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Abstract: Water scarcity in arid and semiarid regions has resulted in using of low-quality waters for
crop irrigation. This study aims to investigate the spatial relationship of low-quality irrigation water
and waterlogging in arid and semiarid environments. The multi-decadal (1990–2020) time series
Landsat images and hadrochemical water analysis were employed within geographical information
system mapping (GIS) to understand the relationship between irrigation water, soil salinity, and wa-
terlogging in the western Nile Delta, Egypt. The normalized difference water index (NDWI) and the
normalized difference vegetation index (NDVI) from the Landsat images were combined to quantify
the Spatiotemporal changes in the croplands and waterlogging from 1990 to 2020. ArcGIS inverse
distance weighted (IDW) interpolation was used to create spatial layers of irrigation water salinity
from electrical conductivity (EC), sodium adsorption ratio (SAR), and soluble sodium percentage
(Na%). The results demonstrated a significant spatial relationship between waterlogging and EC,
SAR, and Na% in irrigation groundwater. Long-term irrigation with high salinity groundwater led
to increased soil salinity, low soil permeability, and waterlogging. This study offers a time- and
cost-efficient geospatial method for regional monitoring of surface waterlogging and mitigation
strategies for cropland degradation and agricultural drainage water recycling that would benefit
stakeholders and decision-makers.
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1. Introduction

Due to an ever-growing population with its increasing demand for food supplies, the
world faces a global food crisis [1]. Population growth and the impending global water
crisis present the two most significant dangers to the agriculture sector and economic de-
velopment. The increase in water consumption, in conjunction with global climate change,
has resulted in severe water shortages throughout the world. Water scarcity in arid and
semiarid regions has resulted in using of low-quality waters for crop irrigation [2]. The use
of low-quality water in irrigation systems and poorly drained soil causes a breakdown in
soil structure and results in soil hardpan, making it difficult for water to infiltrate, leading
to a rising water table that induces salinity and waterlogging problems and cropland degra-
dation [1]. The concentration and composition of soluble salts in water determine their
quality for irrigation. Generally, the basic criteria for evaluating water quality for irrigation,
including water salinity (total dissolved solids—TDS), sodium hazard (sodium adsorption
ratio—SAR), residual sodium carbonates (RSC), and ion toxicity [3]. However, even water
with considerably high TDS concentration can be used for irrigation without endangering
soil productivity, provided selected irrigation management to maintain existing salt balance
in the plant root zone [4,5]. A high TDS in irrigation water increases the sodium hazard;
the soil then becomes hard and compact when dry and increasingly impervious on the
infiltration of irrigation water, increasing soil salinity and waterlogging [3]. Cropland
waterlogging in the arid and semiarid regions most probably related to using low-quality
water, unsuitable irrigation practices, and poorly drained soil [5]. High TDS and sodium
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hazard result in the formation of a shallow impermeable crust (hardpan) that induces
waterlogging problems and leading to cropland degradation. The relationship between
waterlogging and salinization has been reported in several studies [6–9]. They concluded
that salinization and waterlogging have adverse effects on plant growth and crop yield by
reducing soil aeration around the root zone and increasing the osmotic potential of the soil
solution. Moreover, high concentrations of sodium in irrigation water can induce calcium
and potassium deficiency in soils, and waterlogging may result due to the degradation of
well-structured soils.

Soil salinity negatively affects crop growth and productivity, leading to land degrada-
tion, especially in arid and semiarid areas [10]. Soil salinity either occurs naturally from
the weathering of rocks and primary minerals or is human-induced by using high salinity
irrigation water [11]. Remote sensing techniques have been used for assessing and moni-
toring soil salinity. Soil salinity can be detected directly by the spectral signature of white
salt crusts at the bare soil surface or indirectly from indicators such as halophytic plant and
the crop yield of salt-tolerant crops such as alfalfa, rice and cotton [12–17]. Remote sensing
indices, such as the salinity index (SI), brightness index (BI), normalized difference salinity
index (NDSI) and normalized difference vegetation index (NDVI), have been used to assess
the salinity of bare soil and monitor vegetation behavior in saline environments [16,18].
Different studies found that a high correlation between the in situ electrical conductivity
(EC) measurements and spectral indices derived from satellite images [17,19–21]. Numer-
ous studies investigated the relationship between soil salinization, waterlogging, and plant
yields. Waterlogging is often accompanied by soil salinization as waterlogged soils prevent
leaching of the salts imported by the irrigation water [22–24]. Refs. [5,25,26] presented
a review on the impacts and management strategies for crop production in saline and
waterlogged soils. The study revealed that crop losses due to soil waterlogging are pre-
dicted to increase owing to changing temperature and precipitation patterns associated
with climate change. The recommended management practices need to be used to mitigate
soil waterlogging stress, such as the use of flood-tolerant varieties, improving drainage,
and practicing adaptive nutrient management strategies.

Several studies presented conventional techniques such as ground surveying and
groundwater flow modeling for the waterlogged areas [27–29]. Conventional methods
are usually time and cost-consuming. Remote sensing and geographical information
systems (GIS) techniques have been used as time and cost-effective tools for monitoring and
assessment of waterlogged croplands [30–32]. The normalized difference vegetation index
(NDVI) was used for the assessment of crop yield reduction due to waterlogging [33]. Time-
series analysis of moderate resolution imaging spectroradiometer (MODIS) imagery was
used for monitoring waterlogged croplands in Jianghan Plains, China [34]. Reference [35]
used high spatial resolution optical satellite images and field observations for mapping
waterlogging damage on winter wheat in southeast China. The NDVI and vegetation
indices (VIs) were utilized as independent variables for leaf area index (LAI), biomass,
and yield estimation. The results indicated that the estimation and dynamic mapping of
LAI and biomass had provided the possibility of monitoring the impact of waterlogging
on winter wheat growth. Reference [36] used Landsat thematic mapper (TM), enhanced
thematic mapper (ETM) satellite images, and the digital elevation model (DEM) to examine
the spatial relationship of the drainage networks and waterlogging in the Farafra Oasis,
Western Desert of Egypt. The results indicated that the geomorphology of closed drainage
basins must be considered when planning for new cultivation in dryland catchments
to better control waterlogging hazards [36]. Reference [37] presented a review on the
application of GIS and remote sensing techniques for managing the salinization and
drainage problems of irrigated areas. The study also revealed that the geospatial techniques
are more efficient and are proficient in offering information on the area under irrigation,
type of crops, the water requirement of crops, land cover and land use, and the degree of
land salinization. Reference [38] designed a comprehensive model of agricultural drought
and waterlogging that considers the continuum system of atmosphere, crops, and soil
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moisture impacts on droughts and waterlogging events and to analyze the temporal and
spatial distribution of such events in the development of maize. The index combined the
actual evapotranspiration, potential evapotranspiration, Palmer drought severity index
(PDSI), and soil moisture datasets from the TerraClimate dataset, and the GIMMS 3 g
NDVI from the NASA Earth Exchange. The results showed the drought and waterlogging
events from 1982 to 2015 in the Heilongjiang Province, China. Reference [39] used the
vegetation indices (VIs) derived from multiple high spatial resolution remote sensing data,
i.e., Pleiades-1A, Worldview-2, Worldview-3, and SPOT-6, to estimate the dry above-ground
biomass of oilseed rape and track the seasonal growth dynamics under waterlogging
condition. Their results demonstrated that high spatial resolution satellite data makes
parcel-scale monitoring possible, and the multi-source high spatial resolution satellite data
can be used to map the time series oilseed rape growth condition under waterlogging
conditions. Reference [40] used the normalized difference water index (NDWI) and the
normalized difference vegetation index (NDVI) from the Landsat images for mapping the
cultivated lands and surface waterlogging in the Nubariya area. Their results indicated
that the geospatial method provides an effective tool for mapping waterlogged areas. They
concluded that the lack of a drainage system and low topography are the main causes of
waterlogging. They recommended hydrochemical analysis for irrigation water samples to
investigate the salinity and soil infiltration.

The lack of systematic monitoring of irrigation water quality and management pro-
cedures of waterlogging is ultimately leading to crop yield reduction and degradation
of cropland. Therefore, practical tools for assessing waterlogging are required to assist
decision-making in monitoring waterlogging and degradation of croplands. The objective
of this study was to employ remote sensing techniques and hydrochemical water analysis
within GIS for mapping the waterlogging in croplands and to investigate the spatial relation-
ship of irrigation water salinity and waterlogging in the arid and semiarid environments.

2. Study Area

Egypt is a developing country that has the largest population in the Middle East
and a population growth rate of over 2.5 percent a year. Owing to the combination of a
rapidly expanding population and arid climate, Egypt faces rising food insecurity and is
struggling to meet its basic food and water needs [1]. The cultivated lands in Egypt are
confined to the course of the River Nile within its valley and delta. There are scattered
minor patches of cultivated lands that occur in the oases of the Western Desert and the
Nile Delta margins (e.g., Nubariya and Wadi Al Natroun), all of which mostly depend on
groundwater resources. The present study was conducted in the western Nile Delta region,
which is located in the northwestern Desert of Egypt and includes Nubariya, Badr, and
Wadi Al Natrun (Figure 1). It is characterized by typical Mediterranean arid weather that
receives less than 30 mm of rain annually [41]. The main cultivated crops are corn, wheat,
potatoes, citrus, olive, and grapes. Nubariya Canal and its branches provide water for
drinking and partially for irrigation in the eastern part of the study area, but groundwater
is the main source for irrigation in the western Nile Delta region. Sprinkler and drip
irrigation is the dominant systems in the region. Croplands in the western part of the study
area are witnessing yield reduction, soil salinity, and waterlogging. The area is covered by
the calcareous soils that dominate the northern and western parts, consisting of calcareous
sandy loam. The southern part of the study area is covered by sandy soils.
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Figure 1. Location of the study area on the Environmental Systems Research Institute (ESRI) ArcGIS basemap. The image in
the upper right corner is a false-color composite Landsat enhanced thematic mapper (ETM+) mosaic of Egypt. The red
rectangle is the location of the study area.

Geologically, the western Nile Delta region consists of Pliocene and Quaternary
alluvial and deltaic deposits, Quaternary dune deposits, and sabkha deposits in Wadi
El Natrun [42]. Geomorphologically, the area has been subdivided into tablelands and
alluvial plains. Tablelands include ridges and depressions that occupy the western and
southern parts of the study area [42]. The alluvial plains were classified into the old and
young alluvial plains. The young alluvial plain lies between the Abu Mina Depression
and Rosette Branch of the Nile. The old alluvial plain is located to the south of the young
alluvial plain and occupies the northern and eastern areas of Wadi El Natrun. The slope
of the old alluvial plain is directed to the north and northeast, and it varies in elevation
between 15 m and 60 m (Figure 2). Wadi El Natrun is about 430 km2 and extends 50 km in
the NW-SE direction with an average width of about 4 km. The lowest elevation is in the
northern part, about −30 m below sea level and increases gradually southward to −10 m
below sea-level (Figure 2). El Marbat depression is about 1000 km2 and located to the
northeast of Wadi El Natrun between the old alluvial plains and Abu Mina depression.
The floor elevation ranges from 5 m in the northwestern part to 30 m above sea level in the
southwestern part (Figure 2).
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Figure 2. Geomorphological subdivision displayed on the shuttle radar topography mission (SRTM) digital elevation model.
Waterlogging patches are shown in black color.

Hydrogeology

Groundwater is the main source for irrigation in the western Nile Delta region
(Figure 1). Groundwater is extracted from four main aquifer systems that comprise the
Quaternary Delta aquifer, the Pliocene Wadi El Natrun aquifer, the Miocene El Moghra
aquifer, and the Oligocene aquifer (Figure 3) [43]. The Oligocene aquifer is confined be-
tween thin limestone bands at the bottom and a thick basaltic sheet (~30 m) at the top.
It consists of sand and gravel interbedded with clay. The Oligocene sediments fill the
main channel of Wadi El Natrun; the total thickness is 400 m [44]. The isotopic analysis
indicated that the Oligocene aquifer is paleowater [45]. The Moghra aquifer is located in
the southern part of the study area (Figure 3). It is composed of sand and gravel of Moghra
formation [46]. The aquifer thickness varies from a few tens of meters on the eastern side
to 150 m in the Wadi El Farigh area and 250 m in the Wadi El Natrun area. It gradually
increases in the northwest direction to attain a maximum thickness of about 1000 m in the
vicinity of the Qattara Depression and Sidi Barrani [46]. The water table in the Moghra
aquifer varies from 49 m in the area close to El Rayah El Naseri and increases westward to
138 m. Groundwater flow in the Moghra aquifer is westward to the Qattara Depression [46].
Wadi El Natrun aquifer is a local aquifer in the Pliocene beds that overlies the Moghra
aquifer. Its thickness is about 140 m and decreases westward and southward of Wadi El
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Natrun. The Pliocene aquifer is mainly fed by lateral seepage from the Delta and Moghra
aquifers [44]. The Quaternary aquifer occupies the northern and northeastern portions
of the study area (Figure 3). It consists of successive layers of sand and gravel with some
clay lenses of fluviatile origin. The thickness of the Quaternary aquifer is about 300 m
which decreases eastward to 80 m nearby the Cairo–Alexandria highway [43]. The water
table varies from a few meters close to the Nile Rosetta Branch to about 60 m nearby the
Cairo–Alexandria highway. The main rechargeable source is the Nile River and seepages
from adjacent canals, and infiltration from irrigation water return [43].

Figure 3. Groundwater aquifers in the western Nile Delta (after RIGWA, 1991).

3. Materials

Data files of Landsat 4–5 thematic mapper (TM) and Landsat-8 operational land
imager (OLI) from 1990 to 2020 were downloaded from the USGS Earth Explorer [47].
Decadal Landsat images were selected in the month of July because it is the driest season
in Egypt to avoid any precipitation events and to minimize the influence of seasonal
sun-angle and plant phenological differences that could negatively impact the change
detection analysis (Table 1). The shuttle radar topography mission (SRTM) 1-arc seconds
(30 m) digital elevation model (DEM) of the study was obtained from the USGS Earth
Explorer [47].
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Table 1. Landsat data acquisition, spatial and spectral characteristics.

Satellite Landsat 4–5 TM Landsat-8 OLI

Acquisition date 1990-07-26 2000-07-21 2010-07-17 2020-07-28

Acquisition time 07:50 08:07 08:20 08:29

Sun elevation 57.6 61.6 64.9 67.0

Sun azimuth 101.5 103.5 105.1 106.7

Spatial reference WGS 1984 UTM Zone 16 N WGS 1984 UTM Zone 16 N

Pixel size 30 m 30 m

Spectral bands
Wavelength is

in µm

Band 1—blue: 0.45–0.52 Band 2—blue: 0.45–0.51

Band 2—green: 0.52–0.60 Band 3—green: 0.53–0.59

Band 3—red: 0.63–0.69 Band 4—red: 0.64–0.67

Band 4—Near-infrared (NIR): 0.77–0.90 Band 5—near-infrared (NIR): 0.85–0.88

Band 5—short-wave infrared (SWIR)
1:1.55–1.75

Band 6—short-wave infrared (SWIR)
1:1.57–1.65

Band 7—short-wave infrared (SWIR)
2:2.09–2.35

Band 7—short-wave infrared (SWIR)
2:2.11–2.29

Water samples were collected from seventy-one groundwater wells and five samples
from the waterlogged induced water ponds in Wadi El Natrun (Figure 1). Water samples
from water ponds were collected directly from the surface. Groundwater samples were col-
lected from the farms running water wells during the irrigation process. Sample containers
1 L, double capped, polyethylene bottles were filled and clearly labeled with all details (i.e.,
Lat/Long; date, time) and tightly capped to avoid evaporation. Water samples were sent
to the lab to measure the pH, electrical conductivity, and major ions.

4. Methods
4.1. Landsat Image Processing

The multi-decadal time series Landsat images were radiometrically calibrated to
the top-of-atmosphere reflectance using the image’s gains, offsets, solar irradiance, sun
elevation, and acquisition time defined in the metadata using ENVI 5.6 software. The
normalized difference vegetation index (NDVI) was calculated to identify the spatial
distribution and multi-decadal changes in the cropland areas from 1990 to 2020. The NDVI
is one of the most widely used indices for vegetation delineation [48,49]. The NDVI was
calculated from the red and the near-infrared bands that correspond to bands 3 and 4 in
Landsat 4–5 and Landsat-7 and correspond to bands 4 and 5 in Landsat-8 (Equation (1)):

NDVI =
NIR − Red
NIR + Red

(1)

where NIR is the Landsat near-infrared band 4 and “Red” is band 3 in Landsat 4–5 and
Landsat-7, and bands 2 and 5 are the equivalent bands in Landsat-8.

NDVI values are represented as a ratio ranging from +1.0 to −1.0. There are no
constant NDVI threshold values because it varies from sensor-to-sensor, and within the
same sensor (e.g., Landsat), it varies based on atmospheric conditions, sun angle, and
phenological conditions. Herein, the NDVI threshold was set where areas of barren
soil usually show low NDVI values (<0.25); sparse vegetation may result in moderate
NDVI values (approximately 0.25 to 0.5) and high NDVI values (>0.5) correspond to
dense vegetation.

The normalized water index (NDWI) was developed for the Landsat images to identify
the waterlogging sites within croplands. The NDWI is a numerical indicator derived from
visible and near-infrared or shortwave-infrared spectral bands [50,51]. Herein, we used the
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newly developed NDWI calculated as the normalized difference between the blue band
and the SWIR band [40,52], Equation (2):

NDWI =
Blue − SWIR
Blue − SWIR

(2)

Where SWIR is the shorter wavelength region (1.55–1.75 µm), bands 1 and 5 are the
equivalent bands in Landsat 4–5 and Landsat-7, and bands 2 and 6 are the equivalent
bands in Landsat-8. NDWI values are represented as a ratio ranging from +1.0 to −1.0,
where the positive values correspond to water areas, and the negative values correspond
to non-water areas.

4.2. GIS Analysis

Geographic information system mapping (GIS) was used to organize, classify, extract,
and analyze the results of Landsat images and water quality data using ArcGIS 10.7
software. The identified threshold was set for NDVI and NDWI images and reclassified
using the ArcGIS reclassify spatial analyst method. Quantification of the multi-decadal
croplands and waterlogging changes from 1990 to 2020 was performed by the image
subtraction method [53–55]. An earlier date classified image was used as the initial state
and subtracted from the later date classified image. Image subtraction via a pixel-by-pixel
process facilitated the determination of the number of conversions from a land cover class
to other categories and their corresponding area over the period evaluated. A new thematic
layer containing different combinations of change classes was also produced.

To investigate the spatial distribution of salinity and sodium hazards in irrigation
water, we used the geostatistical wizard and methods in ArcGIS (i.e., kriging/cokriging,
empirical Bayesian kriging, and inverse distance weighting) to evaluate the dataset. The
inverse distance weighted (IDW) method was suitable for our dataset, producing relatively
smooth interpolation maps. Several studies have described the IDW method in ArcGIS
has an advanced deterministic interpolator for multivariate data [56,57]. The IDW inter-
polates the concentration between known sample point locations in the study area using
a weighted average of the neighboring data points within a defined radius [58]. ArcGIS
overly capabilities were used to determine the spatial relationship between water analytical
parameters and identified waterlogged areas.

4.3. Post-Classification Assessment

Accuracy assessment of Landsat NDVI and NDWI classified-based images was con-
ducted using the ground truth region of interest (ROI) in a confusion matrix. A confusion
matrix is a tool for comparing the classification results with truth data. In an ENVI confu-
sion matrix, columns represent ground truth classes, while rows represent the classifier’s
predictions. Ground truth was collected from the original Landsat images using regions of
interest (ROIs). The ENVI confusion matrix paired ROIs with the classes of a classification
image to show what percentage of the ROI pixels were or were not contained in a resulting
class. The overall accuracy was calculated by summing the number of correctly classified
values and dividing by the total number of values. The kappa coefficient measured the
agreement between classification and truth values. A kappa value of 1 represents a per-
fect agreement, while a value of 0 represents no agreement. The kappa coefficient was
computed as follows:

k =
N ∑n

i=1 mi,i − ∑n
i=1(GiGCi)

N2 ∑n
i=1(GiGCi)

)
(3)

where (i) is the class number; (n) is the total number of classified values compared to truth
values; (mi,i) is the number of values belonging to the truth class “i” that have also been
classified as class “i”; (Ci) is the total number of predicted values belonging to the class “i”;
(Gi) is the total number of truth values belonging to the class “i” [59]. A complete flowchart
routine of the proposed methodology is illustrated in Figure 4.



Remote Sens. 2021, 13, 1047 9 of 23

Figure 4. Schematic diagram of the research method.

4.4. Water Analytical Parameters

Water samples were analyzed for pH, electrical conductivity, and major ions Na+,
K, Mg2+, Ca2+, SO4

2−, Cl−, CO3, and HCO−
3. The United States Salinity Laboratory

diagrams were used to evaluate the water quality for irrigation uses. The Wilcox diagram
is a simple scatter plot of sodium adsorption ratio (SAR) on the Y-axis vs. salinity hazard
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(electrical conductivity) on the X-axis. The SAR evaluates the sodium hazard to calcium
and magnesium concentrations and can be calculated by the formula [60,61]:

SAR =
Na√

(Ca + Mg)/2
(4)

where “Na” is the sodium concentration, “Ca” is the calcium concentration, and “Mg” is
the magnesium concentration in milliequivalents per liter (meq/L).

The US Salinity Laboratory (USSL) was further used to plot the soluble sodium
percentage (Na%) on the Y-axis vs. salinity hazard (electrical conductivity) on the X-axis
to determine the suitability of water for agricultural uses. The soluble sodium percentage
(Na%) can be calculated by the formula:

Na% =
Na + K

Na + K + Ca + Mg
× 100 (5)

where “Na” is the sodium concentration, “K” is the potassium concentration, “Ca” is the
calcium concentration, and “Mg” is the magnesium concentration in milliequivalents per
liter (meq/L).

Figure 4 shows a flowchart of the methodological framework used in this study.

5. Results
5.1. Croplands Expansion

Croplands in the western Nile Delta are dominated by large continuous fields, re-
sulting in a land cover mosaic of large, uniform objects that are frequently discernible in
Landsat NDVI images (Figure 5). The NDVI values are ranging from +1.0 to −1.0, the
global threshold is 0, where areas of barren soil usually show low NDVI values, sparse
vegetation may result in moderate NDVI values, and high NDVI values correspond to
dense vegetation. The NDVI local threshold (0.25) was used to classify the NDVI images
into vegetation/non-vegetation, where vegetated areas have NDVI values (>0.25) and
non-vegetated areas have values (<0.25). The threshold is not constant; it may vary from
place-to-place, and from season-to-season. The NDVI images were classified into two
land cover classes where croplands were identified as green color pixels and waterlogged
areas as red color pixels (Figure 5). Spatial analysis of the NDVIs manifested expansion
of croplands westward from the Nile Delta margin. In the 1990s, croplands were mainly
occupying the northern part of the study area, which included the young alluvial plains,
Abu Mina depression, and El Marbat depression. In the 2000s and later, the croplands
expanded southwards to include the old alluvial plains and the Wadi El Natrun area
(Figure 5). In the past three decades (1990–2020), the expansion of croplands in the western
Nile Delta reached up to ~4124.2 km2 (Table 2). Statistical analysis of the calculated NDVIs
revealed that the area of croplands in the study area in 1990 was 888.35 km2, 1479.54 km2

in 2000, 4124.21 in 2010, and 3482.25 km2 in 2020, respectively. The highest expansion in
croplands was between 2000 and 2010, as the area of croplands added to the West Delta
region was about 2645 km2 (Figure 6).

Table 2. Decadal cropland and waterlogged land areas from 1985 to 2015.

Year NDVI (km2) Cropland Change (%) NDWI (km2) Waterlogging Change (%)

2020 3482.25 −17 36.36 13.5
2010 4124.21 83.6 31.67 9.1
2000 1479.54 3 19.14 −18.4
1990 888.35 52 15.01 2.1
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Figure 5. GIS combined Landsat-derived normalized difference vegetation index (NDVI) and normalized difference water
index (NDWI), quantifying the multi-decadal time-series change of croplands and waterlogged areas from 1990 to 2020.

Figure 6. Charts showing the growth of croplands and waterlogging from 1990 to 2020.
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5.2. Waterlogging

The calculated NDWI values range from +1.0 to −1.0. The positive values correspond
to water areas, and the negative values correspond to non-water areas. The NDWI threshold
0 was used to classify the NDWI images into two classes where the non-water areas have
values (<0), and water areas have NDWI values (>0). The red color was used to identify
waterlogging pixels (Figure 5). The classified NDWIs and NDVIs were converted from
raster to vector polygon shapes to merge the two classes together and to quantify the
total area for each class. The GIS spatial analysis was used to combine the NDWIs and
the NDVIs to draw out the waterlogging patches. The NDWI images disclosed that most
of the waterlogging patches in 1990 and 2000 were in Wadi El Natrun and around the
Nubariya canal. In 2010 and 2020, the waterlogging patches were declined around the
Nubariya canal, while they were expanded in El Marbat Depression and Wadi El Natrun
(Figure 5). The area of the waterlogging patches was about 15 km2 in 1990, 19.14 km2 in
2000, 31.67 km2 in 2010, and enlarged to 36.36 km2 in 2020 (Figure 6). Waterlogging led to
the loss of about 641 km2 of croplands between 2000 and 2020 (Figure 6).

5.3. Accuracy Assessment

The classified NDVI and NDWI images were evaluated using the ENVI confusion
matrix. Ground truth sites were collected from each image using the region of interest (ROI)
ENVI tool. The ground truth data were compared to the classified images in a confusion
matrix to calculate what percentage of the ROI pixels were or were not contained in a
resulting class and which pixels were incorrectly classified (Table 3). The matrix is square,
where columns represent true classes, while rows represent the classifier’s predictions.
Table 3 includes four confusion matrices for the classifications of Landsat 1990, 2000, 2010,
and 2020, respectively. In the matrix of the classification of Landsat 1990, reading down
the soil column, 133,894 soil pixels were correctly classified as soil, 17 soil pixels were
classified as water, and 452 soil pixels were classified as vegetation. Reading down the
water column, there are 0 water pixels classified as soil, 382 water pixels were classified as
water, and five water pixels were classified as vegetation. Reading down the vegetation
column, there are 79 vegetation pixels classified as soil, 378 vegetation pixels classified
as water, and 31,208 vegetation pixels classified as vegetation. The fraction of pixels that
belong to a class but were predicted to be in a different class represents omission errors.
The correct classifications occur along the diagonal cells of the matrix from the upper-left
to the lower-right. In the table, 133,894 soil pixels were correctly classified as soil, 382 water
pixels were classified as water, and 31,208 vegetation pixels were classified as vegetation.
The classification’s overall accuracy was calculated by dividing the sum of the correctly
classified pixels (133,894 + 382 + 31,208 = 165,484) by the total number of pixels (166,415).
We obtained 0.994, which is 99.4%. Another accuracy indicator is the kappa coefficient,
which takes values from 0 to 1. If the kappa coefficient equals 0, there is no agreement
between the classified image and the ground truth or ROIs. If the kappa coefficient equals
1, then the classified image and the ground truth image are totally identical. The kappa
Coefficient of the classification of Landsat TM 1990 is 0.99.

The overall accuracies of all classified maps were above a 99% confidence level, and
kappa statistics were well above 0.9. The classification accuracy reflected how well the
vegetation and water classes were identified from the NDVI and NDWI.

5.4. Water Salinity

The results of water hydrochemical analysis are given in Supplementary Table S1. The
measured total dissolved solids (TDS) content in the pond water was very high, ~18,000
mg/L, as well as the measured ions, were higher than the international standards for
irrigation water. The electrical conductivity (EC) of the water samples taken from the
ponds was very high >22,000 µS/cm (Supplementary Table S1). The spatial analysis of
groundwater salinity (EC) revealed that the study area could be classified into five classes:
normal (<1000 µS/cm) exhibited in green color, moderate (1100–2000 µS/cm) in yellow
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color, high (2100–3000 µS/cm) in light orange color, very high (3100–4000 µS/cm) in brown
color, and extreme (>4000 µS/cm) in light pink color (Figure 7). Classes 1 and 2 occupy
the eastern part of the study area eastward of the Cairo–Alexandria highway, whereas
classes 3, 4, and 5 occur westward of the Cairo–Alexandria highway. The wells in class 1
are located nearby the western edge of the Nile Delta with EC < 1000 µS/cm. The EC of the
groundwater gradually increases westward; it reached up to 2000 µS/cm around the Cairo–
Alexandria highway. These wells draw water mostly from the Quaternary unconfined
aquifer that is recharged from the Nile River and canals. The EC of the water wells west of
the Cairo–Alexandria highway increases westward; it reached up to 11,000 µS/cm in the
west end of the study area (Figure 7). These wells draw water from the Moghra, Wadi El
Natrun, and Oligocene confined aquifers.

Table 3. Summary of accuracy (%) and kappa statistics of Landsat NDVI and NDWI classification.

Landsat TM 1990

Overall Accuracy = 99.4%

Kappa Coefficient = 0.99

Ground Truth (Pixels)

Class Class 1: Soil Class 2: Water Class 3: Vegetation Total

Class 1: Soil 133,894 0 79 133,973

Class 2: Water 17 382 378 777

Class 3: Vegetation 452 5 31,208 31,665

Total 134,363 387 31,665 166,415

Landsat TM 2000

Overall Accuracy = 99.1%

Kappa Coefficient = 0.97

Ground Truth (Pixels)

Class Class 1: Soil Class 2: Water Class 3: Vegetation Total

Class 1: Soil 116,233 1 3 116,237

Class 2: Water 598 604 335 1537

Class 3: Vegetation 324 3 25,690 26,017

Total 117,155 608 26,028 143,791

Landsat TM 2010

Overall Accuracy = 98.5%

Kappa Coefficient = 0.96

Class Class 1: Soil Class 2: Water Class 3: Vegetation Total

Class 1: Soil 104,282 1 426 104,709

Class 2: Water 63 3511 920 4494

Class 3: Vegetation 974 61 56,939 57,974

Total 105,319 3573 58,285 167,177

Landsat OLI 2020

Overall Accuracy = 99.3%

Kappa Coefficient = 0.98

Class Class 1: Soil Class 2: Water Class 3: Vegetation Total

Class 1: Soil 88,514 0 313 88,827

Class 2: Water 0 6964 149 7113

Class 3: Vegetation 512 133 63,647 64,292

Total 89,026 7097 64,109 160,232
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Figure 7. Geographical information system mapping (GIS) inverse distance weighted (IDW) interpolation of the groundwa-
ter salinity based on the electrical conductivity (EC) µS/cm.

5.5. Water Quality for Irrigation

The Wilcox diagram [61] proposed irrigation specifications for evaluating the suitabil-
ity of water for irrigation purposes (Figure 8). Salinity and sodium concentration have
adverse effects on plant growth and crop yield. Groundwater samples were evaluated for
salinity and sodium hazards. The Wilcox diagram relates SAR (representing the sodium
hazard) to EC (representing the salinity hazard) to evaluate the groundwater quality for
irrigation (Figure 8). The EC of irrigation water is classified into low (C1—excellent),
medium (C2—good), high (C3—permissible), very high (C4—doubtful), and very-very
high (C5—unsuitable) conductivity zones. The sodium hazard (SAR) is classified as low
(S1, <10, excellent), medium (S2, 10–18, good), high (S3, 18–26, doubtful), and very high
(S4, >26, unsuitable).

The results of the Wilcox diagram indicated that there are 4 wells belong to C2-S1
(good-excellent), 27 wells belong to C3-S1 (permissible-excellent), 14 wells belong to C3-S2
(permissible-good), 5 wells belong to C3-S3 (permissible-doubtful), 6 wells belong to C4-S3
(doubtful-doubtful), 12 wells belong to C4-S4 (doubtful-unsuitable), 2 wells belong C5-S4
(unsuitable), and 1 well (# 65) not plotted because it has EC 11,000 µS/cm and “unsuitable”
(Figure 8).
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Figure 8. Wilcox (1955) classification of groundwater for irrigation. Blue dots are the groundwater samples.

ArcGIS IDW was used to create a surface map of SAR values (Figure 9). Wilcox
threshold was used to classify the SAR map into four classes: normal (1.5–10) green color,
moderate (11–18) yellow color, high (19–26) brown, and very-high (27–32) light pink color
(Figure 9). Spatial analysis of SAR surface map indicated that most of the water wells
eastern of the Cairo–Alexandria highway are in the normal class with SAR < 10. The water
wells westward of the Cairo–Alexandria highway are included in the medium, high and
very-high classes (Figure 9).
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Figure 9. GIS IDW interpolation of sodium hazard based on the Wilcox classification of the sodium adsorption ratio (SAR).

The US Salinity Laboratory (USSL) diagram [60] was also used to evaluate the sodium
hazard and water salinity for irrigation. Water is often classified as unsuitable for irrigation
when the EC reaches or exceeds 3000 µS/cm. Water with a soluble sodium percent (Na%)
exceeds 60% may result in sodium accumulations that will cause a breakdown in the soil’s
physical properties and result in the formation of a shallow hardpan that causes waterlog-
ging problems. The results revealed that 4 wells have EC less than 750 µS/cm belong to
“excellent to good”; 8 wells have EC between (750–2000 µS/cm) and Na% less than 60%
belong to the “good to permissible” class; 33 wells have EC between (750−2000 µS/cm),
and Na% exceeds 60% belong “permissible to doubtful”; 13 wells have (2000–3000 µS/cm),
and Na% exceeds 60% belong to “doubtful to unsuitable”; and 13 wells have EC exceeds
3000 µS/cm and Na% exceeds 60% belong to the “unsuitable” class (Figure 10).
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Figure 10. US Salinity Lab (USSL 1954) classification of groundwater for irrigation.

The Na% values ranged between 30% and 92%. The IDW interpolation surface map of
Na% in the study area was classified using the USSL thresholds: normal (<60) green color,
moderate (61–70) yellow color, high (71–80) brown color, and very high (>80) light pink
color. The spatial map exhibited that the Na% normal class occurs in the northeastern part
of the study area (Figure 11). The Na% moderate class occupies a narrow zone east of the
Cairo–Alexandria highway. The Na% high covers the central part west of Cairo–Alexandria
highway and a narrow strip along the highway. There is a spike of the Na% high class in
the central northern part around wells 44, 55, 56, and 58. Another spike of Na% high class
extends east of the Cairo–Alexandria highway around wells 14, 15, and 41. The Na% very
high class covers the northwestern and southwestern parts west of the Cairo–Alexandria
highway. There are 3 spikes around wells 16, 19, and 20 (Figure 11).
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Figure 11. GIS IDW interpolation of sodium hazard based on the USSL classification of the soluble sodium percent (Na%).

6. Discussion
6.1. Food Security and Water Scarcity

Owing to the combination of a rapidly expanding population and arid climate, Egypt
faces rising food insecurity and is struggling to meet its basic food and water needs. The
cultivated lands in Egypt are confined to the course of the River Nile within its valley
and delta. The growing population and increasing demand for food supplies have led to
the expanded cultivated lands in the Western desert. Most of the reclaimed lands in the
Western desert are irrigated with groundwater. In the past three decades (1990–2020), the
cropland expansion in the western Nile Delta reached up to ~4124.2 km2 (Figures 4 and 5).

The westward expansion in the reclaimed lands led to the use of poor-quality water
for irrigation purposes, while the continuous usage of low-quality water could cause
a decline in crop productivity. The current study shows that the groundwater salinity
of the western Nile Delta region was classified into 5 classes: normal, moderate, high,
very high, and extreme (Figure 6). The normal and moderate classes occur eastward of
the Cairo–Alexandria highway, whereas the high, very high, and extreme classes occur
westward of the highway. The wells within normal and moderate classes draw water
mostly from the unconfined Quaternary aquifer that is recharged from the Nile River
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and canals that keeps water salinity within normal ranges. The wells within high, very
high, and extreme classes draw water from the Moghra, Wadi El Natrun, and Oligocene
confined aquifers (Figure 3). The long-term extraction of groundwater from the confined
aquifers over the past three decades resulted in leaching of aquifer’s marine sediments and
dissolution of Na, Mg, Ca, and increased TDS in groundwater. Long-term irrigation with
high salinity water can potentially increase the soluble sodium percentage (SSP—Na%), the
sodium adsorption ratio (SAR) in the soil. High levels of Na% and SAR in irrigation water
lead to an increase in adsorbed exchangeable sodium, which may cause dispersion in soil
aggregates, blocking pores and reducing the water infiltration [60,61]. Good quality water
with EC < 1000 µS/cm, Na% < 60%, and SAR < 10 for irrigation is important to maintain
good soil structure and crop yield. Our results show that the water wells eastern of the
Cairo–Alexandria highway have SAR < 10, whereas water wells west of the highway have
higher SAR > 10 (Figures 7 and 8). The Na% spatial distribution shows that the normal
and moderate Na% classes are located eastward of the Cairo–Alexandria highway except
for two spikes that have high Na% (Figure 10). The high and very high Na% classes are
located westward of the highway. The long-term use of high salinity groundwater resulted
in higher values of SAR and Na% in the area west of the Cairo–Alexandria highway. The
spatial distribution of EC, SAR, and Na% showed that they are highly correlated, having
NW–SE direction and increase gradually from east to west (Figures 6, 8 and 10).

6.2. Low Water Quality and Waterlogging

Long-term irrigation with high salinity groundwater increases soil salinity and sodium
concentration and leads to soil permeability problems. Low soil permeability and poor
drainage result in low infiltration rates, waterlogging, and a decline in crop productivity.
The spatial distribution of waterlogging in 1990, 2000, and 2010 shows waterlogging
patches around the Nubaria canal. These patches occur in normal EC, SAR, and Na%
classes which indicate that they were formed by seepages from the Nubariya canal and the
absence or insufficient maintenance of the subsurface drainage system. The waterlogging
patches around the Nubariya canal were diminished since 2010 due to the installation of a
subsurface drainage line between the Mahmoudia canal and the Nubariya canal that drains
into the Mediterranean Sea. Waterlogging patches also exist in the El Marbat depression
that was developed in 2000 between the Naser canal and the Gharb Al Nubariya canal
(Figures 2 and 4). These patches occur in moderate salinity (1100–2000 µS/cm), normal
SAR (<10), and high Na% (71–80%) classes (Figures 6, 8 and 10). The low topography of the
El Marbat depression and the long-term irrigation with high salinity groundwater resulted
in low soil permeability and waterlogging (Figure 2). A strip of waterlogging patches
occurs in Wadi El Natrun’s depression (Figure 2). These patches have gradually enlarged
since 1990 to cover larger areas. The waterlogging patches in Wadi El Natrun occur in high
and very high EC classes (Figure 6). They also exist in moderate SAR, high and very high
Na% classes (Figures 8 and 10). The higher Na concentration in irrigation groundwater
and absence of a drainage system resulted in low soil permeability, low infiltration rates,
and waterlogging. The low topography of Wadi El Natrun (10 m below sea level) helped in
interconnecting the waterlogging patches to form water ponds (Figure 2).

6.3. Management Strategies to Reduce Waterlogging and Increase Crop Yield

Waterlogging and salinization have adverse effects on plant growth and crop yield.
The spatial distribution of waterlogging, EC, SAR, and Na% shows that the study area can
be divided into two regions, eastern and western of the Cairo–Alexandria highway. The
region east of the highway was classified as normal and moderate salinity and sodium
hazard; this type of water has low limitations and is suitable for most agriculture crops.
Moderately salt-tolerant plants can be grown in most cases without special management.
The waterlogging can be managed by periodic maintenance of the existing subsurface
drainage system.
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The region west of the Cairo–Alexandria highway was classified as high and very
high salinity and sodium hazard, which requires special management for crop production.
Sprinkler and drip irrigation is the dominant systems in the region. Management of low-
quality water for irrigation involves the application of excess water to maintain root-zone
salinity at a lower level that avoids yield reduction [62]. Drip irrigation is more effective
in using low-quality water for irrigation because the low salinity zone around and below
drippers promotes high yields [63,64]. It is reported that daily irrigation with brackish
and saline water lowered average salinity in the soil profile and minimized salinity in the
immediate area of the plant roots [62,65]. Reference [66] found that high-frequency drip
irrigation reduced salt load in drainage as salts are stored in the upper root zone but beyond
the plant’s zone of active uptake. Therefore, this study recommends high-frequency drip
irrigation for the area west of the Cairo–Alexandria highway.

The installation of a drainage system is necessary to control the waterlogging and
salinization problems as it maintains a net flux of salt away from the root zone and
lowers the water table to a safe depth to facilitate agricultural activities [5,67]. Our second
recommendation is installing drainage systems to drain into the water ponds in Wadi El
Natrun. Sustainable management can be utilized by building a solar-powered desalination
plant in Wadi El Natrun for desalinization and purification of the drainage water to avoid
environmental degradation. The purified water could be used for fish farming.

6.4. Advantages and Limitations of Applied Method

Remotely sensed spectral indices such as salinity index (SI), brightness index (BI), and
normalized difference salinity index (NDSI) [16,18] could work well with bare soil, but they
are not accurate for monitoring cropland soil salinity due to insufficient spectral separation
between saline soil and crops. Remotely sensed spectral vegetation indices such as nor-
malized difference vegetation index (NDVI) of crops had been used as indirect indicators
to map soil salinity through monitoring the vegetation condition [19–21]. However, there
is still a challenge concerning how to quantitatively correlate the vegetation indices with
the salinity of soil layers because these indices assume that soil salinity is the only stressor
of the crop condition, whereas other factors such as soil drainage and irrigation water
quality are neglected. Moreover, different crops have different levels of salinity tolerance,
so that the vegetation indices are not accurate for assessing and monitoring soil salinity
within croplands. Owing to the direct correlation between soil salinity and waterlogging,
our applied method for monitoring surface waterlogging within croplands is promising
proxies for indicating soil salinity.

The proposed method by [36] for detection and assessment of the waterlogging in the
dryland by visual interpretation of the Landsat images and the shuttle radar topography
mission (SRTM) digital elevation model (DEM) had some limitations. The limited spectral
resolution of Landsat is insufficient to allow spectral separation for visual discrimination
between waterlogging and saline soil which will lead to inaccurate quantification of the
waterlogged areas. Hence, to overcome this issue, we combined the derived vegetation in-
dices (NDVI) and water indices (NDWI), which resulted in unmixing the spectral signature
of crops and waterlogging and lead to minimizing the classification errors and accurate
quantification of waterlogged areas. The limitation of our method is that it works only
with surface waterlogging, but it has limitations on monitoring subsurface waterlogging.

7. Conclusions

Owing overpopulation and increasing demand for food supplies in Egypt have led
to the expanded cultivated lands in the Western desert. Due to water scarcity, most of the
reclaimed lands in the Western Desert are irrigated with high salinity groundwater. Geospa-
tial techniques provided time and cost-effective approaches for identifying and quantifying
the spatial relationship between water quality and waterlogging. The spatial distribution
and temporal variation have identified a significant spatial relationship between waterlog-
ging and EC, SAR, and Na% in irrigation water. Long-term use of low-quality water in
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irrigation and lack of a drainage system resulted in low soil permeability, low infiltration
rates, and waterlogging in El Marbat depression and Wadi El Natrun. Owing to the combi-
nation of low topography and low-quality irrigation water led to the growth and expansion
of water ponds in the Wadi El Natrun depression. The applied method for monitoring
surface waterlogging within croplands is promising proxies for indicating soil salinity. This
study recommends salt-tolerant plants and high-frequency drip irrigation in the region
west of the Cairo–Alexandria highway because the low salinity zone around and below
drippers promotes high yields. A shift in water management practices towards a greater
reliance on the less expensive desalinization of regional groundwater, and the cost-savings
that would be derived from this shift, will require installing drainage systems to drain into
the water ponds in Wadi El Natrun; and building a solar-powered desalination plant for
desalinization and purification of the drainage water could be used for fish farming or
agricultural activities.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/6/1047/s1, Table S1: Groundwater hydrochemical analysis.
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64. Phogat, A.; Mallants, D.; Cox, J.W.; Šimůnek, J.; Oliver, D.P.; Awad, J. Management of soil salinity associated with irrigation of

protected crops. Agric. Water Manag. 2020, 227, 105845. [CrossRef]
65. Dehghanisanij, H.; Agassi, M.; Anyoji, H.; Yamamoto, T.; Inoue, M.; Eneji, A. Improvement of saline water use under drip

irrigation system. Agric. Water Manag. 2006, 85, 233–242. [CrossRef]
66. Dudley, L.M.; Ben-Gal, A.; Lazarovitch, N. Drainage water reuse: Biological, physical, and technological considerations for

system management. J. Environ. Qual. 2008, 37, S25–S35. [CrossRef] [PubMed]
67. Cuevas, J.; Daliakopoulos, I.; del Moral, F.; Hueso, J.; Tsanis, I. A Review of Soil-Improving Cropping Systems for Soil Salinization.

Agronomy 2019, 9, 295. [CrossRef]

http://doi.org/10.1007/s11269-005-5603-z
www.earthexplorer.usgs.gov
http://doi.org/10.1071/RJ9870014
http://doi.org/10.1080/01431169608948714
http://doi.org/10.14358/PERS.75.11.1307
http://doi.org/10.1016/j.rse.2017.06.030
http://doi.org/10.1080/0143116031000101675
http://doi.org/10.1007/s00254-008-1578-4
www.ESRI.com
www.harrisgeospatial.com
http://doi.org/10.2136/sssaj2005.0365
http://doi.org/10.1016/j.agwat.2019.105845
http://doi.org/10.1016/j.agwat.2006.05.005
http://doi.org/10.2134/jeq2007.0314
http://www.ncbi.nlm.nih.gov/pubmed/18765771
http://doi.org/10.3390/agronomy9060295

	Introduction 
	Study Area 
	Materials 
	Methods 
	Landsat Image Processing 
	GIS Analysis 
	Post-Classification Assessment 
	Water Analytical Parameters 

	Results 
	Croplands Expansion 
	Waterlogging 
	Accuracy Assessment 
	Water Salinity 
	Water Quality for Irrigation 

	Discussion 
	Food Security and Water Scarcity 
	Low Water Quality and Waterlogging 
	Management Strategies to Reduce Waterlogging and Increase Crop Yield 
	Advantages and Limitations of Applied Method 

	Conclusions 
	References

