Spatial Relationship between Irrigation Water Salinity, Waterlogging, and Cropland Degradation in the Arid and Semi-Arid Environments
Abstract
:1. Introduction
2. Study Area
Hydrogeology
3. Materials
4. Methods
4.1. Landsat Image Processing
4.2. GIS Analysis
4.3. Post-Classification Assessment
4.4. Water Analytical Parameters
5. Results
5.1. Croplands Expansion
5.2. Waterlogging
5.3. Accuracy Assessment
5.4. Water Salinity
5.5. Water Quality for Irrigation
6. Discussion
6.1. Food Security and Water Scarcity
6.2. Low Water Quality and Waterlogging
6.3. Management Strategies to Reduce Waterlogging and Increase Crop Yield
6.4. Advantages and Limitations of Applied Method
7. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Food and Agriculture Organization (FAO). Available online: http://www.fao.org (accessed on 1 February 2021).
- Assouline, S.; Russo, D.; Silber, A.; Or, D. Balancing water scarcity and quality for sustainable irrigated agriculture. Water Resour. Res. 2015, 51, 3419–3436. [Google Scholar] [CrossRef]
- Shahid, S.A.; Zaman, M.; Heng, L. Irrigation Water Quality. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, Switzerland, 2018. [Google Scholar]
- El Ayni, F.; Manoli, E.; Cherif, S.; Jrad, A.; Assimacopoulos, D.; Ayadi, M. Deterioration of a Tunisian coastal aquifer due to agricultural activities and possible approaches for better water management. Water Environ. J. 2012, 27, 348–361. [Google Scholar] [CrossRef]
- Yasuor, H.; Yermiyahu, U.; Ben-Gal, A. Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study. Agric. Water Manag. 2020, 242, 106362. [Google Scholar] [CrossRef]
- Aslam, M.; Prathapar, S.A. Strategies to Mitigate Secondary Salinization in the Indus Basin of Pakistan: A Selective Review. Research Report 97; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2006; p. 33. ISBN 92-9090-616-2. [Google Scholar]
- Singh, A. Development and application of a water table model for the assessment of waterlogging in irrigated semi-arid regions. Water Resour. Manag. 2012, 26, 4435–4448. [Google Scholar] [CrossRef]
- Singh, A. Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecol. Indic. 2015, 57, 128–130. [Google Scholar] [CrossRef]
- Mercau, J.L.; Nosetto, M.D.; Bert, F.; Giménez, R.; Jobbágy, E.G. Shallow groundwater dynamics in the Pampas: Climate, landscape and crop choice effects. Agric. Water Manag. 2016, 163, 159–168. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Pepper, I.L.; Gerba, C.P. Environmental and Pollution Science; Academic Press: London, UK, 2019. [Google Scholar]
- Shahid, S.A.; Zaman, M.; Heng, L. Introduction to Soil Salinity, Sodicity and Diagnostics Techniques. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid contextby means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA. Geoderma Reg. 2014, 2–3, 82–90. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Comparative regional-scale soil salinity assessment with near-ground apparent electrical conductivity and remote sensing canopy reflectance. Ecol. Indic. 2016, 70, 276–284. [Google Scholar] [CrossRef] [Green Version]
- Moussa, I.; Walter, C.; Michot, D.; Boukary, I.; Nicolas, H.; Pichelin, P.; Guero, Y. Soil Salinity Assessment in Irrigated Paddy Fields of the Niger Valley Using a Four-Year Time Series of Sentinel-2 Satellite Images. Remote Sens. 2020, 12, 3399. [Google Scholar] [CrossRef]
- Bannari, A.; Al-Ali, Z. Assessing Climate Change Impact on Soil Salinity Dynamics between 1987–2017 in Arid Landscape Using Landsat TM, ETM+ and OLI Data. Remote Sens. 2020, 12, 2794. [Google Scholar] [CrossRef]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Lizaga, I.; et al. Capability of Sentinel-2 MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China. Geoderma 2019, 353, 172–187. [Google Scholar] [CrossRef]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Fernandez-Buces, N.; Siebe, C.; Cram, S.; Palacio, J.L. Mapping Soil Salinity Using a Combined Spectral Res- ponse Index for Bare Soil and Vegetation: A Case Study in the Former Lake Texcoco, Mexico. J. Arid Environ. 2006, 65, 644–667. [Google Scholar] [CrossRef]
- Gorji, T.; Sertel, E.; Tanik, A. Monitoring soil salinity via remote sensing technology under data scarce conditions: A case study from Turkey. Ecol. Indic. 2017, 74, 384–391. [Google Scholar] [CrossRef]
- Grieve, C.; Grattan, S.; Maas, E. Plant salt tolerance. In Agricultural Salinity Assessment and Management, 2nd ed.; Wallender, W.W., Tanji, K.K., Eds.; ASCE Manuals and Reports on Engineering Practice No 71; ASCE: New York, NY, USA, 2012; pp. 405–459. [Google Scholar]
- Singh, A. Hydrological problems of water resources in irrigated agriculture: A management perspective. J. Hydrol. 2016, 541, 1430–1440. [Google Scholar] [CrossRef]
- Singh, A. Waterlogging and salinity management for sustainable irrigated agriculture. I: Overview, implication and plant response. J. Irrig. Drain. Eng. 2017, 143. [Google Scholar] [CrossRef]
- Singh, A. Soil salinization management for sustainable development: A review. J. Environ. Manag. 2021, 277, 111383. [Google Scholar] [CrossRef]
- Kaur, G.; Singh, G.; Motavalli, P.P.; Nelson, K.A.; Orlowski, J.M.; Golden, B.R. Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agron. J. 2020, 112, 1475–1501. [Google Scholar] [CrossRef] [Green Version]
- Ramana, D.V.; Rai, S.N.; Singh, R.N. Water table fluctuations due to transient recharge in a 2D aquifer system with inclined base. Water Resour. Manag. 1995, 9, 127–138. [Google Scholar] [CrossRef]
- Gates, T.K.; Burkhalter, J.P.; Labadie, J.W.; Valliant, J.C.; Broner, I. Monitoring and modeling flow and salt transport in a salinity-threatened irrigated valley. J. Irrig. Drain. Eng. 2002, 128, 87–99. [Google Scholar] [CrossRef]
- Dawoud, M.A.; Allam, A.R. Effect of new Nag Hammadi Barrage on groundwater and drainage conditions and suggestion of mitigation measures. Water Resour. Manag. 2004, 18, 321–337. [Google Scholar] [CrossRef]
- Lohani, A.K.; Jaiswal, R.K.; Jha, R. Waterlogged area mapping of Mokama group of Tals using remote sensing and GIS. J. Inst. Eng. 1999, 80, 133–137. [Google Scholar]
- Dwivedi, R.S.; Ramana, K.V.; Thammappa, S.S.; Singh, A.N. The utility of IRS-1C and LISS-III and PAN-Merged data for mapping salt-affected soils. Photogramm. Eng. Remote Sens. 2001, 67, 1167–1175. [Google Scholar]
- Chowdary, V.M.; Chandran, R.V.; Neeti, N.; Bothale, R.V.; Srivastava, Y.K.; Ingle, P.; Ramakrishnan, D.; Dutta, D.; Jeyaram, A.; Sharma, J.R.; et al. Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS. Agric. Water Manag. 2008, 95, 754–766. [Google Scholar] [CrossRef]
- Dwivedi, R.S.; Ramana, K.V.; Sreenivas, K. Temporal behavior of surface waterlogged areas using spaceborne multispectral multitemporal measurements. J. Indian Soc. Remote Sens. 2007, 35, 173–184. [Google Scholar] [CrossRef]
- Fei, X.; Zheng, L.; Yun, D.; Feng, L.; Yi, Y.; Qi, F.; Xuan, B. Monitoring Perennial Sub-Surface Waterlogged Croplands Based on MODIS in Jianghan Plain, Middle Reaches of the Yangtze River. J. Integr. Agric. 2014, 13, 1791–1801. [Google Scholar]
- Liu, W.; Huang, J.; Wei, C.; Wang, X.; Mansaray, L.; Han, J.; Zhang, D.; Chen, Y. Mapping water-logging damage on winter wheat at parcel level using high T spatial resolution satellite data. ISPRS J. Photogramm. Remote Sens. 2018, 142, 243–256. [Google Scholar] [CrossRef]
- El Bastawesy, M.; Ali, R.; Deocampo, D.; Al Baroudi, M. Detection and assessment of the Waterlogging in the dryland drainage basins using remote sensing and GIS techniques. J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1564–1571. [Google Scholar] [CrossRef]
- Singh, A. Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques. Ecol. Indic. 2018, 89, 584–589. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Wang, C.; Guo, E. Characteristic Analysis of Droughts and Waterlogging Events for Maize Based on a New Comprehensive Index through Coupling of Multisource Data in Midwestern Jilin Province, China. Remote Sens. 2020, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Wei, C.; Chen, Y.; Liu, W.; Song, P.; Zhang, D.; Wang, A.; Song, X.; Wang, X.; Huang, J. Mapping Above-Ground Biomass of Winter Oilseed Rape Using High Spatial Resolution Satellite Data at Parcel Scale under Waterlogging Conditions. Remote Sens. 2017, 9, 238. [Google Scholar] [CrossRef] [Green Version]
- Amer, R.; Moghanm, F. Remote Sensing for Detection and Monitoring of the Cropland Waterlogging in Arid and Semi-Arid Regions. In Proceedings of the Twentieth International Water Technology Conference, IWTC20, Hurghada, Egypt, 18–20 May 2017. [Google Scholar]
- Massoud, U.; Kenawy, A.; Ragab, E.; Abbas, A.; El-Kosery, H. Characterization of the groundwater aquifers at El Sadat City by joint inversion of VES and TEM data. NRIAG J. Astron. Geophys. 2014, 3, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Khalil, A.; Mansour, K.; Rabeh, T.; Basheer, A.; Abdel Zaher, M.; Ali, K. Geophysical Evaluation for Evidence of Recharging the Pleistocene Aquifer at El-Nubariya Area, West Nile Delta, Egypt. Int. J. Geosci. 2014, 5, 324–340. [Google Scholar] [CrossRef]
- RIGW; IWACO. Vulnerability of Groundwater to Pollution in the Nile Valley and Delta; Springer: Cham, Switzerland, 1990. [Google Scholar]
- Abdel Baki, A.A. Hydrogeological and Hydrogeochemical Studies on the Area West of Rosetta Branch and South El Nasr Canal. Ph.D. Thesis, Ain Shams University, Cairo, Egypt, 1983; p. 156. [Google Scholar]
- El Abd, E.A. The geological impact on the water-bearing formations in the area southwest Nile Delta, Egypt. Ph.D. Thesis, Menufiya University, Shibin el Kom, Egypt, 2005; p. 319. [Google Scholar]
- Dawoud, M.A.; Darwish, M.M.; EL-Kady, M.M. GIS-Based Groundwater Management Model for Western Nile Delta. Water Resour. Manag. 2005, 19, 585–604. [Google Scholar] [CrossRef]
- USGS Earth Explorer. Available online: www.earthexplorer.usgs.gov (accessed on 1 February 2021).
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, Washington, DC, USA, 10–14 December 1973; NASA SP-351. pp. 309–317. [Google Scholar]
- Holme, A.; Burnside, D.G.; Mitchell, A.A. The development of a system for monitoring trends in range conditions in the arid shrublands of Western Australia. Aust. Rangel. J. 1987, 9, 14–20. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of dynamic threshold for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Amer, R.; Kolker, A.; Muscuetta, A. Propensity for erosion and deposition in a deltaic wetland complex: Implications for river management and coastal restoration. Remote Sens. Environ. 2017, 199, 39–50. [Google Scholar] [CrossRef]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 2nd ed.; Prentice-Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B. Digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Klemas, V. Remote sensing of wetlands: Case studies comparing practical techniques. J. Coast. Res. 2011, 27, 418–427. [Google Scholar]
- George, Y.; David, W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar]
- Anku, Y.S.; Banoeng, B.; Asiedu, D.K.; Yidana, S.M. Water quality analysis of groundwater in crystalline basement rocks Northern Ghana. Environ. Geol. 2009, 58, 989–997. [Google Scholar] [CrossRef]
- ArcGIS Help. Available online: www.ESRI.com (accessed on 1 February 2021).
- ENVI Help. Available online: www.harrisgeospatial.com (accessed on 1 February 2021).
- The US Salinity Laboratory (USSL). Diagnosis and Improvement of Saline and Alkaline Soils; Handbook No 60; US Department of Agriculture: Washington, DC, USA, 1954; p. 160.
- Wilcox, L.V. Classification and Use of Irrigation Waters; Circular No. 969; US Department of Agriculture: Washington, DC, USA, 1955; p. 969.
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Irrigation and Drainage Paper 29; FAO: Rome, Italy, 1985; p. 174. ISBN 92-5-102263-1. [Google Scholar]
- Assouline, S.; Muller, M.; Cohen, S.; Ben-Hur, M.; Grava, A.; Narkis, K.; Silber, A. Soil-plant system response to pulsed drip irrigation and salinity: Bell pepper case study. Soil Sci. Soc. Am. J. 2006, 70, 1556–1568. [Google Scholar] [CrossRef]
- Phogat, A.; Mallants, D.; Cox, J.W.; Šimůnek, J.; Oliver, D.P.; Awad, J. Management of soil salinity associated with irrigation of protected crops. Agric. Water Manag. 2020, 227, 105845. [Google Scholar] [CrossRef]
- Dehghanisanij, H.; Agassi, M.; Anyoji, H.; Yamamoto, T.; Inoue, M.; Eneji, A. Improvement of saline water use under drip irrigation system. Agric. Water Manag. 2006, 85, 233–242. [Google Scholar] [CrossRef]
- Dudley, L.M.; Ben-Gal, A.; Lazarovitch, N. Drainage water reuse: Biological, physical, and technological considerations for system management. J. Environ. Qual. 2008, 37, S25–S35. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, J.; Daliakopoulos, I.; del Moral, F.; Hueso, J.; Tsanis, I. A Review of Soil-Improving Cropping Systems for Soil Salinization. Agronomy 2019, 9, 295. [Google Scholar] [CrossRef] [Green Version]
Satellite | Landsat 4–5 TM | Landsat-8 OLI | ||
---|---|---|---|---|
Acquisition date | 1990-07-26 | 2000-07-21 | 2010-07-17 | 2020-07-28 |
Acquisition time | 07:50 | 08:07 | 08:20 | 08:29 |
Sun elevation | 57.6 | 61.6 | 64.9 | 67.0 |
Sun azimuth | 101.5 | 103.5 | 105.1 | 106.7 |
Spatial reference | WGS 1984 UTM Zone 16 N | WGS 1984 UTM Zone 16 N | ||
Pixel size | 30 m | 30 m | ||
Spectral bands Wavelength is in µm | Band 1—blue: 0.45–0.52 | Band 2—blue: 0.45–0.51 | ||
Band 2—green: 0.52–0.60 | Band 3—green: 0.53–0.59 | |||
Band 3—red: 0.63–0.69 | Band 4—red: 0.64–0.67 | |||
Band 4—Near-infrared (NIR): 0.77–0.90 | Band 5—near-infrared (NIR): 0.85–0.88 | |||
Band 5—short-wave infrared (SWIR) 1:1.55–1.75 | Band 6—short-wave infrared (SWIR) 1:1.57–1.65 | |||
Band 7—short-wave infrared (SWIR) 2:2.09–2.35 | Band 7—short-wave infrared (SWIR) 2:2.11–2.29 |
Year | NDVI (km2) | Cropland Change (%) | NDWI (km2) | Waterlogging Change (%) |
---|---|---|---|---|
2020 | 3482.25 | −17 | 36.36 | 13.5 |
2010 | 4124.21 | 83.6 | 31.67 | 9.1 |
2000 | 1479.54 | 3 | 19.14 | −18.4 |
1990 | 888.35 | 52 | 15.01 | 2.1 |
Landsat TM 1990 | ||||
---|---|---|---|---|
Overall Accuracy = 99.4% | ||||
Kappa Coefficient = 0.99 | ||||
Ground Truth (Pixels) | ||||
Class | Class 1: Soil | Class 2: Water | Class 3: Vegetation | Total |
Class 1: Soil | 133,894 | 0 | 79 | 133,973 |
Class 2: Water | 17 | 382 | 378 | 777 |
Class 3: Vegetation | 452 | 5 | 31,208 | 31,665 |
Total | 134,363 | 387 | 31,665 | 166,415 |
Landsat TM 2000 | ||||
Overall Accuracy = 99.1% | ||||
Kappa Coefficient = 0.97 | ||||
Ground Truth (Pixels) | ||||
Class | Class 1: Soil | Class 2: Water | Class 3: Vegetation | Total |
Class 1: Soil | 116,233 | 1 | 3 | 116,237 |
Class 2: Water | 598 | 604 | 335 | 1537 |
Class 3: Vegetation | 324 | 3 | 25,690 | 26,017 |
Total | 117,155 | 608 | 26,028 | 143,791 |
Landsat TM 2010 | ||||
Overall Accuracy = 98.5% | ||||
Kappa Coefficient = 0.96 | ||||
Class | Class 1: Soil | Class 2: Water | Class 3: Vegetation | Total |
Class 1: Soil | 104,282 | 1 | 426 | 104,709 |
Class 2: Water | 63 | 3511 | 920 | 4494 |
Class 3: Vegetation | 974 | 61 | 56,939 | 57,974 |
Total | 105,319 | 3573 | 58,285 | 167,177 |
Landsat OLI 2020 | ||||
Overall Accuracy = 99.3% | ||||
Kappa Coefficient = 0.98 | ||||
Class | Class 1: Soil | Class 2: Water | Class 3: Vegetation | Total |
Class 1: Soil | 88,514 | 0 | 313 | 88,827 |
Class 2: Water | 0 | 6964 | 149 | 7113 |
Class 3: Vegetation | 512 | 133 | 63,647 | 64,292 |
Total | 89,026 | 7097 | 64,109 | 160,232 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amer, R. Spatial Relationship between Irrigation Water Salinity, Waterlogging, and Cropland Degradation in the Arid and Semi-Arid Environments. Remote Sens. 2021, 13, 1047. https://doi.org/10.3390/rs13061047
Amer R. Spatial Relationship between Irrigation Water Salinity, Waterlogging, and Cropland Degradation in the Arid and Semi-Arid Environments. Remote Sensing. 2021; 13(6):1047. https://doi.org/10.3390/rs13061047
Chicago/Turabian StyleAmer, Reda. 2021. "Spatial Relationship between Irrigation Water Salinity, Waterlogging, and Cropland Degradation in the Arid and Semi-Arid Environments" Remote Sensing 13, no. 6: 1047. https://doi.org/10.3390/rs13061047
APA StyleAmer, R. (2021). Spatial Relationship between Irrigation Water Salinity, Waterlogging, and Cropland Degradation in the Arid and Semi-Arid Environments. Remote Sensing, 13(6), 1047. https://doi.org/10.3390/rs13061047