia University Libraries: Morgantown, WV, USA, 2019. [Google Scholar]
- Zhao, Z.; Bai, Z.; Zhang, Z.; Guo, D.; Li, J.; Xu, Z.; Pan, Z. Population structure and spatial distributions patterns of 17 years old plantation in a reclaimed spoil of Pingshuo opencast mine, China. Ecol. Eng. 2012, 44, 147–151. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Zhu, S. Study on the forest distribution and ecological environment history period of the Loess Plateau in China. Yellow River Civiliz. Sustain. Dev. 2013, 3, 85–104, (In Chinese with English Abstract). [Google Scholar]
- Zhang, J.T.; Shangguan, T.L. Something about the Boundary between the Forest Region and the Steppe Region and the Distribution of the Forst-Steppe Zone in the Northwest of Shanxi Province. J. Shanxi Univ. 1988, 2, 68–73, (In Chinese with English Abstract). [Google Scholar]
- National Forestry and Grassland Administration. Northwest, North and Northeast Shelter Forest Construction; Ningxia Press: Yinchuan, China, 1993. (In Chinese)
- The Promotion of Ecological Civilization in Pinglu. Available online: http://sxsz.wenming.cn/qxwm/201501/t20150114_1545193.html (accessed on 10 December 2020). (In Chinese).
- Yue, J.Y.; Guo, C.Y.; Li, J.C.; Lu, N.; Wang, X.; Li, J.R. Colonized wild plants in the reclamation area of the Antaibao Opencast Coal Mine. Arid Zone Res. 2016, 33, 399–409, (In Chinese with English abstract). [Google Scholar]
- Yuan, Y.; Zhao, Z.; Niu, S.; Li, X.; Wang, Y.; Bai, Z. Reclamation promotes the succession of the soil and vegetation in opencast coal mine: A case study from Robinia pseudoacacia reclaimed forests, Pingshuo mine, China. Catena 2018, 165, 72–79. [Google Scholar] [CrossRef]
- Zhao, Z.; Shahrour, I.; Bai, Z.; Fan, W.; Feng, L.; Li, H. Soils development in opencast coal mine spoils reclaimed for 1–13 years in the West-Northern Loess Plateau of China. Eur. J. Soil Biol. 2013, 55, 40–46. [Google Scholar] [CrossRef]
- Bai, W.X. Ecological Effects of Typical Vegetation-Soil System on Reclaimed Dumps in Antaibao Surface Mining Area of Shanxi; Shanxi University: Taiyuan, China, 2018; (In Chinese with English Abstract). [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical per-formance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); Vegetation Index and Phenology Lab, The University of Arizona: Tucson, AZ, USA, 2015; pp. 1–38. [Google Scholar]
- Resource and Environment Data Cloud Platform, C. Available online: http://www.resdc.cn (accessed on 5 May 2019).
- Buyantuyev, A.; Wu, J. Urbanization diversifies land surface phenology in arid environments: Interactions among vegeta-tion, climatic variation, and land use pattern in the Phoenix metropolitan region, USA. Landsc. Urban Plan. 2012, 105, 149–159. [Google Scholar] [CrossRef]
- Bai, Z.K.; Lv, C.J.; Wang, J.M.; Wu, X.; Xu, N.X. Soil Erosion Control and Water Resources Utilization in Mining Area; China Dadi Press: Bejing, China, 2012. (In Chinese) [Google Scholar]
- Standards Association of Australia. Structural Design Actions, Part 2: Wind Actions (Vol. AS/NZS 1170.2:2002); Standards Australia Limited/Standards New Zealand: Sydney, Australia, 2002. [Google Scholar]
- National Research Council of Canada. National Building Code of Canada; Canadian Commission on Building and Fire Codes: Ottawa, ON, Canada, 2005.
- European Commission. European Standard, (Vol. CEN TC 250). In Eurocode 1: Actions on Structures-Part 1–4: General Actions-Wind Actions; ASCE Press: Reston, VA, USA, 2005. [Google Scholar]
- American Society of Civil Engineers. Minimum Design Loads for Buildings and Other Structures; American Society of Civil Engineers: Fort Collins, CO, USA, 2010. [Google Scholar]
- Li, J.C.; Bai, Z.K. Land Reclamation and Ecological Restoration of Openpit Coal Mine; China Science Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Magnago, L.F.S.; Rocha, M.F.; Meyer, L.; Martins, S.V.; Meira-Neto, J.A.A. Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodivers. Conserv. 2015, 24, 2305–2318. [Google Scholar] [CrossRef]
- Godefroid, S.; Rucquoij, S.; Koedam, N. Spatial variability of summer microclimates and plant species response along tran-sects within clearcuts in a beech forest. Plant Ecol. 2006, 185, 107. [Google Scholar] [CrossRef]
- Gehlhausen, S.M.; Schwartz, M.W.; Augspurger, C.K. Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecol. 2000, 147, 21–35. [Google Scholar] [CrossRef]
- Young, A.; Mitchell, N. Microclimate and vegetation edge effects in a fragmented podocarp-broadleaf forest in New Zealand. Biol. Conserv. 1994, 67, 63–72. [Google Scholar] [CrossRef]
- Davies-Colley, R.J.; Payne, G.W.; Elswijk, M.V. Microclimate gradients across a forest edge. N. Z. J. Ecol. 2000, 24, 111–121. [Google Scholar]
- Veraart, A.J.; Faassen, E.J.; Dakos, V.; Van Nes, E.H.; Lürling, M.; Scheffer, M. Recovery rates reflect distance to a tipping point in a living system. Nat. Cell Biol. 2012, 481, 357–359. [Google Scholar] [CrossRef]
- Van Nes, E.H.; Scheffer, M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am. Nat. 2007, 169, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Dakos, V.; Carpenter, S.R.; Van Nes, E.H.; Scheffer, M. Resilience indicators: Prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20130263. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Guo, Q.; Li, S.; Piao, S.; Knapp, A.K.; Ciais, P.; Li, X.; Yu, G. Shifts in the dynamics of productivity signal ecosystem state transitions at the biome-scale. Ecol. Lett. 2018, 21, 1457–1466. [Google Scholar] [CrossRef] [PubMed]
- Martín-Duque, J.F.; Sanz, M.A.; Bodoque, J.M.; Lucía, A.; Martín-Moreno, C. Restoring earth surface processes through landform design. A 13-year monitoring of a geomorphic reclamation model for quarries on slopes. Earth Surf. Process. Landf. 2010, 35, 531–548. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.K.; Lal, R. Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil. Environ. Int. 2006, 32, 781–796. [Google Scholar] [CrossRef] [PubMed]
- Bernacchi, C.J.; Vanloocke, A. Terrestrial Ecosystems in a Changing Environment: A Dominant Role for Water. Annu. Rev. Plant Biol. 2015, 66, 599–622. [Google Scholar] [CrossRef] [Green Version]
- Seddon, A.W.R.; Macias-Fauria, M.; Long, P.R.; Benz, D.; Willis, P.R.L.D.B.K.J. Sensitivity of global terrestrial ecosystems to climate variability. Nat. Cell Biol. 2016, 531, 229–232. [Google Scholar] [CrossRef] [Green Version]
- Pedrotti, F. Vegetation Series along Climatic Gradients in the Central Southern Alps (Trentino- Alto Adige Region). In Geobotany Studies; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 51–81. [Google Scholar]
- Mucina, L.; Rutherford, M.C.; Powrie, L.W. Inland azonal vegetation. Strelitzia 2006, 19, 617–657. [Google Scholar]
- Prokhorov, A.M. Great Soviet Encyclopedia, 3rd ed.; Collier Macmillan: London, UK; Available online: https://encyclopedia2.thefreedictionary.com/Intrazonal+Vegetation (accessed on 20 December 2019).
- Shukla, P.R.; Skea, J.; Slade, R.; van Diemen, R.; Haughey, E.; Malley, J.; Pathak, M.; Portugal Pereira, J.E. Technical Summary. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- IPCC. IPCC Climate Change 2014: Impacts. Adaptation, and Vulnerability. In Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- Hoegh-Guldberg, O.; Jacob, D.; Bindi, M.; Brown, S.; Camilloni, I.; Diedhiou, A.; Djalante, R.; Ebi, K.; Engelbrecht, F.; Guiot, J.; et al. Impacts of 1.5 °C Global Warming on Natural and Human Systems; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Frank, D.A.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; Van Der Velde, M.; Vicca, S.; Babst, F.; et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Chang. Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Du, H.; Xue, X.; Wang, T.; Deng, X. Assessment of wind-erosion risk in the watershed of the Ningxia-Inner Mongolia Reach of the Yellow River, northern China. Aeolian Res. 2015, 17, 193–204. [Google Scholar] [CrossRef]
- Ren, H.; Du, C.; Liu, R.; Qin, Q.; Yan, G.; Li, Z.-L.; Meng, J. Atmospheric water vapor retrieval from Landsat 8 thermal infrared images. J. Geophys. Res. Atmos. 2015, 120, 1723–1738. [Google Scholar] [CrossRef]
Sample Plot | Average Elevation (m) | Average Slope (°) | Terrain Type | Species Code * | Type | Revegetation Year |
---|---|---|---|---|---|---|
S0 | 1362 | 13 | Slope | ROPS | Arbour | 1993 |
ULPU | ||||||
S1 | 1345 | 13 | Slope | ROPS | Arbour | 1993 |
PITA | ||||||
S2 | 1374 | 8 | Platform | PITA | Arbour | 1993 |
S3 | 1383 | 4 | Platform | ROPS | Arbour | 1993 |
ULPU | ||||||
AIAL | ||||||
S4 | 1439 | 19 | Slope | ROPS | Arbour | 1993 |
PITA | ||||||
S5 | 1436 | 2 | Platform | ROPS | Arbour | 1993 |
S6 | 1456 | 3 | Platform | C.K | Shrub | 1993 |
UD1 | 1479.12 | 3 | Flat Ground | POSI | Arbour | 1980s |
UD2 | 1439.20 | 5 | Flat Ground | POSI | Arbour | 1980s |
Variable | Unit | Days of Accumulated or Mean Values for Each Sample Plot | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
S0 | S1 | S2 | S3 | S4 | S5 | S6 | UD1 | UD2 | ||
Accumulated rainfall | 0.1 mm | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 30 | / * |
Accumulated nonrunoff rainfall (≤20 mm) | 0.1 mm | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 30 | / |
Mean temperature | 0.1 °C | 45 | 50 | 45 | 50 | 45 | 65 | 65 | 15 | 10 |
Mean minimum temperature | 0.1 °C | 30 | 45 | 45 | 45 | 30 | 60 | 45 | 10 | 10 |
Mean maximum temperature | 0.1 °C | 45 | 50 | 45 | 50 | 45 | 65 | 65 | 15 | 15 |
Mean relative humidity | 1% | 10 | 10 | 10 | 10 | 10 | 25 | 10 | / | / |
Mean sunshine hours | 0.1 h | 10 | 25 | 30 | 25 | 25 | 30 | 30 | / | / |
Mean wind speed | 0.1 m/s | 20 | 20 | 35 | 20 | 15 | 35 | 35 | / | / |
Mean vapour pressure | 0.1 hPa | 25 | 25 | 25 | 25 | 25 | 35 | 30 | 10 | 10 |
Number of Sample Plots | Variable | Correlation Coefficient | Explained Variance (%) |
---|---|---|---|
S0 | Reclaimed years | 0.351 | 49.66 |
Accumulated nonrunoff rainfall (≤20 mm) during past 60 days | 0.559 | 1.26 | |
Mean minimal temperature during past 30 days | 0.696 | 23.99 | |
Mean relative humidity during past 10 days | 0.581 | 2.10 | |
Total variance explained by variables (%) | 77.02 | ||
S1 | Reclaimed years | 0.285 | 43.72 |
Accumulated nonrunoff rainfall (≤20 mm) during past 60 days | 0.601 | 2.37 | |
Mean minimal temperature during past 45 days | 0.704 | 23.18 | |
Mean relative humidity during past 10 days | 0.598 | 1.84 | |
Total variance explained by variables (%) | 71.12 | ||
S2 | Reclaimed years | 0.629 | 66.45 |
Accumulated nonrunoff rainfall (≤20 mm) during past 60 days | 0.509 | 1.53 | |
Mean minimal temperature during past 45 days | 0.609 | 12.89 | |
Mean relative humidity during past 10 days | 0.505 | 2.00 | |
Mean wind speed during past 35 days | –0.365 | 3.53 | |
Total variance explained by variables (%) | 86.40 | ||
S3 | Reclaimed years | 0.368 | 36.81 |
Accumulated nonrunoff rainfall (≤20 mm) during past 60 days | 0.589 | 0.21 | |
Mean minimal temperature during past 45 days | 0.736 | 38.92 | |
Total variance explained by variables (%) | 75.94 | ||
S4 | Reclaimed years | 0.252 | 28.47 |
Accumulated nonrunoff rainfall (≤20 mm) during the past 60 days | 0.585 | 6.20 | |
Mean minimal temperature during past 30 days | 0.731 | 40.26 | |
Total variance explained by variables (%) | 74.94 | ||
S5 | Reclaimed years | 0.259 | 50.56 |
Accumulated nonrunoff rainfall (≤20 mm) during past 60 days | 0.646 | 6.01 | |
Mean wind speed during past 35 days | –0.471 | 9.38 | |
Mean vapour pressure during past 25 days | 0.677 | 12.75 | |
Total variance explained by variables (%) | 78.71 | ||
S6 | Reclaimed years | 0.478 | 61.92 |
Accumulated nonrunoff rainfall (≤20 mm) during past 60 days | 0.570 | 0.81 | |
Mean minimal temperature during past 45 days | 0.630 | 13.32 | |
Mean relative humidity during past 10 days | 0.559 | 1.17 | |
Mean wind speed during past 35 days | –0.376 | 4.84 | |
Total variance explained by variables (%) | 82.07 | ||
UD1 | Day of year | –0.324 | 12.84 |
Restored years | 0.660 | 70.60 | |
Mean temperature during past 15 days | 0.441 | 0.70 | |
Total variance explained by variables (%) | 84.13 | ||
UD2 | Day of year | –0.418 | 17.36 |
Restored years | 0.532 | 69.28 | |
Mean temperature during past 10 days | 0.504 | 1.17 | |
Mean vapor pressure during past 10 days | 0.265 | 0.57 | |
Total variance explained by variables (%) | 88.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Song, Y.; Zhu, C.; Balzter, H.; Bai, Z. Estimating Ecological Responses to Climatic Variability on Reclaimed and Unmined Lands Using Enhanced Vegetation Index. Remote Sens. 2021, 13, 1100. https://doi.org/10.3390/rs13061100
Fan X, Song Y, Zhu C, Balzter H, Bai Z. Estimating Ecological Responses to Climatic Variability on Reclaimed and Unmined Lands Using Enhanced Vegetation Index. Remote Sensing. 2021; 13(6):1100. https://doi.org/10.3390/rs13061100
Chicago/Turabian StyleFan, Xiang, Yongze Song, Chuxin Zhu, Heiko Balzter, and Zhongke Bai. 2021. "Estimating Ecological Responses to Climatic Variability on Reclaimed and Unmined Lands Using Enhanced Vegetation Index" Remote Sensing 13, no. 6: 1100. https://doi.org/10.3390/rs13061100
APA StyleFan, X., Song, Y., Zhu, C., Balzter, H., & Bai, Z. (2021). Estimating Ecological Responses to Climatic Variability on Reclaimed and Unmined Lands Using Enhanced Vegetation Index. Remote Sensing, 13(6), 1100. https://doi.org/10.3390/rs13061100