The Challenge of the Urban Compact Form: Three-Dimensional Index Construction and Urban Land Surface Temperature Impacts
Abstract
:1. Introduction
2. Study Area
3. Research Design and Data Collection
3.1. Indicator of Urban Compactness
3.1.1. Normalized 2D Compactness Index (NCI)
3.1.2. Normalized 3D Compactness Index (NVCI)
3.2. Calculation of NCI and NVCI
3.3. Retrieval of Land Surface Temperature
3.4. Geographical Detector Models Methods
4. Results
4.1. Urban Building Characteristics
4.2. Characteristics of Land Surface Temperature
4.3. Urban 3D Compact Form Impacts on UHE
4.3.1. Correlations between NCI, NVCI, and UHE
4.3.2. Relation of NVCI with UHE across Different Urban Morphology Types
4.4. Correlations between Urban 3D Compact Form and UHE across Different Seasons
4.5. Effect Range Detect of Urban 3D Compact Form Impacts on UHE
5. Discussion
6. Conclusions and Future Work
- (1)
- On the whole, both 2D compactness and 3D compactness had a positive effect on the UHE. Three-dimensional compactness contributed the most, whereas the corresponding contributions from building density, 2D compactness, and building height decreased gradually. Compared with individual urban form construction elements, the 3D compact form has prominent UHE stress due to its nature. Even combing 2D compactness with building height, the integrated effect on UHE was still not as strong as the function from 3D compactness. It reflected that the urban 3D compact form was helpful for UHE impact due to its land cover and vertical space integration. It will be more useful than only considering building density or building height for further research into the driving mechanism between the urban 3D compact form and the UHE and other related environmental effects in the future.
- (2)
- For the driving mechanism of the urban 3D compact form on UHE, the 3D structure and spatial pattern of urban buildings affect the wind environment, radiation trapping, and shadowing effects. The driving process of the urban 3D form on UHE was further proved by different urban morphology types. Individually, building density had a greater effect on UHE than building height. Despite this, the vertical scale should not be ignored due to the enhanced UHE when including the two factors of ‘height’ and ‘density’.
- (3)
- Temporal and spatial UHE heterogeneity is driven by a 3D compact form. In areas with warm winters and hot summers, a positive correlation between urban 3D compactness and LST was observed in the warm season, while a negative correlation was observed in the cold season. The 3D compact form has more prominent UHE stress in autumn than other seasons due to its horizontal and vertical element integration, as well as radiation trapping effects.
- (4)
- The Normalized 3D Compactness Index (NVCI) levels were accessed with high confidence to reveal that dominant factors in special categories had a high ability to increase heat accumulation. Increasing the 3D compactness of an urban community from level 3 to level 1 (0.016–0.323) would increase the heat accumulation by 1.35 °C, which is also equivalent to increasing the average building density from 31.84% to 51.74%, or increasing average building height from 8 floors to 11 floors. This means that the compact urban 3D form is not always better. A too compact form will strengthen UHE.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Urbanization Prospects: The Revision; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Ye, H.; Wang, K.; Huang, S.; Chen, F.; Xiong, Y.; Zhao, X. Urbanisation effects on summer habitat comfort: A case study of three coastal cities in southeast China. Int. J. Sustain. Dev. World Ecol. 2010, 17, 317–323. [Google Scholar] [CrossRef]
- Dantzig, G.B. The ORSA New Orleans address on compact city. Manag. Sci. 1973, 19, 1151–1161. [Google Scholar] [CrossRef]
- Han, S.; Qin, B. The Compact City and Sustainable Urban Development in China. Urban Plan. Int. 2004, 19, 23–27. [Google Scholar]
- Dempsey, N. Revisiting the Compact City? Built Environ. 2010, 36, 5–8. [Google Scholar] [CrossRef]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Mueller, N.; Rojas-Rueda, D.; Khreis, H.; Cirach, M.; Andrés, D.; Ballester, J.; Bartoll, X.; Daher, C.; Deluca, A.; Echave, C.; et al. Changing the urban design of cities for health: The superblock model. Environ. Int. 2019, 134, 105132. [Google Scholar] [CrossRef] [PubMed]
- Mouratidis, K. Compact city, urban sprawl, and subjective well-being. Cities 2019, 92, 261–272. [Google Scholar] [CrossRef]
- Gaigné, C.; Riou, S.; Thisse, J. Are compact cities environmentally friendly? J. Urban Econ. 2012, 72, 123–136. [Google Scholar] [CrossRef]
- Peng, F.; Wong, M.S.; Ho, H.C.; Nichol, J.; Chan, P.W. Reconstruction of historical datasets for analyzing spatiotemporal influence of built environment on urban microclimates across a compact city. Build. Environ. 2017, 123, 649–660. [Google Scholar] [CrossRef]
- Wang, J.; Huang, B.; Fu, D.; Atkinson, P. Spatiotemporal Variation in Surface Urban Heat Island Intensity and Associated Determinants across Major Chinese Cities. Remote Sens. 2015, 7, 3670–3689. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Lai, J. Review on carbon emissions of commercial buildings. Renew. Sustain. Energy Rev. 2020, 119, 109545. [Google Scholar] [CrossRef]
- Ye, H.; He, X.; Song, Y.; Li, X.; Zhang, G.; Lin, T.; Xiao, L. A sustainable urban form: The challenges of compactness from the viewpoint of energy consumption and carbon emission. Energy Build. 2015, 93, 90–98. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Sci. Total Environ. 2021, 751, 142334. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Oke, T.R. City size and the urban heat island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Guo, G.; Zhou, X.; Wu, Z.; Xiao, R.; Chen, Y. Characterizing the impact of urban morphology heterogeneity on land surface temperature in Guangzhou, China. Environ. Environ. Modell. Softw. 2016, 84, 427–439. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Ouyang, Z.; Xu, W.; Zheng, H. Spatial pattern of greenspace affects land surface temperature: Evidence from the heavily urbanized Beijing metropolitan area, China. Landsc. Ecol. 2012, 27, 887–898. [Google Scholar] [CrossRef]
- Zhou, W.; Huang, G.; Cadenasso, M.L. Does spatial configuration matter? Understanding the effects of land cover pattern on land surface temperature in urban landscapes. Landsc. Urban Plan. 2011, 102, 54–63. [Google Scholar] [CrossRef]
- Peng, J.; Ma, J.; Liu, Q.; Liu, Y.; Hu, Y.; Li, Y.; Yue, Y. Spatial-temporal change of land surface temperature across 285 cities in China: An urban-rural contrast perspective. Sci. Total Environ. 2018, 635, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Manoli, G.; Fatichi, S.; Schläpfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573, 55–60. [Google Scholar] [CrossRef]
- Peng, J.; Jia, J.; Liu, Y.; Li, H.; Wu, J. Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas. Remote Sens. Environ. 2018, 215, 255–267. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, J.; Wang, Y. Relationship between urban heat island and landscape patterns: From city size and landscape composition to spatial configuration. Acta Ecol. Sin. 2017, 37, 7769–7780. [Google Scholar]
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef]
- Huang, J.; Jones, P.; Zhang, A.; Peng, R.; Li, X.; Chan, P. Urban Building Energy and Climate (UrBEC) simulation: Example application and field evaluation in Sai Ying Pun, Hong Kong. Energy Build. 2019, 207, 109580. [Google Scholar] [CrossRef]
- Yang, J.; Bou-Zeid, E. Should Cities Embrace Their Heat Islands as Shields from Extreme Cold. J. Appl. Meteorol. Clim. 2018, 57, 1309–1320. [Google Scholar] [CrossRef]
- Xiong, Y.; Huang, S.; Chen, F.; Ye, H.; Wang, C.; Zhu, C. The Impacts of Rapid Urbanization on the Thermal Environment: A Remote Sensing Study of Guangzhou, South China. Remote Sens. 2012, 4, 2033–2056. [Google Scholar] [CrossRef] [Green Version]
- Galster, G.; Hanson, R.; Ratcliffe, M.; Wolman, H.; Coleman, S.; Freihage, J. Wrestling Sprawl to the Ground: Defining and Measuring an Elusive Concept. Hous. Policy Debate 2001, 12, 681–717. [Google Scholar] [CrossRef]
- Tsai, Y. Quantifying Urban Form: Compactness versus ‘Sprawl’. Urban Stud. 2005, 42, 141–161. [Google Scholar] [CrossRef]
- Zhao, F.; Tang, L.; Qiu, Q.; Wu, G. The compactness of spatial structure in Chinese cities: Measurement, clustering patterns and influencing factors. Ecosyst. Health Sustain. 2020, 6, 1743763. [Google Scholar] [CrossRef] [Green Version]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Chun, B.; Guldmann, J.M. Spatial statistical analysis and simulation of the urban heat island in high-density central cities. Landsc. Urban Plan. 2014, 125, 76–88. [Google Scholar] [CrossRef]
- Thinh, N.X.; Arlt, G.; Heber, B.; Hennersdorf, J.; Lehmann, I. Evaluation of urban land-use structures with a view to sustainable development. Environ. Impact Assess. Rev. 2002, 22, 475–492. [Google Scholar] [CrossRef]
- Zhao, J.; Song, Y.; Shi, L.; Tang, L. Study on the compactness assessment model of urban spatial form. Acta Ecol. Sin. 2011, 31, 6338–6343. [Google Scholar]
- Song, Y.; Shao, G.; Song, X.; Liu, Y.; Pan, L.; Ye, H. The Relationships between Urban Form and Urban Commuting: An Empirical Study in China. Sustainability 2017, 9, 1150. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, N.; Manceur, A.M. Analyzing the Influence of Urban Forms on Surface Urban Heat Islands in Europe. J. Urban Plan. Dev. 2015, 141, A4014003. [Google Scholar] [CrossRef]
- Zhou, B.; Rybski, D.; Kropp, J.P. The role of city size and urban form in the surface urban heat island. Sci. Rep. 2017, 7, 4791. [Google Scholar] [CrossRef] [PubMed]
- Gyenizse, P.; Bognár, Z.; Czigány, S.; Elekes, T. Landscape shape index, as a potencial indicator of urban development in Hungary. Landsc. Environ. 2014, 8, 78–88. [Google Scholar]
- Guerri, G.; Crisci, A.; Messeri, A.; Congedo, L.; Munafo, M.; Morabito, M. Thermal Summer Diurnal Hot-Spot Analysis: The Role of Local Urban Features Layers. Remote Sens. 2021, 13, 538. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhou, W.; Wang, J.; Hu, X.; Qian, Y. Sixty-Year Changes in Residential Landscapes in Beijing: A Perspective from Both the Horizontal (2D) and Vertical (3D) Dimensions. Remote Sens. 2017, 9, 992. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Yan, H.; Wang, D.; Zhao, Z.; Zhang, G.; Lin, T.; Ye, H. A Promotional Construction Approach for an Urban Three-Dimensional Compactness Model-Law-of-Gravitation-Based. Sustainability 2020, 12, 6777. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, L.; Zang, S. Examining seasonal effect of urban heat island in a coastal city. PLoS ONE 2019, 14, e217850. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Tang, L.; Chen, H.; Wang, Z.; Qiu, Q. Application of Source-Sink Landscape Influence Values to Commuter Traffic: A Case Study of Xiamen Island. Sustainability 2017, 9, 2366. [Google Scholar] [CrossRef] [Green Version]
- Xiamen Municipal Bureau of Statistics; National Bureau of Statistics. Yearbook of Xiamen Special Economic Zone; China Statistics Press: Beijing, China, 2019.
- Tang, L.; Zhao, Y.; Yin, K.; Zhao, J. Xiamen. Cities 2013, 31, 615–624. [Google Scholar] [CrossRef]
- Rubel, F.; Kottek, M. Observed and projected climate shifts 1901-2100 depicted by world maps of the Koppen-Geiger climate classification. Meteorol. Z. 2010, 19, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Van Coppenolle, R.; Temmerman, S. A global exploration of tidal wetland creation for nature-based flood risk mitigation in coastal cities. Estuar. Coast. Shelf Sci. 2019, 226, 106262. [Google Scholar] [CrossRef]
- Liu, Y.; Arp, H.P.; Song, X.; Song, Y. Research on the relationship between urban form and urban smog in China. Environ. Plan. B Plan. Des. 2016, 44, 328–342. [Google Scholar] [CrossRef]
- Zhang, S.; Han, F.; Bogus, S.M. Building Footprint and Height Information Extraction from Airborne LiDAR, Aerial Imagery, and Object-based Image Analysis. In Construction Research Congress 2020: Computer Applications; American Society of Civil Engineers: Reston, VA, USA, 2020. [Google Scholar]
- Ural, S.; Hussain, E.; Shan, J. Building population mapping with aerial imagery and GIS data. Int. J. Appl. Earth Obs. 2011, 13, 841–852. [Google Scholar] [CrossRef]
- Chen, F.; Yang, S.; Yin, K.; Chan, P. Challenges to quantitative applications of Landsat observations for the urban thermal environment. J. Environ. Sci. China 2017, 59, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Ye, H.; Hu, X.; Ren, Q.; Lin, T.; Li, X.; Zhang, G.; Shi, L. Effect of urban micro-climatic regulation ability on public building energy usage carbon emission. Energy Build. 2017, 154, 553–559. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Li, X.; Ren, D.; Zhu, J. Geographical Detector-Based Risk Assessment of the Under-Five Mortality in the 2008 Wenchuan Earthquake, China. PLoS ONE 2011, 6, e21427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yu, L.; Li, X.; Zhang, C.; Shi, T.; Wu, X.; Yang, C.; Gao, W.; Li, Q.; Wu, G. Exploring Annual Urban Expansions in the Guangdong-Hong Kong-Macau Greater Bay Area: Spatiotemporal Features and Driving Factors in 1986–2017. Remote Sens. 2020, 12, 2615. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Ecol. Sin. 2017, 72, 116–134. [Google Scholar]
- Xiamen Municipal Bureau of Natural Resources and Planning. Xiamen City Planning Management Technical Regulations; Xiamen Municipal Bureau of Natural Resources and Planning: Xiamen, China, 2010.
- Alavipanah, S.; Schreyer, J.; Haase, D.; Lakes, T.; Qureshi, S. The effect of multi-dimensional indicators on urban thermal conditions. J. Clean. Prod. 2018, 177, 115–123. [Google Scholar] [CrossRef]
- Scarano, M.; Mancini, F. Assessing the relationship between sky view factor and land surface temperature to the spatial resolution. Int. J. Remote Sens. 2017, 38, 6910–6929. [Google Scholar] [CrossRef]
- Ye, H.; Sun, C.; Wang, K.; Zhang, G.; Lin, T.; Yan, H. The role of urban function on road soil respiration responses. Ecol. Indic. 2018, 85, 271–275. [Google Scholar] [CrossRef]
- Unger, J. Intra-urban relationship between surface geometry and urban heat island: Review and new approach. Clim. Res. 2004, 27, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Caton, F.; Britter, R.E.; Dalziel, S. Dispersion mechanisms in a street canyon. Atmos. Environ. 2003, 37, 693–702. [Google Scholar] [CrossRef]
- Emmanuel, R.; Rosenlund, H.; Johansson, E. Urban shading—A design option for the tropics? A study in Colombo, Sri Lanka. Int. J. Climatol. 2007, 27, 1995–2004. [Google Scholar] [CrossRef] [Green Version]
- Eliasson, I. Urban nocturnal temperatures, street geometry and land use. Atmos. Environ. 1996, 30, 379–392. [Google Scholar] [CrossRef]
- Yang, X.; Li, Y. The impact of building density and building height heterogeneity on average urban albedo and street surface temperature. Build. Environ. 2015, 90, 146–156. [Google Scholar] [CrossRef]
- Theeuwes, N.; Steeneveld, G.; Ronda, R.J.; Heusinkveld, B.; Hove, B.; Holtslag, B. Seasonal Dependence of the Urban Heat Island on the Street Canyon Aspect Ratio. Q. J. R. Meteor. Soc. 2014, 140, 2197–2210. [Google Scholar] [CrossRef]
- Song, J.; Wang, Z. Interfacing the Urban Land-Atmosphere System Through Coupled Urban Canopy and Atmospheric Models. Bound. Layer Meteorol. 2015, 154, 427–448. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Li, Y.; Lin, B. Stone forest as a small-scale field model for the study of urban climate. Int. J. Climatol. 2018, 38, 3723–3731. [Google Scholar] [CrossRef]
- Chen, G.; Wang, D.; Wang, Q.; Li, Y.; Wang, X.; Hang, J.; Gao, P.; Ou, C.; Wang, K. Scaled outdoor experimental studies of urban thermal environment in street canyon models with various aspect ratios and thermal storage. Sci. Total Environ. 2020, 726, 138147. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Wang, K.; Li, Y.; Wang, Y.; Yang, X. On the asymmetry of the urban daily air temperature cycle. J. Geophys. Res. Atmos. 2017, 122, 5625–5635. [Google Scholar] [CrossRef]
- Adderley, C.; Christen, A.; Voogt, J.A. The effect of radiometer placement and view on inferred directional and hemispheric radiometric temperatures of an urban canopy. Atmos. Meas. Tech. 2015, 8, 2699–2714. [Google Scholar] [CrossRef] [Green Version]
- Mitraka, Z.; Chrysoulakis, N.; Kamarianakis, Y.; Partsinevelos, P.; Tsouchlaraki, A. Improving the estimation of urban surface emissivity based on sub-pixel classification of high resolution satellite imagery. Remote Sens. Environ. 2012, 117, 125–134. [Google Scholar] [CrossRef]
- Abbassi, Y.; Ahmadikia, H.; Baniasadi, E. Prediction of pollution dispersion under urban heat island circulation for different atmospheric stratification. Build. Environ. 2020, 168, 106374. [Google Scholar] [CrossRef]
Relationship | Interaction |
---|---|
q (X1 ∩ X2) < Min [q (X1), q (X2)] | nonlinear weaken (NW) |
Min[q(X1), q(X2)] < q (X1 ∩ X2) < Max [q (X1), q (X2)] | single-factor nonlinear weaken (SNW) |
q (X1 ∩ X2) > Max [q (X1), q (X2)] | double-factor enhancement (DE) |
q (X1 ∩ X2) = q (X1) + q (X2) | independent (I) |
q (X1 ∩ X2) > q (X1) + q (X2) | nonlinear enhancement (NE) |
Building Area (hm2) | Building Height (Floor) | Building Density (%) | 2D Compact Indexes | 3D Compact Indexes | |||||
---|---|---|---|---|---|---|---|---|---|
CI | CImax | NCI | VCI | VCImax | NVCI | ||||
Mean | 4.856 | 9 | 35.781 | 1.82 × 10−3 | 2.61 × 10−3 | 0.622 | 0.016 | 0.334 | 0.044 |
Maximum | 44.764 | 38 | 85.257 | 0.018 | 0.019 | 0.979 | 0.190 | 1.691 | 0.323 |
Minimum | 0.044 | 1 | 10.198 | 4.14 × 10−5 | 9.14 × 10−5 | 0.370 | 2.42 × 10−4 | 0.063 | 1.45 × 10−3 |
Building Morphology | Building Height (Floor) | Average Building Density | Average Building Area (hm2) | 2D Compact Indexes | 3D Compact Indexes | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Max | Min | CI | CImax | NCI | VCI | VCImax | NVCI | |||
low-rise and low-density (LL) | 5 | 6 | 1 | 0.271 | 3.181 | 0.80 × 10−3 | 1.39 × 10−3 | 0.531 | 7.22 × 10−3 | 0.422 | 0.014 |
low-rise and high-density (LH) | 5 | 6 | 1 | 0.461 | 2.462 | 0.30 × 10−2 | 4.24 × 10−3 | 0.660 | 2.39 × 10−2 | 0.446 | 0.049 |
high-rise and low-density (HL) | 15 | 38 | 7 | 0.221 | 8.872 | 0.40 × 10−3 | 8.24 × 10−4 | 0.569 | 3.92 × 10−3 | 0.230 | 0.015 |
high-rise and high-density (HH) | 10 | 36 | 7 | 0.394 | 4.856 | 0.20 × 10−2 | 3.00 × 10−3 | 0.654 | 1.96 × 10−2 | 0.300 | 0.061 |
BH | BD | NCI | NVCI | |
---|---|---|---|---|
q statistic | 0.016 | 0.196 | 0.101 | 0.271 |
BH | ||||
BD | Y | |||
NCI | Y | Y | ||
NVCI | Y | Y | Y |
BH | BD | NCI | NVCI | |
---|---|---|---|---|
BH | 0.016 | |||
BD | 0.199 DE | 0.196 | ||
NCI | 0.115 DE | 0.233 DE | 0.101 | |
NVCI | 0.278 DE | 0.290 DE | 0.298 DE | 0.271 |
High-Dense Buildings | Low-Dense Buildings | Totality Number | |
---|---|---|---|
High-rise buildings | H-H (404) | H-L (149) | 553 |
Low-rise buildings | L-H (162) | L-L (126) | 288 |
Totality number | 566 | 275 | 841 |
Low-Rise Buildings | High-Rise Buildings | Low-Dense Buildings | High-Dense Buildings | |
---|---|---|---|---|
Low-dense to High-dense | 1.6 °C (LL-LH) | 1.6 °C (HL-HH) | ||
Low-rise to High-rise | 0.2 °C (LL-HL) | 0.2 °C (LH-HH) |
Season | R-Value |
---|---|
Spring | −0.080 * |
Summer | 0.237 *** |
Autumn | 0.416 *** |
Winter | −0.332 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Wang, K.; Lin, T.; Zhang, G.; Sun, C.; Hu, X.; Ye, H. The Challenge of the Urban Compact Form: Three-Dimensional Index Construction and Urban Land Surface Temperature Impacts. Remote Sens. 2021, 13, 1067. https://doi.org/10.3390/rs13061067
Yan H, Wang K, Lin T, Zhang G, Sun C, Hu X, Ye H. The Challenge of the Urban Compact Form: Three-Dimensional Index Construction and Urban Land Surface Temperature Impacts. Remote Sensing. 2021; 13(6):1067. https://doi.org/10.3390/rs13061067
Chicago/Turabian StyleYan, Han, Kai Wang, Tao Lin, Guoqin Zhang, Caige Sun, Xinyue Hu, and Hong Ye. 2021. "The Challenge of the Urban Compact Form: Three-Dimensional Index Construction and Urban Land Surface Temperature Impacts" Remote Sensing 13, no. 6: 1067. https://doi.org/10.3390/rs13061067
APA StyleYan, H., Wang, K., Lin, T., Zhang, G., Sun, C., Hu, X., & Ye, H. (2021). The Challenge of the Urban Compact Form: Three-Dimensional Index Construction and Urban Land Surface Temperature Impacts. Remote Sensing, 13(6), 1067. https://doi.org/10.3390/rs13061067