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Abstract: Convolutional neural networks (CNNs) have been extended to hyperspectral imagery
(HSI) classification due to its better feature representation and high performance, whereas multiple
feature learning has shown its effectiveness in computer vision areas. This paper proposes a novel
framework that takes advantage of both CNNs and multiple feature learning to better predict the
class labels for HSI pixels. We built a novel CNN architecture with various features extracted from the
raw imagery as input. The network generates the corresponding relevant feature maps for the input,
and the generated feature maps are fed into a concatenating layer to form a joint feature map. The
obtained joint feature map is then input to the subsequent layers to predict the final labels for each
hyperspectral pixel. The proposed method not only takes advantage of enhanced feature extraction
from CNNs, but also fully exploits the spectral and spatial information jointly. The effectiveness of the
proposed method is tested with three benchmark data sets, and the results show that the CNN-based
multi-feature learning framework improves the classification accuracy significantly.

Keywords: convolutional neural networks (CNNs); hyperspectral imagery (HSI); classification;
multiple feature learning

1. Introduction

Hyperspectral imagery (HSI) has been widely used in the remote sensing community in order
to take advantage of the composition of hundreds of spectral channels over a single scene. However,
HSI demands robust and accurate classification techniques to extract the features from the image. The
classification of HSI has been considered as a particularly challenging problem due to the complicated
nature of the image scene (i.e., a large amount of data, mixed pixels and limited training samples), and
therefore many attempts have been made to address this issue in the last few decades. In the early
stage of HSI classification, spectral domain classifiers, such as support vector machines (SVMs) [1,2],
random forest (RF) [3], and multinomial logistic regression (MLR) [4], have made great improvements
in understanding the image scenes.

Recent technological development provides more promising approaches to deal with HSI
classification. For example, morphological profiles (MPs) [5,6], Markov random fields (MRFs) [7,8], and
sparsity signal-based methods (e.g., joint sparse models) [9] were introduced for a better understanding
of the image scenes by using the spatial and contextual properties. These methods aim to classify HSI
by taking advantage of both spectral and spatial information. For instance, a joint sparse model [9]
combines the information from a few neighboring pixels of the test pixel, which is proven to be an
effective way to improve the classification performance.
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Very recently, deep learning is of interest to researchers in the field of computer vision. In
particular, convolutional neural networks (CNNs) have attracted a lot of attention due to their superior
performance in many domains, such as face recognition [10,11], object detection [12] and video
classification [13]. In terms of feature extraction, CNNs can learn feature representations through
several convolutional blocks. In contrast to the traditional rules-based feature extraction methods,
CNNs can learn features automatically from the original images. Moreover, CNNs can be designed
as an end-to-end framework that can produce classification maps directly. Therefore many CNN
models have been applied to HSI classification. For example, Chen, et al. [14] employed several
convolutional layers to extract the nonlinear and invariant deep features from raw HSI, and the
authors also investigated a few strategies to avoid overfitting in the model. In [15], a deep CNN
was combined with a dimension reduction method to extract the spectral-spatial features for HSI
classification, and the obtained discriminative features led to a high performance on benchmark
datasets. In [16], a CNN structure was exploited to hierarchically construct high-level deep features
automatically in order to conduct the HSI classification task. Similar work was also done by [17],
in which a specific deep CNN framework was presented to learn both spectral and spatial features.
In [18], various attribute profiles were extracted and stacked up on the raw HSI data as the input to a
CNN model, which captured the geometric and spectral properties for HSI classification efficiently.
The aforementioned state-of-the-art CNN models for HSI classification have focused on the automatic
extraction of spectral and spatial features. Zhao, et al. [19] investigated an approach to combine
the deep learning features extracted at multiple spatial scales, which improved the performance for
HSI classification to some extent. In [20], a partial view selection strategy was utilized to compose a
multiview input for a specific CNN architecture for land-use classification. There are some noteworthy
examples where CNNs have been applied to, such as oil tank detection [21], scene classification [22],
and road network extraction [23].

As seen in the aforementioned examples, most CNN methods consider the HSI classification as a
task of extracting robust high-level deep features. On the other hand, multiple feature learning aims
to learn several types of features simultaneously in order to extract more representative features for
image processing purposes. Multiple feature learning has been successfully applied to many computer
vision-based fields, such as face detection [24], pedestrian detection [25] and multimedia search [26].
However, there is a lack of comprehensive studies on multiple feature learning for HSI classification.

In order to extract robust and effective features from HSI classification, it is reasonable to explore
CNN models which can simultaneously extract the spatial and spectral information from multiple HSI
features. In this paper, an enhanced framework that combines a CNN and a multiple feature learning
method is proposed. Considering that spatial information extracted by the proposed CNN is more
about the neighboring information, other forms of geometrical information should be also investigated
to boost the performance of HSI classification. Therefore, firstly, initial geometrical feature maps are
extracted by four widely used attribute filters. The initial feature maps can reveal various spatial
characteristics and local spatial correlations in the original image. Subsequently, the initial feature
maps along with the original image are fed into a CNN which has different inputs corresponding to
the different initial features. The representative features are extracted by several groups of subsequent
layers and are used as the input to a concatenating layer to form a joint feature map which represents
both spectral and contextual properties of HSI. The final labels of HSI pixels are determined by the
subsequent layers with the joint feature map as input. The proposed framework does not need any
post-processing step. The designed CNN consists of four key components: proper convolutional
layers, a pooling layer, a concatenating layer and a rectified linear unit (ReLU) function. Since HSI has
a problem with a limited number of training samples, a deeper and wider network without enough
training samples may result in overfitting; hence the proposed network is a relatively shallow network
but is an effective one. The pooling layer can provide spatial invariance, the concatenating layer
is designed to exploit the rich information, and the ReLU function will accelerate the convergence.
The main contributions of this paper include: (1) the construction of a novel CNN architecture
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which benefits from the multiple inputs corresponding to various image features; (2) the concurrent
exploitation of both spectral and spatial contextual information; and (3) the proposed network that is
robust and efficient even if a small number of training samples are available.

The remainder of this paper is organized as follows: Section 2 introduces the overall mechanism
of the designed CNN. The proposed framework is also presented in detail in this section. The
experimental results and discussions are provided in Section 3. Several impacts influential to the
experimental results are also investigated in Section 3. Finally, the conclusions are drawn in Section 4
with some remarks.

2. The Context of the Proposed Framework

Figure 1 illustrates the structure of the proposed framework. The first step of this framework is
the extraction of multiple HSI features followed by several CNN blocks. Given T sets of features, each
individual CNN block will learn the corresponding representative feature map, and all the feature
maps will be jointed by a concatenating layer. The weight and bias for each block are fine-tuned in
this network through back propagation. The output of the network for each pixel is a vector of class
membership probability with C units, corresponding to C classes defined in the hyperspectral data set.
The main principles of the proposed framework are explained in detail in the following sections.
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2.1. Extraction of Attribute Profiles

The characterization of spatial contextual information computed by morphological profiles (MPs)
can represent the variability of the structures for images [27]. However, features extracted by a
specific MP cannot be modelled as other geometrical features. In order to model various geometrical
characteristics simultaneously for the feature extraction in HSI classification, the application of attribute
profiles (APs) is firstly introduced in the work of [28]. APs showed interesting properties in HSI
processing, which can be used to generate an extended AP (EAP).

APs are a generalized form of MPs, which can be obtained from an image by applying a criterion
T. The construction of APs relies on the morphological attribute filters (AFs), and it can be obtained by
applying a sequence of AFs to a scalar image [28]. AFs are defined as the connected operators which
process the image by merging its connected components instead of pixels. After the operators are
applied to the regions, the attribute results are compared to a pre-defined reference value. The region
is determined to be preserved or removed from the image depending on whether the criterion is met
or not (i.e., the attribute results are preserved if the value is larger than the pre-defined reference value).
The values in the removed region will be set as the closest grayscale value of the adjacent region. If the
merged region is a lower (greater) gray level, then the thinning (thickening) is applied.
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Subsequently, an AP can be directly constructed by using a sequence of thinning and thickening
AFs which are applied to the image with a set of given criteria. By using n morphological thickening
(ϕT) and n thinning (φT) operators, an AP from the image f can be constructed as:

AP( f ) =
{

ϕT
n ( f ), ϕT

n−1( f ), ..., ϕT
1 ( f ), f , φT

1 ( f ), ..., φT
n−1( f ), φT

n ( f )
}

(1)

Generally, there are some common criteria associated with the operators, such as area, volume,
diagonal box, and standard deviation. According to the operators (thickening or thinning) used in
the image processing, the image can be transformed to an extensive or anti-extensive one. In this
paper, since our goal is to measure the effectiveness of multiple feature learning by the proposed CNN,
but not to achieve absolute performance maximization, only APs based on four different criterions
(i.e., area, standard deviation, the moment of inertia, and length of the diagonal) are extracted as the
different feature maps for classification tasks. In addition, in this paper, the different AP features are
named by the corresponding criterions. One can find the details of various APs from [27].

2.2. Convolutional Neural Networks

CNNs aim to extract the representative features for different forms of data via multiple non-linear
transformation architectures [29]. The features learned by a CNN are usually more reliable and
effective than rules-based features. In this paper, we consider HSI classification with the so-called
directed acyclic graphs (DAG) where the layers are not limited to chaining one after another. For HSI
classification, a neural network can realize the function of mapping the input HSI pixels to the output
pixel labels. The function is composed of a sequence of simple blocks that are called layers. The basic
layers in a CNN are as follows:

Mathematically, an individual neuron is computed by taking a vector of inputs x and applying an
operator to it with a weight filter f and bias b:

a = σ( f x + b) (2)

where σ(·) is a nonlinear function named as an activation function. For a convolutional layer, every
neuron is related to a spatial location (i, j) with respect to the input image. The output ai,j associated
with the input can be defined as follows:

ai,j = σ((F⊗ X)i,j + b) (3)

where F is the kernel function with the learned weights, X is the input or the layer, and ⊗ denotes the
convolution operator. Usually at least one layer of the activation function is implemented in a network.
The most frequently used activation functions are the sigmoid function and the ReLU function. The
ReLU function has been considered to be more efficient than the sigmoid function in the convergence
of the training procedure [29]. The ReLU function is defined as follows:

σ(x) = max(0, x) (4)

Another important type of layers is pooling which is implemented as a down-sampling function.
The most common types of pooling are the max-pooling and mean-pooling. The pooling function
partitions the input feature map into a set of rectangles and outputs the max/mean value for each
sub-region. Hence, the computational complexity can be reduced.

Typically, a softmax function is performed in the top layer so that a probability distribution as
an output can be obtained with each unit representing a class membership probability. Based on the
above principle, in this paper, different features of the raw image are fed into each corresponding CNN
block, and the network is fine-tuned through the back propagation.
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2.3. Architecture of Convolutional Neural Network

HSI contains several hundreds of spectral bands, and the input of a HSI classifier is usually the
whole image. This is different from common classification problems. It has been acknowledged that
spatial contextual information extraction is essential for HSI classification. Based on such knowledge,
we choose a three dimensional structure of the HSI pixel as input to the built CNN model. Given a HSI
cube X ∈ RM×N×L, M× N is the image size and L denotes the number of spectral channels. For a test
pixel xi (where i is the index of the test pixel), a K× K× B format structure of this pixel will be adopted
as the input with K× K being a fixed neighborhood size and B representing the dimension of the input
features. For example, for the original image cube, B is equal to the number of the spectral channels L.
In this paper, after T attribute profile features (i.e., area, standard deviation, length of diagonal, and
moment of inertia) are extracted, each attribute can be expressed as At ∈ RM×N×Bt , t = 1, 2, ...T. At

denotes the tth attribute of X, Bt denotes the number of spectral channels of At. For each pixel in At, a
K× K× Bt neighborhood region patch will be chosen as the input to the corresponding model.

Each convolutional layer has a four-dimensional convolution of W ×W × B× F, where W ×W
is the kernel size of the convolutional layer, B is the dimension of input variable and F denotes the
number of kernels in each convolutional layer. For example, for a 2× 2× 200× 50 convolutional layer
with an input size of 5× 5× 200, the output in the DAG will be a format of 4× 4× 50 which will be
the input of the next layer.

The three-dimensional format of the input in the proposed network makes the dimensionality
around several hundreds (K× K× B), which may lead to an overfitting problem during the training
procedure. In order to handle this situation, ReLU is applied to the proposed network. The adopted
ReLU in this paper is a simple nonlinear function that produces 0 or 1 corresponding to the positive or
negative input of a neuron. It has been confirmed that ReLU can boost the performance of networks in
many cases [30].

To perform the classification with the learned representative features, a softmax operator is applied
to the top layer of the proposed network. Softmax is one of the probabilistic-based classification models
which measure the correlation between an output value and a reference value by a probability score.
It should be noted that in the CNN construction, softmax can be applied throughout the spectral
channels for all spatial locations in a convolutional manner [31]. For the given input of three dimension
(K× K× B), the probability that the input belongs to class c is computed as follows:

p(y = c) =
exmnk

B
∑

b=1
exmnb

(5)

In order to obtain the essential probability distribution using the softmax operator, the number
of kernels of the last layer should be set as the same as the number of classes defined in the HSI data
set. The whole training procedure of the network can be treated as the optimization of parameters,
which can minimize a loss function between the network outputs and ground truth values for the
training data set. Let yi = 1, ..., c, ..., C denote the target ground truth value corresponding to the text
pixel xi, and p(yi) be the output class membership distribution with i as the index of the test pixel. The
multi-class hinge loss used in this paper is given by

L =
N

∑
i=1

C

∑
c=1

max(0, 1− p(yi = c)) (6)

Finally, the predication label is decided by taking the argmin value of the loss function:

ŷi = argmin
c

L (7)
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3. Experimental Results and Discussion

The proposed framework was tested with three benchmark HSI data sets (The MATLAB
implementation is available on request). Section 3.1 below introduces the data sets and shows the class
information. Section 3.2 layouts the specific network architectures applied in this paper and other
relevant information regarding the experimental evaluation. Section 3.3 provides the experimental
results for all the classifiers. Section 3.4 highlights some additional experiments influential to the
classification results. In this paper, the original features, as well as four attribute features extracted
based on four attribute filters (i.e., area, moment of inertia, length of diagonal and standard deviation)
are used as inputs to the proposed network. The parameters for each AP criterion are set as default as
the ones in [28].

In order to validate the effectiveness of the proposed mechanism, the proposed work is compared
with the designed CNN with original images (referred to as O-CNN), and a CNN using all features
(including the original images) stacked as input (referred to as E-CNN). As shown in Figure 2, for fair
comparison, these CNNs have architectures similar to the proposed network. The attribute features
extracted in this paper have the parameters set as the ones in [27]. All the programs are executed in
Matlab 2015b. The test is conducted on Intel (R) Core (TM) i7-4790 CPU 3.60 GHz and 16 GB Installed
Memory. All the convolutional network models are implemented based on the publicly available
matconvnet [31] with some modifications, and the optimization algorithms used in this paper are
implemented by the Statistics and Machine Learning Toolbox in Matlab.
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3.1. Data Description

To verify the effectiveness of the proposed framework, three benchmark data sets [32] are used in
this paper:

1. Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) data set: Indian Pines. It was obtained
by the AVIRIS sensor over the site in northwest Indiana, United States of America (USA). This
imagery has 16 labeled classes. The data set has 220 spectral bands ranging from 0.2 to 2.4 µm
wavelength, and each channel has 145 × 145 pixels with a spatial resolution of 20 m. 20 water
absorption bands are removed during the experiments.

2. Reflective Optics System Imaging Spectrometer (ROSIS) data set: University of Pavia, Italy. This
image was acquired over Pavia in north Italy. It has nine labeled ground truths with 610 × 610
pixels. Each pixel has a 1.3 m spatial resolution. With water absorption bands removed, 103
bands are used in the experiment.
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3. AVIRIS data set: Salinas. This image was also acquired by the AVIRIS sensor over Salinas Valley,
California, USA. The image is of 512 × 217 pixels, and with 224 spectral bands. The Salinas data
has a 3.7 m resolution per pixel and 16 different classes. The ground truth and false color images
for the data sets are illustrated in Figure 3.
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Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth for
three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas.

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a
test set. The details of the number of the subsets are listed in Tables 1–3. For training the architecture
of each CNN block, 90% of the training pixels are used to learn the filter parameters for each CNN
block and the remaining 10% are used as the validation set. The training set is used to adjust the
weights on the neural network. The validation set is used to provide an unbiased evaluation of a
model fit on the training data set, which means that this data set is predominately used to describe the
evaluation of models when tuning hyper parameters. The test is used only to assess the performance
of a fully-trained CNN model.

Table 1. Class Information for Indian Pines Data Set.

No. Class Name Training Test

1
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evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Corn-no till 250 1178
3
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Corn-min till 250 580
4
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Corn 150 87
5
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Grass/trees 250 233
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Grass/pasture 250 480
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Grass/pasture-mowed 20 8
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Hay-windrowed 250 228
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Oats 15 5
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Soybeans-no till 250 722
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Soybeans-min till 250 2205
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Soybeans-clean till 250 343
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Wheat 150 55
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Woods 250 1015
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Buildings-grass-trees 50 336
16
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Stone-steel towers 50 43

Total 2715 7534
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Table 2. Class Information for University of Pavia Data Set.

No. Class Name Training Test

1
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Asphalt 250 6381
2
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Meadows 250 18,399
3
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

002
003

Gravel 250 1849
4
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

002
003
017

Trees 250 2814
5
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Meta sheets 250 1095
6
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

002
003
017
018
008

Bare soil 250 4779
7
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Bitumen 250 1080
8
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

002
003
017
018
008
019
004

Bricks 250 3432
9
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

002
003
017
018
008
019
004

Shadows 250 697

Total 2250 40,526

Table 3. Class Information for Salinas Data Set.

No. Class Name Training Test

1
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Weeds_1 300 1709
2
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Weeds_2 300 3426
3
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Fallow 300 1676
4
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

002
003
017

Fallow plow 300 1094
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 
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Fallow smooth 300 2378
6

Remote Sens. 2018, 10, 299 8 of 18 

Table 3. Class Information for Salinas Data Set. 

No. Class Name Training Test 

1 Weeds_1 300 1709 

2 Weeds_2 300 3426 

3 Fallow 300 1676 

4 Fallow plow 300 1094 

5 Fallow smooth 300 2378 

6 Stubble 300 3659 

7 Celery 300 3279 

8 Grapes 300 10,971 

9 Soil 300 5903 

10 Corn 300 2978 

11 Lettuce 4 week 300 768 

12 Lettuce 5 week 300 1627 

13 Lettuce 6 week 300 616 

14 Lettuce 7 week 300 770 

15 Vineyard untrained 300 6968 

16 Vineyard trellis 300 1507 

Total 4800 49,329 

3.2. Network Design and Experimental Setup 

CNN blocks for different features were designed to have the same architecture. There are three 

convolutional layers, pooling layers, ReLU layers and concatenating layers. The details of the 

network structure are listed in Tables 4–6. The input images are initially normalized into [−1 1]. The 

number of kernels in each convolutional layer is set as 200 empirically. The input neighborhood of 

each feature is set as 5 × 5, 7 × 7 and 9 × 9 for the Indian Pines data set, the University of Pavia data 

set and the Salinas data set, respectively. The learning rate for CNN models is set as 0.01; the 

number of epochs is set as 100 for the Indian Pines and the University of Pavia data sets, and 150 for 

the Salinas data set. The batch size is set as 10. To quantitatively validate the results of the proposed 

framework, overall accuracy (OA), average accuracy (AA) and the Kappa coefficient (𝑘) are 

adopted as the performance metrics. Each result is shown as an average of ten times repeated 

experiments with the randomly chosen training samples. 

Table 4. Network Structure for Indian Pines Data Set. 

Input Features Layer No. Convolution ReLU Pooling 

Original image 
1 2 × 2 × 200 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Area) 
1 2 × 2 × 125 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Length of diagonal) 
1 2 × 2 × 175 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Moment of inertia) 
1 2 × 2 × 75 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Standard deviation) 
1 2 × 2 × 75 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

Concatenating Dim = 2 (Horizontal) 

Convolution 4 × 20 × 200 × 16 
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Celery 300 3279
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Grapes 300 10,971
9

Remote Sens. 2018, 10, 299 7 of 18 

Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 
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Soil 300 5903
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 
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Corn 300 2978
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Lettuce 4 week 300 768
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Table 3. Class Information for Salinas Data Set. 

No. Class Name Training Test 

1 Weeds_1 300 1709 

2 Weeds_2 300 3426 

3 Fallow 300 1676 

4 Fallow plow 300 1094 

5 Fallow smooth 300 2378 

6 Stubble 300 3659 

7 Celery 300 3279 

8 Grapes 300 10,971 

9 Soil 300 5903 

10 Corn 300 2978 

11 Lettuce 4 week 300 768 

12 Lettuce 5 week 300 1627 

13 Lettuce 6 week 300 616 

14 Lettuce 7 week 300 770 

15 Vineyard untrained 300 6968 

16 Vineyard trellis 300 1507 

Total 4800 49,329 

3.2. Network Design and Experimental Setup 

CNN blocks for different features were designed to have the same architecture. There are three 

convolutional layers, pooling layers, ReLU layers and concatenating layers. The details of the 

network structure are listed in Tables 4–6. The input images are initially normalized into [−1 1]. The 

number of kernels in each convolutional layer is set as 200 empirically. The input neighborhood of 

each feature is set as 5 × 5, 7 × 7 and 9 × 9 for the Indian Pines data set, the University of Pavia data 

set and the Salinas data set, respectively. The learning rate for CNN models is set as 0.01; the 

number of epochs is set as 100 for the Indian Pines and the University of Pavia data sets, and 150 for 

the Salinas data set. The batch size is set as 10. To quantitatively validate the results of the proposed 

framework, overall accuracy (OA), average accuracy (AA) and the Kappa coefficient (𝑘) are 

adopted as the performance metrics. Each result is shown as an average of ten times repeated 

experiments with the randomly chosen training samples. 

Table 4. Network Structure for Indian Pines Data Set. 

Input Features Layer No. Convolution ReLU Pooling 

Original image 
1 2 × 2 × 200 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Area) 
1 2 × 2 × 125 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Length of diagonal) 
1 2 × 2 × 175 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Moment of inertia) 
1 2 × 2 × 75 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Standard deviation) 
1 2 × 2 × 75 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

Concatenating Dim = 2 (Horizontal) 

Convolution 4 × 20 × 200 × 16 
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Table 3. Class Information for Salinas Data Set. 

No. Class Name Training Test 

1 Weeds_1 300 1709 

2 Weeds_2 300 3426 

3 Fallow 300 1676 

4 Fallow plow 300 1094 

5 Fallow smooth 300 2378 

6 Stubble 300 3659 

7 Celery 300 3279 

8 Grapes 300 10,971 

9 Soil 300 5903 

10 Corn 300 2978 

11 Lettuce 4 week 300 768 

12 Lettuce 5 week 300 1627 

13 Lettuce 6 week 300 616 

14 Lettuce 7 week 300 770 

15 Vineyard untrained 300 6968 

16 Vineyard trellis 300 1507 

Total 4800 49,329 

3.2. Network Design and Experimental Setup 

CNN blocks for different features were designed to have the same architecture. There are three 

convolutional layers, pooling layers, ReLU layers and concatenating layers. The details of the 

network structure are listed in Tables 4–6. The input images are initially normalized into [−1 1]. The 

number of kernels in each convolutional layer is set as 200 empirically. The input neighborhood of 

each feature is set as 5 × 5, 7 × 7 and 9 × 9 for the Indian Pines data set, the University of Pavia data 

set and the Salinas data set, respectively. The learning rate for CNN models is set as 0.01; the 

number of epochs is set as 100 for the Indian Pines and the University of Pavia data sets, and 150 for 

the Salinas data set. The batch size is set as 10. To quantitatively validate the results of the proposed 

framework, overall accuracy (OA), average accuracy (AA) and the Kappa coefficient (𝑘) are 

adopted as the performance metrics. Each result is shown as an average of ten times repeated 

experiments with the randomly chosen training samples. 

Table 4. Network Structure for Indian Pines Data Set. 

Input Features Layer No. Convolution ReLU Pooling 

Original image 
1 2 × 2 × 200 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Area) 
1 2 × 2 × 125 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Length of diagonal) 
1 2 × 2 × 175 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Moment of inertia) 
1 2 × 2 × 75 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Standard deviation) 
1 2 × 2 × 75 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

Concatenating Dim = 2 (Horizontal) 

Convolution 4 × 20 × 200 × 16 
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Table 3. Class Information for Salinas Data Set. 

No. Class Name Training Test 

1 Weeds_1 300 1709 

2 Weeds_2 300 3426 

3 Fallow 300 1676 

4 Fallow plow 300 1094 

5 Fallow smooth 300 2378 

6 Stubble 300 3659 

7 Celery 300 3279 

8 Grapes 300 10,971 

9 Soil 300 5903 

10 Corn 300 2978 

11 Lettuce 4 week 300 768 

12 Lettuce 5 week 300 1627 

13 Lettuce 6 week 300 616 

14 Lettuce 7 week 300 770 

15 Vineyard untrained 300 6968 

16 Vineyard trellis 300 1507 

Total 4800 49,329 

3.2. Network Design and Experimental Setup 

CNN blocks for different features were designed to have the same architecture. There are three 

convolutional layers, pooling layers, ReLU layers and concatenating layers. The details of the 

network structure are listed in Tables 4–6. The input images are initially normalized into [−1 1]. The 

number of kernels in each convolutional layer is set as 200 empirically. The input neighborhood of 

each feature is set as 5 × 5, 7 × 7 and 9 × 9 for the Indian Pines data set, the University of Pavia data 

set and the Salinas data set, respectively. The learning rate for CNN models is set as 0.01; the 

number of epochs is set as 100 for the Indian Pines and the University of Pavia data sets, and 150 for 

the Salinas data set. The batch size is set as 10. To quantitatively validate the results of the proposed 

framework, overall accuracy (OA), average accuracy (AA) and the Kappa coefficient (𝑘) are 

adopted as the performance metrics. Each result is shown as an average of ten times repeated 

experiments with the randomly chosen training samples. 

Table 4. Network Structure for Indian Pines Data Set. 

Input Features Layer No. Convolution ReLU Pooling 

Original image 
1 2 × 2 × 200 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Area) 
1 2 × 2 × 125 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Length of diagonal) 
1 2 × 2 × 175 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Moment of inertia) 
1 2 × 2 × 75 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Standard deviation) 
1 2 × 2 × 75 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

Concatenating Dim = 2 (Horizontal) 

Convolution 4 × 20 × 200 × 16 
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Table 3. Class Information for Salinas Data Set. 

No. Class Name Training Test 

1 Weeds_1 300 1709 

2 Weeds_2 300 3426 

3 Fallow 300 1676 

4 Fallow plow 300 1094 

5 Fallow smooth 300 2378 

6 Stubble 300 3659 

7 Celery 300 3279 

8 Grapes 300 10,971 

9 Soil 300 5903 

10 Corn 300 2978 

11 Lettuce 4 week 300 768 

12 Lettuce 5 week 300 1627 

13 Lettuce 6 week 300 616 

14 Lettuce 7 week 300 770 

15 Vineyard untrained 300 6968 

16 Vineyard trellis 300 1507 

Total 4800 49,329 

3.2. Network Design and Experimental Setup 

CNN blocks for different features were designed to have the same architecture. There are three 

convolutional layers, pooling layers, ReLU layers and concatenating layers. The details of the 

network structure are listed in Tables 4–6. The input images are initially normalized into [−1 1]. The 

number of kernels in each convolutional layer is set as 200 empirically. The input neighborhood of 

each feature is set as 5 × 5, 7 × 7 and 9 × 9 for the Indian Pines data set, the University of Pavia data 

set and the Salinas data set, respectively. The learning rate for CNN models is set as 0.01; the 

number of epochs is set as 100 for the Indian Pines and the University of Pavia data sets, and 150 for 

the Salinas data set. The batch size is set as 10. To quantitatively validate the results of the proposed 

framework, overall accuracy (OA), average accuracy (AA) and the Kappa coefficient (𝑘) are 

adopted as the performance metrics. Each result is shown as an average of ten times repeated 

experiments with the randomly chosen training samples. 

Table 4. Network Structure for Indian Pines Data Set. 

Input Features Layer No. Convolution ReLU Pooling 

Original image 
1 2 × 2 × 200 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Area) 
1 2 × 2 × 125 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Length of diagonal) 
1 2 × 2 × 175 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Moment of inertia) 
1 2 × 2 × 75 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

AP (Standard deviation) 
1 2 × 2 × 75 × 200 No 2 × 2 

2 (Transpose) 2 × 2 × 200 × 200 Yes No 

Concatenating Dim = 2 (Horizontal) 

Convolution 4 × 20 × 200 × 16 
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Salinas data has a 3.7 m resolution per pixel and 16 different classes. The ground truth and 

false color images for the data sets are illustrated in Figure 3. 

 

  
(a) (b) (c) 

Figure 3. The (Left) false color composite image bands (bands 50, 27, 17) and (Right) ground truth 

for three data sets: (a) Indian Pines; (b) University of Pavia; (c) Salinas. 

For each of the three data sets, the samples are split into two subsets, i.e., a training set and a 

test set. The details of the number of the subsets are listed in Tables 1–3. For training the 

architecture of each CNN block, 90% of the training pixels are used to learn the filter parameters for 

each CNN block and the remaining 10% are used as the validation set. The training set is used to 

adjust the weights on the neural network. The validation set is used to provide an unbiased 

evaluation of a model fit on the training data set, which means that this data set is predominately 

used to describe the evaluation of models when tuning hyper parameters. The test is used only to 

assess the performance of a fully-trained CNN model.  

Table 1. Class Information for Indian Pines Data Set. 

No. Class Name Training Test 

1 Alfalfa 30 16 

2 Corn-no till 250 1178 

3 Corn-min till 250 580 

4 Corn 150 87 

5 Grass/trees 250 233 

6 Grass/pasture 250 480 

7 Grass/pasture-mowed 20 8 

8 Hay-windrowed 250 228 

9 Oats 15 5 

10 Soybeans-no till 250 722 

11 Soybeans-min till 250 2205 

12 Soybeans-clean till 250 343 

13 Wheat 150 55 

14 Woods 250 1015 

15 Buildings-grass-trees 50 336 

16 Stone-steel towers 50 43 

Total 2715 7534 

Table 2. Class Information for University of Pavia Data Set. 

No. Class Name Training Test 

1 Asphalt 250 6381 

2 Meadows 250 18,399 

3 Gravel 250 1849 

4 Trees 250 2814 

5 Meta sheets 250 1095 

6 Bare soil 250 4779 

7 Bitumen 250 1080 

8 Bricks 250 3432 

9 Shadows 250 697 

Total 2250 40,526 

Vineyard trellis 300 1507

Total 4800 49,329

3.2. Network Design and Experimental Setup

CNN blocks for different features were designed to have the same architecture. There are three
convolutional layers, pooling layers, ReLU layers and concatenating layers. The details of the network
structure are listed in Tables 4–6. The input images are initially normalized into [−1 1]. The number of
kernels in each convolutional layer is set as 200 empirically. The input neighborhood of each feature
is set as 5 × 5, 7 × 7 and 9 × 9 for the Indian Pines data set, the University of Pavia data set and the
Salinas data set, respectively. The learning rate for CNN models is set as 0.01; the number of epochs is
set as 100 for the Indian Pines and the University of Pavia data sets, and 150 for the Salinas data set.
The batch size is set as 10. To quantitatively validate the results of the proposed framework, overall
accuracy (OA), average accuracy (AA) and the Kappa coefficient (k) are adopted as the performance
metrics. Each result is shown as an average of ten times repeated experiments with the randomly
chosen training samples.
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Table 4. Network Structure for Indian Pines Data Set.

Input Features Layer No. Convolution ReLU Pooling

Original image 1 2 × 2 × 200 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

AP (Area)
1 2 × 2 × 125 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

AP (Length of diagonal) 1 2 × 2 × 175 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

AP (Moment of inertia)
1 2 × 2 × 75 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

AP (Standard deviation)
1 2 × 2 × 75 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

Concatenating Dim = 2 (Horizontal)

Convolution 4 × 20 × 200 × 16

Table 5. Network Structure for University of Pavia Data Set.

Input Features Layer No. Convolution ReLU Pooling

Original image 1 4 × 4 × 103 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

AP (Area)
1 4 × 4 × 20 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

AP (Length of diagonal) 1 4 × 4 × 103 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

AP (Moment of inertia)
1 4 × 4 × 12 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

AP (Standard deviation)
1 4 × 4 × 12 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

Concatenating Dim = 2 (Horizontal)

Convolution 4 × 20 × 200 × 9

Table 6. Network Structure for Salinas Data Set.

Input Features Layer No. Convolution ReLU Pooling

Original image 1 6 × 6 × 224 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

AP (Area)
1 6 × 6 × 15 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

AP (Length of diagonal) 1 6 × 6 × 21 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

AP (Moment of inertia)
1 6 × 6 × 9 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

AP (Standard deviation)
1 6 × 6 × 9 × 200 No 2 × 2
2 (Transpose) 2 × 2 × 200 × 200 Yes No

Concatenating Dim = 2 (Horizontal)

Convolution 4 × 20 × 200 × 16

3.3. Experimental Results and Discussion

3.3.1. Classification Results for the Indian Pines Data Set

Table 7 shows the classification results obtained by different classifiers for the Indian Pines data
set, and the resultant maps are provided in Figure 4. One can observe that all the CNN-based models
achieve a good performance, and the proposed method provides the improved results on this data set.
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For O-CNN, the original image is set as the input for the network. In order to verify the effectiveness
of the proposed mechanism, the spatial contextual features are extracted and stacked together to be
fed into the network for E-CNN. E-CNN has achieved more accurate results than O-CNN, but failed
to outperform the proposed method. The best performance achieved by the proposed framework
is probably due to the joint exploitation of spatial-spectral information. One can conclude that the
proposed method produces less “salt-and-pepper” noise on the classification maps. In comparison
with O-CNN, OA, AA and Kappa of the proposed method are improved by 8.43%, 3.69% and 9.5%.
The same conclusion can be made when the proposed method is compared with E-CNN, especially
the improvement is quite significant for the sets of similar class labels as can be observed from
Table 7. For example, the accuracies obtained by the proposed method for the classes Soybeans-no till,
Soybeans-min till and Soybeans-clean till (class no. 10, 11, and 12) are 5.76%, 7.82% and 5.74% higher
than those obtained by the E-CNN. The same conclusion can be obtained when the individual class
accuracies for the similar sets of Grass-tress, Grass-pasture and Grass-pasture mowed (class no. 5, 6,
and 7) are inspected. The results show that the proposed algorithm has a very competitive ability in
classifying the similar and mixed pixels. In addition, the proposed method has demonstrated the best
performance in terms of preserving the discontinuities which can be observed from the classification
maps. Moreover, CNN methods do not need predefined parameters whereas pixel-level extraction
methods require them.

Table 7. Classification Results (%) of Indian Pines Data Set.

Class No. O-CNN E-CNN Proposed

1 95.65 97.83 97.83
2 87.96 95.52 94.82
3 93.86 85.66 97.23
4 98.73 100.00 99.58
5 98.14 95.24 99.59
6 97.53 95.48 99.59
7 100.00 92.86 100.00
8 98.12 100.00 100.00
9 100.00 100.00 100.00

10 90.02 88.17 93.93
11 74.95 89.41 97.23
12 91.40 93.25 98.99
13 100.00 97.07 100.00
14 94.62 96.84 99.76
15 95.34 98.70 97.93
16 100.00 94.62 98.92

OA 89.14 93.04 97.57*
AA 94.77 95.04 98.46*

k 87.73 92.11 97.23*

* The bold style represents the highest accuracy among the compared methods.
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3.3.2. Classification Results of the University of Pavia Data Set

The class-specific classification accuracies for the University of Pavia image and the representative
classification maps are provided in Table 8 and Figure 5, respectively. From the results, one can see that
the proposed method outperforms the other algorithms in terms of OA, AA and Kappa. The proposed
method significantly improves the results with a very high accuracy when tested with the University
of Pavia data set. From the illustrative results in classification maps, O-CNN and E-CNN show more
noisy scattered points in the images. The proposed method can remove them and lead to smoother
classification results without blurring the boundaries.

Table 8. Classification Results (%) of University of Pavia Data Set.

Class No. O-CNN E-CNN Proposed

1 97.50 99.68 99.25
2 94.38 99.93 99.74
3 96.62 94.46 99.76
4 97.58 97.35 99.64
5 100.00 100.00 100.00
6 93.52 97.82 99.96
7 93.16 98.57 98.80
8 93.10 98.38 99.48
9 99.68 99.79 99.89

OA 95.25 98.99 99.64 *
AA 96.17 98.44 99.61 *

k 93.75 98.67 99.53 *

* The bold style represents the highest accuracy among the compared methods.
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3.3.3. Classification Results of the Salinas Data Set

Table 9 shows the classification results for the Salinas data set with different classifiers, and the
classification accuracies are illustrated in Figure 6. The results are similar to the previous two data
sets. Under the condition of the same training samples, the proposed method outperforms the other
approaches in terms of OA, AA and Kappa. Although E-CNN improved the classification results of
O-CNN by stacking different features, the improvement is limited when compared to the proposed
framework. The better performance of the proposed network proves the capacity and effectiveness of
the built network for multiple feature learning.
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Table 9. Classification Results (%) of Salinas Data Set.

Class No. O-CNN E-CNN Proposed

1 100.00 100.00 100.00
2 99.84 99.92 99.92
3 99.60 99.70 99.65
4 99.57 99.93 99.78
5 99.93 99.78 99.07
6 99.95 100.00 99.97
7 99.30 99.92 99.75
8 95.52 95.73 94.28
9 99.45 100.00 99.97
10 97.32 99.73 99.63
11 99.53 100.00 99.91
12 100.00 100.00 100.00
13 100.00 100.00 100.00
14 100.00 100.00 99.91
15 66.29 81.65 97.40
16 95.35 100.00 100.00

OA 94.06 96.60 98.34 *
AA 96.98 98.52 99.33 *

k 93.37 96.20 98.15 *

* The bold style represents the highest accuracy among the compared methods.
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3.4. Discussion of Effects of Different Parameters

3.4.1. The Impact of the Number of Training Epochs

The number of training epochs is an important parameter for the CNN-based methods. Figure 7
shows that the training error varies with the number of training epochs on all three data sets. In
the training process for a network, the back propagation is implemented by minimizing the training

error “objective” which is computed by objective = −
Nt
∑

i=1
log(pic) Here, the trend of the “error” item is

computed by error =
Nt
∑

i=1
pic(argmaxpi ∼= c) where Nt denotes the number of training samples, pic

denotes the cth prediction probability of the training pixel xi which belongs to the cth class. It is helpful
and useful for assessment. From Figure 7, one can observe that it converges faster for the training
process of the Indian Pines image and the University of Pavia image, slower for the Salinas image.
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ReLU is an important factor which is influential to the training procedure; ReLU can accelerate the
convergence of the network and improve the training efficiency [29].
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3.4.2. The Impact of Training Samples

One critical factor to the training a CNN is the number of training samples. It is widely known
that a CNN may not extract effective features unless abundant training samples are available. However,
it is not common for HSI to have a large number of training samples, hence it is very important to
build a network that is robust and efficient for the classification task.

In this paper, the impacts of the number of training samples on the accuracies of three data
sets are also tested. For the Indian Pines scene, 5 to 50% of the samples are randomly selected as
training pixels and the remaining pixels are used as the test set. For both the University of Pavia and
the Salinas images, 50 to 500 pixels per class are chosen randomly as the training samples with the
remaining as the test set. Figure 8 illustrates the OA for various methods with different numbers
of training pixels. From Figure 8, one can see that all the methods perform better if the number of
training samples increases for the Indian Pines data set, and the proposed method performs the best.
Especially, the proposed method obtains an accuracy of higher than 95% with less than 10% training
samples. The accuracies tend to become stabilized for these three methods if the number of training
samples further increases. For the University of Pavia data set, the classification accuracies for these
CNN-based methods show approximately 100% as the number of training samples further increases,
especially for the proposed method which has the accuracy more than 96% with 50 samples per class.
For the Salinas data set, the performances for all approaches fluctuate in a range, and the proposed
method performs the best in most cases. It should be noted that for the whole three data sets, the
CNN-based classifiers are more sensitive to the number of training samples and the accuracy increases
as the number of training samples increases. In addition, the CNN-based approaches can achieve a
competitive performance with a large number of training samples, and the proposed method shows
more robustness with a variety of the number of training samples.
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3.4.3. The Impact of Input Neighborhood Size

The neighborhood size K × K of the input image is another important factor related to
the classification results. Figure 9 illustrates the network architectures with inputs of different
neighborhood sizes. The only difference for the three data sets is the number of kernels in the
last layer, which is 16 for the Indian Pines and the Salinas data sets, and 9 for the University of Pavia
data set. It should be noted that, in order to obtain the probability scores corresponding to different
classes, the number of kernels in the last layer should be the number of labeled classes for each data
set. In Figure 9, we take the University of Pavia data set as an example. As shown in Tables 10–12,
the performances decrease with the neighborhoods up to 7 × 7, 9 × 9 and 11 × 11 for three data
sets, respectively. The performance degradation may be caused by the “over-smoothing” effect across
the boundaries as the neighborhood size increases. Hence, 5 × 5, 7 × 7 and 9 × 9 are the optimal
neighborhood sizes for the three data sets in the proposed network.
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Table 10. Classification Results (%) of Indian Pines Data Set using Network with Inputs of Different
Neighborhood Sizes.

5 × 5 7 × 7 9 × 9 11 × 11

OA 97.57 97.19 95.24 93.61
AA 98.46 98.05 96.12 94.28

k 97.23 96.80 94.58 92.71

Table 11. Classification Results (%) of University of Pavia Data Set using Network with Inputs of
Different Neighborhood Sizes.

5 × 5 7 × 7 9 × 9 11 × 11

OA 99.19 99.64 99.60 99.49
AA 99.38 99.74 99.63 99.61

k 98.92 99.53 99.33 99.47

Table 12. Classification Results (%) of Salinas Data Set using Network with Inputs of Different
Neighborhood Sizes.

5 × 5 7 × 7 9 × 9 11 × 11

OA 95.97 97.38 98.34 97.82
AA 98.42 98.90 99.33 99.16

k 95.53 97.09 98.15 97.58

3.4.4. The Analysis of Multiple Feature Learning

To verify the effectiveness of the multiple feature learning, the experimental results for the
designed CNN (Figure 2a) with individual features (i.e., area, moment of inertia, length of diagonal
and standard deviation) are also shown in Tables 13–15 for the validation. From these tables, one can
see that the designed CNN with features of length of diagonal performs better than other networks.
Compared with the results in Tables 7–9, it is obvious that E-CNN compromises the accuracy for the
classification. This may be due to the data augmentation caused by the initial concatenation which is
not proper for the spatial filter. The higher accuracy obtained by the proposed method benefits from
the joint exploitation in the processing stage where the dimension has been cut off by the spatial filter.
In addition, the concatenation of the various features at first step of E-CNN may lose the discriminative
information during the training process. The various features possess different properties, learnt
through the individual convolutional layers can help extract the better feature representations for the
classification which leads to a superior performance. The proposed joint structure-based multi-feature
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learning can adaptively learning the heterogeneity of each feature, and eventually result in a better
performance. It can be concluded that the comparison results with individual features reveal the
effectiveness of the multiple feature learning technique of the proposed method.

Table 13. Classification Results (%) for Individual AP Features of Indian Pines Data Set.

Accuracy AP (Area) AP (Length of Diagonal) AP (Moment of Inertia) AP (Standard Deviation)

OA 94.43 95.58 94.96 92.77
AA 96.85 96.60 96.83 95.66

k 93.67 94.18 94.26 91.78

Table 14. Classification Results (%) for Individual AP Features of University of Pavia Data Set.

Accuracy AP (Area) AP (Length of Diagonal) AP (Moment of Inertia) AP (Standard Deviation)

OA 93.20 98.47 95.82 91.77
AA 95.93 98.52 97.35 94.28

k 91.14 98.31 94.49 89.26

Table 15. Classification Results (%) for Individual AP Features of Salinas Data Set.

Accuracy AP (Area) AP (Length of Diagonal) AP (Moment of Inertia) AP (Standard Deviation)

OA 93.59 96.29 93.45 92.39
AA 96.76 97.43 96.73 96.16

k 92.85 95.88 92.68 91.50

3.4.5. Training Time

The training and test time averaged over ten repeated experiments for the three data sets are
given in Table 16. The training procedure for a CNN is time-consuming; however, another advantage
of CNN algorithms is that they are fast for testing. In addition, the training time would take just a few
seconds with GPU processing.

Table 16. Training/Test Time (minutes) Averaged over Ten Time Repeatedly Experiments on Three
Data Sets for Different Classifiers.

O-CNN
Training/Test

E-CNN
Training/Test

Proposed
Training/Test

Indian Pines 8.7/0.74 9.7/0.8 17.1/1.5
University of Pavia 17.2/1.9 27.5/2.1 38.8/3.9

Salinas 42.8/4.5 45.6/5.2 66.1/10.2

4. Conclusions

In order to prove the potential of CNNs for HSI classification, we presented a framework
consisting of a novel CNN model. The framework was designed to have several individual CNN blocks
with comprehensive features as input. To enhance the learning efficiency as well as to leverage both the
spatial contextual and spectral information of the HSI, the output feature maps of each block are then
concatenated and fed into subsequent convolutional layers to derive the pixel label vectors. By using
the proper architecture, the built network is a shallow but efficient one, and it can concurrently exploit
the interactions of different spectral and spatial contextual information by using the concatenating
layer. In comparison with the CNN-based single feature learning method, the classification results
are improved significantly with multiple features involved. Moreover, in contrast to the traditional
rule-based classifiers, the CNN-based framework can extract the deep features automatically and in a
more efficient way.
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Moreover, the experiments suggest that a three-layer CNN is optimal for HSI classification, and
the neighborhood size between 2 × 2 to 6 × 6 can balance the efficiency and complexity of the network.
The pooling layer with a size of 2 × 2 and 200 kernels in each layer can provide an enough capacity
for the network. Since the training samples are very limited in HSI classification, the multiple input
feature maps and ReLU in the proposed network can help alleviate the overfitting phenomenon and
accelerate convergence. The tests with three benchmark data sets showed superior performances
of the proposed framework. As CNNs are gaining attention due to the strong ability in extracting
the relevant features for image classification, the proposed method is expected to provide various
improvements for the better feature representation purpose.
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