Hyperspectral Image Classification Based on Superpixel Pooling Convolutional Neural Network with Transfer Learning
Abstract
:1. Introduction
- An efficient spectral-spatial HSI classification scheme is proposed based on superpixel pooling CNN with transfer learning;
- The introduced superpixel pooling technique effectively alleviates the problem of insufficient training samples in HSI classification;
- The training efficiency of the proposed classification model is improved significantly by using transfer learning strategy.
2. Methodology
2.1. Convolution and Pooling
2.2. Deconvolution and Unpooling
2.3. Superpixel Pooling
2.4. Transfer Learning between HSIs
3. Experimental Results and Analysis
3.1. Datasets and Evaluation Indicators
3.2. Classification Results and Analysis
4. Parametric Analysis
4.1. Impact of Different Labeled Samples on Classification Results
4.2. Running Times
4.3. Influence of the Number of Superpixels
4.4. Impact of Network Architecture and Transfer Learning on Efficiency
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mukherjee, F.; Singh, D. Assessing Land Use–Land Cover Change and Its Impact on Land Surface Temperature Using LANDSAT Data: A Comparison of Two Urban Areas in India. Earth Syst. Environ. 2020, 4, 385–407. [Google Scholar] [CrossRef]
- Abdelmoneim, H.; Soliman, M.; Moghazy, H. Evaluation of TRMM 3B42V7 and CHIRPS Satellite Precipitation Products as an Input for Hydrological Model over Eastern Nile Basin. Earth Syst. Environ. 2020, 4, 685–698. [Google Scholar] [CrossRef]
- Irteza, S.; Nichol, J.; Shi, W.; Abbas, S. NDVI and Fluorescence Indicators of Seasonal and Structural Changes in a Tropical Forest Succession. Earth Syst. Environ. 2021, 5, 127–133. [Google Scholar] [CrossRef]
- Stuart, M.; Stanger, L.; Hobbs, M.; Pering, T.; Thio, D.; McGonigle, A.; Willmott, J. Low-Cost Hyperspectral Imaging System: Design and Testing for Laboratory-Based Environmental Applications. Sensors 2020, 20, 3293. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Song, A. Discrepancy Analysis for Detecting Candidate Parcels Requiring Update of Land Category in Cadastral Map Using Hyperspectral UAV Images: A Case Study in Jeonju, South Korea. Remote Sens. 2020, 12, 354. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Ling, Q.; Wu, J.; Wang, Z.; Lin, Z. A Constrained Sparse-Representation-Based Spatio-Temporal Anomaly Detector for Moving Targets in Hyperspectral Imagery Sequences. Remote Sens. 2020, 12, 2783. [Google Scholar] [CrossRef]
- Cerreta, M.; Mele, R.; Poli, G. Urban Ecosystem Services (UES) Assessment within a 3D Virtual Environment: A Methodological Approach for the Larger Urban Zones (LUZ) of Naples, Italy. Appl. Sci. 2020, 10, 6205. [Google Scholar] [CrossRef]
- Faqeerzada, M.; Perez, M.; Lohumi, S.; Lee, H.; Kim, G.; Wakholi, C.; Joshi, R.; Cho, B. Online Application of a Hyperspectral Imaging System for the Sorting of Adulterated Almonds. Appl. Sci. 2020, 10, 6569. [Google Scholar] [CrossRef]
- Lim, H.; Lee, O.; Shung, K.; Kim, J.; Kim, H. Classification of Breast Cancer Cells Using the Integration of High-Frequency Single-Beam Acoustic Tweezers and Convolutional Neural Networks. Cancers 2020, 12, 1212. [Google Scholar] [CrossRef]
- Gorban, A.; Mirkes, E.; Tukin, I. How deep should be the depth of convolutional neural networks: A backyard dog case study. Cogn. Comput. 2020, 12, 388. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Lei, T.; Yao, S.; Wang, H. PM2.5 Prediction Model Based on Combinational Hammerstein Recurrent Neural Networks. Mathematics 2020, 8, 2178. [Google Scholar] [CrossRef]
- Ince, I. Performance Boosting of Scale and Rotation Invariant Human Activity Recognition (HAR) with LSTM Networks Using Low Dimensional 3D Posture Data in Egocentric Coordinates. Appl. Sci. 2020, 10, 8474. [Google Scholar] [CrossRef]
- Wang, F.; Leng, L.; Teoh, A.; Chu, J. Palmprint False Acceptance Attack with a Generative Adversarial Network (GAN). Appl. Sci. 2020, 10, 8547. [Google Scholar] [CrossRef]
- Wang, G.; Ren, P. Hyperspectral Image Classification with Feature-Oriented Adversarial Active Learning. Remote Sens. 2020, 12, 3879. [Google Scholar] [CrossRef]
- Qiu, T.; Liu, M.; Zhou, G.; Wang, L.; Gao, K. An Unsupervised Classification Method for Flame Image of Pulverized Coal Combustion Based on Convolutional Auto-Encoder and Hidden Markov Model. Energies 2019, 12, 2585. [Google Scholar] [CrossRef] [Green Version]
- Chien, Y.; Hsu, K.; Tsao, H. Phonocardiography Signals Compression with Deep Convolutional Autoencoder for Telecare Applications. Appl. Sci. 2020, 10, 5842. [Google Scholar] [CrossRef]
- Li, Y.; Chen, R.; Zhang, Y.; Zhang, M.; Chen, L. Multi-Label Remote Sensing Image Scene Classification by Combining a Convolutional Neural Network and a Graph Neural Network. Remote Sens. 2020, 12, 4003. [Google Scholar] [CrossRef]
- Gao, Q.; Lim, S.; Jia, X. Hyperspectral Image Classification Using Convolutional Neural Networks and Multiple Feature Learning. Remote Sens. 2018, 10, 299. [Google Scholar] [CrossRef] [Green Version]
- Acquarelli, J.; Marchiori, E.; Buydens, L.M.; Tran, T.; Van, T. Spectral-Spatial Classification of Hyperspectral Images: Three Tricks and a New Learning Setting. Remote Sens. 2018, 10, 1156. [Google Scholar] [CrossRef] [Green Version]
- Cao, J.; Chen, Z.; Wang, B. Deep Convolutional networks with superpixel segmentation for hyperspectral image classification. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3310–3313. [Google Scholar]
- Li, Z.; Guo, F.; Li, Q.; Ren, G.; Wang, L. An Encoder–Decoder Convolution Network With Fine-Grained Spatial Information for Hyperspectral Images Classification. IEEE Access 2020, 8, 33600. [Google Scholar] [CrossRef]
- Wang, Z.; Xia, Q.; Yan, J.; Xuan, S.; Yang, C. Hyperspectral Image Classification Based on Spectral and Spatial Information Using Multi-Scale ResNet. Appl. Sci. 2019, 9, 4890. [Google Scholar] [CrossRef] [Green Version]
- Tao, C.; Pan, H.; Li, Y.; Zou, Z. Unsupervised Spectral-Spatial Feature Learning With Stacked Sparse Autoencoder for Hyperspectral Imagery Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2438. [Google Scholar]
- Wang, C.; Zhang, L.; Wei, W.; Zhang, Y. When Low Rank Representation Based Hyperspectral Imagery Classification Meets Segmented Stacked Denoising Auto-Encoder Based Spatial-Spectral Feature. Remote Sens. 2018, 10, 284. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Tuzel, O.; Ramalingam, S.; Chellappa, R. Entropy rate superpixel segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Colorado Springs, CO, USA, 20–25 June 2011; pp. 2097–2104. [Google Scholar]
- Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkhatib, M.Q.; Velez-Reyes, M. Improved Spatial-Spectral Superpixel Hyperspectral Unmixing. Remote Sens. 2019, 11, 2374. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jiang, X.; Wang, X.; Cai, Z. Spectral-Spatial Hyperspectral Image Classification with Superpixel Pattern and Extreme Learning Machine. Remote Sens. 2019, 11, 1983. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Condessa, F.; Bioucas-Dias, J.M.; Du, P.; Plaza, A. Convex Formulation for Multiband Image Classification With Superpixel-Based Spatial Regularization. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2704–2721. [Google Scholar] [CrossRef]
- Farooq, A.; Jia, X.; Hu, J.; Zhou, J. Multi-Resolution Weed Classification via Convolutional Neural Network and Superpixel Based Local Binary Pattern Using Remote Sensing Images. Remote Sens. 2019, 11, 1692. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Lei, C.; Jin, C.; An, N. A Novel Spectral–Spatial Classification Method for Hyperspectral Image at Superpixel Level. Appl. Sci. 2020, 10, 463. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Su, F.; Yan, F. Novel Semi-Supervised Hyperspectral Image Classification Based on a Superpixel Graph and Discrete Potential Method. Remote Sens. 2020, 12, 1528. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, J.; Chen, C.; Wang, Z.; Cai, Z.; Wang, L. SuperPCA: A Superpixelwise PCA Approach for Unsupervised Feature Extraction of Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 4581. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Zhang, H.; He, W.; Zhang, L. Superpixel-based spatial-spectral dimension reduction for hyperspectral imagery classification. Neurocomputing 2019, 360, 138. [Google Scholar] [CrossRef]
- Zhang, L.; Su, H.; Shen, J. Hyperspectral Dimensionality Reduction Based on Multiscale Superpixelwise Kernel Principal Component Analysis. Remote Sens. 2019, 11, 1219. [Google Scholar] [CrossRef] [Green Version]
- Blanco, S.; Heras, D.; Argüello, F. Texture Extraction Techniques for the Classification of Vegetation Species in Hyperspectral Imagery: Bag of Words Approach Based on Superpixels. Remote Sens. 2020, 12, 2633. [Google Scholar] [CrossRef]
- Liu, B.; Wei, Y.; Zhang, Y.; Yang, Q. Deep neural networks for high dimension, low sample size data. In Proceedings of the 21 International Joint Conference on Artificial Intelligence (IJCAI), Melbourne, Australia, 19–25 August 2017; pp. 2287–2293. [Google Scholar]
- Makantasis, K.; Karantzalos, K.; Doulamis, A.; Doulamis, N. Deep supervised learning for hyperspectral data classification through convolutional neural networks. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 4959–4962. [Google Scholar]
- Zhang, H.; Li, Y.; Zhang, Y.; Shen, Q. Spectral-spatial classification of hyperspectral imagery using a dualchannel convolutional neural network. Remote Sens. Lett. 2017, 8, 438–447. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Chen, C.; Zhang, M.; Li, H.; Du, Q. Data Augmentation for Hyperspectral Image Classification With Deep CNN. IEEE Geosci. Remote Sens. Lett. 2018, 16, 593–597. [Google Scholar] [CrossRef]
- Cui, B.; Xie, X.; Hao, S.; Cui, J.; Lu, Y. Semi-Supervised Classification of Hyperspectral Images Based on Extended Label Propagation and Rolling Guidance Filtering. Remote Sens. 2018, 10, 515. [Google Scholar] [CrossRef] [Green Version]
- Amirabbas, D.; Erchan, A.; Berrin, Y.; Andreas, M.; Christian, R. GMM-Based Synthetic Samples for Classification of Hyperspectral Images With Limited Training Data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 942–946. [Google Scholar]
- Rao, M.; Tang, P.; Zhang, Z. Spatial–Spectral Relation Network for Hyperspectral Image Classification with Limited Training Samples. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 99, 1–15. [Google Scholar] [CrossRef]
- Xie, F.; Hu, D.; Li, F.; Yang, J.; Liu, D. Semi-Supervised Classification for Hyperspectral Images Based on Multiple Classifiers and Relaxation Strategy. ISPRS Int. J. Geo-Inf. 2018, 7, 284. [Google Scholar] [CrossRef] [Green Version]
- Acción, Á.; Argüello, F.; Heras, D. Dual-Window Superpixel Data Augmentation for Hyperspectral Image Classification. Appl. Sci. 2020, 10, 8833. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Chan, J. Learning and transferring deep joint spectral–spatial features for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4729–4742. [Google Scholar] [CrossRef]
- Liu, X.; Sun, Q.; Meng, Y.; Fu, M.; Bourennane, S. Hyperspectral image classification based on parameter-optimized 3D-CNNs combined with transfer learning and virtual samples. Remote Sens. 2018, 10, 1425. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Li, Y.; Zhang, H. Hyperspectral image classification based on 3-D separable ResNet and transfer learning. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1949–1953. [Google Scholar] [CrossRef]
- He, X.; Chen, Y.; Ghamisi, P. Heterogeneous transfer learning for hyperspectral image classification based on convolutional neural network. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3246–3263. [Google Scholar] [CrossRef]
- Zhao, X.; Liang, Y.; Guo, A.J.; Zhu, F. Classification of small-scale hyperspectral images with multi-source deep transfer learning. Remote Sens. Lett. 2020, 11, 303–312. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Jiang, Y.; Wang, P.; Shen, Q.; Shen, C. Hyperspectral classification based on lightweight 3-D-CNN with transfer learning. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5813–5828. [Google Scholar] [CrossRef] [Green Version]
- Jiang, N.; Wang, L. Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 2015, 14, 1559–1571. [Google Scholar] [CrossRef]
- Jawak, S.; Luis, A. A Comprehensive Evaluation of PAN-Sharpening Algorithms Coupled with Resampling Methods for Image Synthesis of Very High Resolution Remotely Sensed Satellite Data. Adv. Remote Sens. 2013, 2, 40777. [Google Scholar] [CrossRef] [Green Version]
- Keys, R. Cubic convolution interpolation for digital image processing. IEEE Trans. Acoustics. Speech. Signal. Process. 2003, 29, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J. Sens. 2015, 2015, 258619. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Prasad, S. Convolutional Recurrent Neural Networks for Hyperspectral Data Classification. Remote Sens. 2017, 9, 298. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features. IEEE Trans. Geosci. Remote Sens. 2016, 55, 844–853. [Google Scholar] [CrossRef]
- Mei, S.; Ji, J.; Hou, J.; Xu, L.; Qian, D. Learning Sensor-Specific Spatial-Spectral Features of Hyperspectral Images via Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4520–4533. [Google Scholar] [CrossRef]
Layer | Kernelsize | Number of Kernels | Padding | Stride | Output Size |
---|---|---|---|---|---|
Conv_1 | 5 × 5 × 200 | 20 | 0 | 1 | 141 × 141 × 20 |
Conv_2 | 3 × 3 × 20 | 30 | 0 | 2 | 70 × 70 × 30 |
Max Pooling_1 | 2 × 2 | - | - | 2 | 35 × 35 × 30 |
Conv_3 | 5 × 5 × 30 | 40 | 1 | 1 | 33 × 33 × 40 |
Conv_4 | 3 × 3 × 40 | 60 | 0 | 2 | 16 × 16 × 60 |
Max Pooling_2 | 2 × 2 | - | - | 2 | 8 × 8 × 60 |
Conv_5 | 5 × 5 × 60 | 60 | 0 | 1 | 4 × 4 × 60 |
Conv_6 | 3 × 3 × 60 | 60 | 0 | 1 | 2 × 2 × 60 |
Max Pooling_3 | 2 × 2 | - | - | 2 | 1 × 1 × 60 |
ReLU | 1 × 1 × 60 | ||||
Softmax | 60 |
Class | Train/Test | ANN | CNN | CRNN | CNN-PPF | SS-CNN | SP-CNN |
---|---|---|---|---|---|---|---|
Alfalfa | 3/43 | 34.65 ± 3.32 | 97.22 ± 0.42 | 100.00 | 100.00 | 100.00 | 100.00 |
Corn-notill | 30/1398 | 65.58 ± 5.72 | 62.02 ± 2.84 | 70.03 ± 2.86 | 67.99 ± 4.72 | 71.29 ± 1.64 | 89.62 ± 0.92 |
Corn-mintill | 30/800 | 43.59 ± 3.73 | 87.79 ± 0.79 | 85.37 ± 2.04 | 66.46 ± 1.48 | 66.46 ± 1.48 | 98.12 ± 0.02 |
Corn | 30/207 | 34.30 ± 2.35 | 51.98 ± 5.88 | 76.21 ± 3.92 | 79.66 ± 1.44 | 75.33 ± 1.52 | 100.00 |
Grass-pasture | 30/453 | 81.04 ± 4.28 | 78.53 ± 0.64 | 83.07 ± 0.80 | 90.53 ± 2.24 | 93.23 ± 0.21 | 99.77 ± 0.12 |
Grass-trees | 30/700 | 93.28 ± 2.45 | 97.22 ± 0.29 | 97.22 ± 0.20 | 95.78 ± 0.64 | 96.67 ± 0.26 | 100.00 |
Grass-pasturemowed | 2/26 | 65.22 ± 1.49 | 100.00 | 100.00 | 98.55 ± 0.08 | 94.45 ± 0.16 | 100.00 |
Hay-windrowed | 30/488 | 95.83 ± 0.3 | 98.16 ± 0.16 | 99.78 ± 0.08 | 99.45 ± 0.06 | 100.00 | 99.55 ± 0.04 |
Oats | 1/19 | 36.63 ± 5.05 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Soybean-notill | 30/942 | 61.92 ± 3.13 | 78.84 ± 1.26 | 52.27 ± 1.62 | 75.49 ± 6.21 | 78.69 ± 2.82 | 88.85 ± 1.37 |
Soybean-mintill | 30/2425 | 78.95 ± 3.32 | 61.92 ± 5.88 | 61.90 ± 4.82 | 83.64 ± 1.24 | 87.64 ± 1.64 | 89.36 ± 1.82 |
Soybean-clean | 30/563 | 55.37 ± 7.37 | 80.31 ± 0.84 | 82.21 ± 1.04 | 76.99 ± 1.44 | 63.97 ± 3.05 | 95.38 ± 0.84 |
Wheat | 30/175 | 93.03 ± 0.95 | 95.97 ± 0.86 | 98.97 ± 0.16 | 100.00 | 100.00 | 99.42 ± 0.26 |
Woods | 30/1235 | 95.34 ± 2.5 | 96.59 ± 0.24 | 99.58 ± 0.01 | 99.64 ± 0.11 | 99.68 ± 0.02 | 99.43 ± 0.06 |
Building-grass-trees | 30/356 | 42.78 ± 12.13 | 63.05 ± 4.82 | 76.32 ± 2.54 | 98.30 ± 0.72 | 97.34 ± 0.29 | 99.43 ± 0.11 |
Stone-steel-towers | 6/87 | 86.29 ± 1.39 | 98.67 ± 0.04 | 97.61 ± 0.75 | 99.09 ± 0.06 | 98.79 ± 0.06 | 100.00 |
OA | 66.04 ± 5.83 | 73.89 ± 1.73 | 75.92 ± 1.88 | 82.38 ± 1.26 | 83.67 ± 0.84 | 94.45 ± 0.24 | |
AA | 60.77 ± 2.74 | 81.68 ± 1.90 | 82.75 ± 2.85 | 89.07 ± 2.07 | 88.97 ± 1.67 | 96.43 ± 0.14 | |
Kappa | 62.75 ± 1.12 | 71.28 ± 0.93 | 72.23 ± 0.82 | 81.23 ± 0.28 | 82.7 ± 1.29 | 93.44 ± 0.20 |
Class | Train/Test | ANN | CNN | CRNN | CNN-PPF | SS-CNN | SP-CNN |
---|---|---|---|---|---|---|---|
Asphalt | 30/6601 | 62.85 ± 12.37 | 87.26 ± 1.38 | 68.48 ± 2.32 | 86.76 ± 1.54 | 86.36 ± 2.25 | 91.13 ± 1.03 |
Meadows | 30/18619 | 58.68 ± 2.23 | 83.53 ± 1.26 | 85.96 ± 1.63 | 81.36 ± 1.36 | 85.50 ± 1.02 | 98.72 ± 0.21 |
Gravel | 30/2069 | 46.56 ± 9.28 | 98.20 ± 0.99 | 99.32 ± 0.08 | 99.15 ± 0.23 | 99.95 ± 0.02 | 99.67 ± 0.04 |
Trees | 30/3034 | 53.45 ± 8.40 | 56.24 ± 1.93 | 71.63 ± 5.06 | 77.62 ± 1.17 | 79.13 ± 2.07 | 78.34 ± 3.06 |
Metal sheets | 30/1315 | 88.82 ± 3.51 | 88.68 ± 0.72 | 94.13 ± 1.56 | 85.25 ± 1.56 | 85.13 ± 1.07 | 99.34 ± 0.06 |
Bare soil | 30/4999 | 59.57 ± 6.12 | 95.24 ± 0.66 | 98.84 ± 0.05 | 97.02 ± 0.37 | 96.32 ± 0.17 | 97.10 ± 0.42 |
Bitumen | 30/1300 | 88.81 ± 4.27 | 99.50 ± 0.02 | 100.0 | 100.0 | 100.0 | 100.0 |
Bricks | 30/3652 | 76.16 ± 2.26 | 92.90 ± 0.87 | 93.68 ± 0.65 | 93.27 ± 0.52 | 94.49 ± 0.22 | 99.45 ± 0.03 |
Shadows | 30/917 | 81.34 ± 4.02 | 79.05 ± 4.24 | 86.05 ± 1.04 | 87.31 ± 2.52 | 87.59 ± 1.42 | 88.45 ± 2.03 |
OA | 65.78 ± 2.94 | 80.63 ± 0.75 | 82.84 ± 0.64 | 86.53 ± 0.28 | 88.02 ± 0.12 | 93.18 ± 0.12 | |
AA | 75.59 ± 3.57 | 86.96 ± 0.31 | 88.39 ± 0.25 | 89.01 ± 0.30 | 90.15 ± 0.18 | 93.78 ± 0.25 | |
Kappa | 57.65 ± 2.04 | 77.61 ± 0.20 | 80.84 ± 0.12 | 84.34 ± 0.26 | 85.24 ± 0.04 | 92.36 ± 0.13 |
Class | Train/Test | ANN | CNN | CRNN | CNN-PPF | SS-CNN | SP-CNN |
---|---|---|---|---|---|---|---|
Weeds_1 | 30/1979 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Weeds_2 | 30/3696 | 92.42 ± 0.13 | 99.27 ± 0.02 | 99.66 ± 0.04 | 99.90 ± 0.02 | 99.89 ± 0.01 | 99.89 ± 0.02 |
Fallow | 30/1946 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Fallow_P | 30/1364 | 99.54 ± 0.03 | 99.29 ± 0.04 | 99.54 ± 0.07 | 99.62 ± 0.01 | 99.26 ± 0.02 | 99.89 ± 0.01 |
Fallow_S | 30/2648 | 95.28 ± 0.53 | 98.35 ± 0.06 | 97.94 ± 1.34 | 99.38 ± 0.04 | 99.43 ± 0.08 | 98.45 ± 0.02 |
Stubble | 30/3929 | 99.03 ± 0.38 | 99.42 ± 0.02 | 99.98 ± 0.01 | 99.97 ± 0.01 | 100.0 | 99.56 ± 0.02 |
Celery | 30/3549 | 99.20 ± 0.12 | 99.84 ± 0.01 | 99.96 ± 0.01 | 99.92 ± 0.03 | 99.32 ± 0.04 | 99.26 ± 0.02 |
Grapes_U | 30/11241 | 61.69 ± 2.53 | 79.30 ± 10.59 | 86.52 ± 3.11 | 86.73 ± 1.92 | 90.92 ± 1.43 | 95.63 ± 0.14 |
Soil | 30/6173 | 97.32 ± 0.72 | 94.59 ± 1.84 | 98.40 ± 0.02 | 97.57 ± 0.05 | 99.96 ± 0.01 | 99.53 ± 0.02 |
Corn | 30/3248 | 72.06 ± 7.72 | 73.92 ± 0.73 | 95.52 ± 0.40 | 96.12 ± 0.13 | 96.02 ± 0.20 | 99.64 ± 0.04 |
Lettuce_4wk | 30/1038 | 91.23 ± 2.24 | 99.20 ± 0.01 | 99.20 ± 0.01 | 99.20 ± 0.21 | 99.10 ± 0.17 | 99.22 ± 0.06 |
Lettuce_5wk | 30/1897 | 97.46 ± 0.03 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Lettuce_6wk | 30/886 | 95.24 ± 0.05 | 96.24 ± 0.04 | 96.44 ± 0.03 | 99.04 ± 0.07 | 99.28 ± 0.04 | 100.0 |
Lettuce_7wk | 30/1040 | 91.75 ± 0.57 | 98.02 ± 0.92 | 96.38 ± 0.68 | 99.23 ± 0.63 | 100.0 | 100.0 |
Vineyard_U | 30/7238 | 48.58 ± 5.27 | 40.81 ± 0.55 | 56.37 ± 7.88 | 71.54 ± 2.93 | 84.52 ± 1.06 | 87.36 ± 2.10 |
Vineyard_T | 30/1777 | 91.37 ± 2.81 | 98.15 ± 0.29 | 99.03 ± 0.04 | 99.31 ± 0.12 | 99.66 ± 0.04 | 99.49 ± 0.02 |
OA | 82.18 ± 1.92 | 88.22 ± 1.36 | 88.63 ± 0.20 | 90.24 ± 1.02 | 91.44 ± 0.19 | 95.99 ± 0.07 | |
AA | 89.14 ± 2.28 | 90.50 ± 0.31 | 91.22 ± 0.48 | 91.36 ± 0.25 | 92.66 ± 0.05 | 95.97 ± 0.06 | |
Kappa | 80.22 ± 1.62 | 87.88 ± 0.62 | 87.98 ± 0.05 | 89.57 ± 0.08 | 90.97 ± 0.13 | 95.46 ± 0.05 |
Indian Pines | Pavia University | Salinas | ||
---|---|---|---|---|
ANN | Training | 3200 | 3560 | 4800 |
Testing | 3.2 | 4.25 | 3.26 | |
CNN | Training | 1800 | 2160 | 3600 |
Testing | 0.21 | 0.37 | 0.26 | |
CRNN | Training | 2900 | 2480 | 4800 |
Testing | 1.2 | 1.7 | 1.3 | |
CNN-PPF | Training | 21,600 | 3600 | 43,200 |
Testing | 5 | 17 | 21 | |
SS-CNN | Training | 1620 | 630 | 1680 |
Testing | 0.74 | 1 | 0.78 | |
SP-CNN | Training | 366 | 320 | 510 |
Testing | 0.34 | 0.65 | 0.5 |
SP-CNN-4 | SP-CNN-6 | SP-CNN-8 | |
---|---|---|---|
Parameters | ≈600,000 | ≈900,000 | ≈1,600,000 |
Indian Pines | 92.34% | 93.46% | 93.57% |
290 s | 366 s | 880 s | |
Pavia University | 92.61% | 93.18% | 93.40% |
280 s | 320s | 765 s | |
Salinas | 95.51% | 95.99% | 96.12% |
420 s | 510 s | 930 s |
Without Pre-Training | Indian Pines_PT | Pavia University_PT | Salinas_PT | |
---|---|---|---|---|
Indian Pines (>93.5%) | 366 s | / | 560 s | 768 s |
Pavia University (>93.2%) | 760 s | 626 s | / | 320 s |
Salinas (>95.9%) | 2060 s | 1096 s | 510 s | / |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, F.; Gao, Q.; Jin, C.; Zhao, F. Hyperspectral Image Classification Based on Superpixel Pooling Convolutional Neural Network with Transfer Learning. Remote Sens. 2021, 13, 930. https://doi.org/10.3390/rs13050930
Xie F, Gao Q, Jin C, Zhao F. Hyperspectral Image Classification Based on Superpixel Pooling Convolutional Neural Network with Transfer Learning. Remote Sensing. 2021; 13(5):930. https://doi.org/10.3390/rs13050930
Chicago/Turabian StyleXie, Fuding, Quanshan Gao, Cui Jin, and Fengxia Zhao. 2021. "Hyperspectral Image Classification Based on Superpixel Pooling Convolutional Neural Network with Transfer Learning" Remote Sensing 13, no. 5: 930. https://doi.org/10.3390/rs13050930
APA StyleXie, F., Gao, Q., Jin, C., & Zhao, F. (2021). Hyperspectral Image Classification Based on Superpixel Pooling Convolutional Neural Network with Transfer Learning. Remote Sensing, 13(5), 930. https://doi.org/10.3390/rs13050930