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Abstract: Deep learning-based hyperspectral image (HSI) classification has attracted more and more
attention because of its excellent classification ability. Generally, the outstanding performance of
these methods mainly depends on a large number of labeled samples. Therefore, it still remains an
ongoing challenge how to integrate spatial structure information into these frameworks to classify
the HSI with limited training samples. In this study, an effective spectral-spatial HSI classification
scheme is proposed based on superpixel pooling convolutional neural network with transfer learning
(SP-CNN). The suggested method includes three stages. The first part consists of convolution and
pooling operation, which is a down-sampling process to extract the main spectral features of an
HSI. The second part is composed of up-sampling and superpixel (homogeneous regions with
adaptive shape and size) pooling to explore the spatial structure information of an HSI. Finally, the
hyperspectral data with each superpixel as a basic input rather than a pixel are fed to fully connected
neural network. In this method, the spectral and spatial information is effectively fused by using
superpixel pooling technique. The use of popular transfer learning technology in the proposed
classification framework significantly improves the training efficiency of SP-CNN. To evaluate the
effectiveness of the SP-CNN, extensive experiments were conducted on three common real HSI
datasets acquired from different sensors. With 30 labeled pixels per class, the overall classification
accuracy provided by this method on three benchmarks all exceeded 93%, which was at least 4.55%
higher than that of several state-of-the-art approaches. Experimental and comparative results prove
that the proposed algorithm can effectively classify the HSI with limited training labels.

Keywords: hyperspectral image; classification; superpixel; convolutional neural network; transfer
learning; deep learning

1. Introduction

The emergence of hyperspectral remote sensing technology is undoubtedly a break-
through in the field of remote sensing [1–3]. Hyperspectral sensors with dozens or even
hundreds of spectral bands may effectively capture abundant spectral and spatial infor-
mation on the Earth’s surface. This is clearly conducive to further research and analyze of
land-cover of interest. Consequently, hyperspectral images (HSIs) with detailed spectral
and spatial information have been successfully applied in various fields, such as environ-
mental monitoring [4], land management [5], target detection [6], urban area planning [7],
and precision agriculture [8]. However, it is not easy to classify HSIs effectively and effi-
ciently because of its characteristics of big data and the complexity of the distribution of
ground objects, especially in the case of limited training samples.

A large number of existing studies have shown that deep learning-based classification
method has good classification performance, and has achieved great success in computer
vision, image processing and other fields. Some representative deep learning techniques in-
clude convolutional neural network (CNN) [9,10], recurrent neural network (RNN) [11,12],
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generative adversarial network [13,14] and convolutional auto-encoder [15,16]. Recently, a
series of deep learning-based classification frameworks have been widely used in the field
of remote sensing [17–22]. Combining the deep CNN with multiple feature learning, a
joint feature map for HSI classification was generated, which makes the developed method
have high classification performance on test datasets [18]. A spectral locality-aware reg-
ularization term and label-based data augmentation were used in the CNN structure to
prevent over-fitting in the presence of many features and few training samples [19]. Based
on the stacked sparse auto-encoder, Tao et al. proposed a suitable feature representation
method for adaptively learning label-free data [23]. A feature learning model based on
unsupervised segmented denoising auto-encoder was depicted to learn both spectral and
spatial features [24]. Even though these deep learning-based HSI classification methods
can achieve satisfactory results, a large number of training samples are usually required
(e.g., labeling 200 pixels per class) [18–21]. Therefore, it is necessary to investigate the
classification performance of these models in case of finite training samples.

Superpixels are such homogeneous regions where pixels are spatially nearest neigh-
bors and their color or spectral features are similar to each other. There are many superpixel
segmentation algorithms in computer vision and image processing. Among them, two
representative methods, entropy rate superpixel (ERS) [25] and simple linear iterative clus-
tering [26], are commonly used to split an HSIs into superpixels in remote sensing. Based
on the superpixel homogeneity, a series of spectral-spatial HSI classification or dimension-
ality reduction approaches have recently been developed [27–29] in order to improve the
classification accuracy and speed up the classification process. Taking each superpixel
rather than pixel as the basic input of the classifiers, several superpixel-level HSI classifi-
cation methods have been proposed in the past few years [30–32]. Experimental results
demonstrate that these superpixel-level approaches can effectively explore spectral-spatial
information of hyperspectral data and achieve satisfactory results on typical benchmarks
even for limited training samples. Some superpixel–based dimensionality reduction meth-
ods were also investigated by combining superpixel with classic dimensionality reduction
techniques [33–35]. These methods make full use of spatial information provided by su-
perpixels to improve the dimensionality reduction performance of classic methods. In
addition, Blanco et al. adopted the texture information extracted from each superpixel to
improve the classification accuracy [36]. Extensive work has shown that the clever use of
superpixels in the HSI classification process does contribute to the improvement of the
classification results.

A common problem we have to face in practical HSI classification is the scarcity of
labeled data, since it is expensive and time-consuming to label samples. Some researchers
attempt to address this issue methodologically through various techniques [37–42]. Ac-
quarelli et al. selected pixels in smaller classes by data enhancement, and then used
the smoothing- and label-based techniques to prevent overfitting of few of training sam-
ples [19]. Following the strategy of the pairing or recombining of samples, a spatial–spectral
relation network was designed for HSI classification with limited labeled samples [43]. Xie
et al. used the pseudo sample labels obtained by the pre-classification method of multiple
classifiers to enlarge the volume of training samples [44]. Additionally, superpixel-wise
classification methods provide an effective means to solve this problem [45]. In fact, the
superpixel-level classification method is to effectively expand the proportion of labeled
samples by reducing the input. Based on this advantage of superpixel-wise method. We
would like to adopt this technique in this work.

The use of transfer learning technique also provides a feasible solution to address
the problem of insufficient training samples [46–48]. Transfer learning technology is to
transfer the knowledge learned from the source model to different but related new tasks,
thus reducing both the training time of the new task and the number of labeled samples
needed. Liu et al. suggested an HSI classification method to improve the performance of
3D-CNN model through parameter optimization, transfer learning and virtual samples [47].
By combining the 3-D separable ResNet with cross-sensor transfer learning, an effective
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approach is presented to classify the HSIs with only a few of labeled samples [48]. The
multi-source or heterogeneous transfer learning strategy to classify HSIs were investigated
to alleviate the problem of small labeled samples [49,50]. An end-to-end 3D lightweight
CNN with less parameters was modeled for HSI classification via cross-sensor and cross-
modal transfer learning strategies [51]. To achieve a good transfer effect, the models were
well pre-trained on the source dataset with sufficient labeled samples in these methods.
However, the number of training samples on the source dataset may be limited. Therefore,
it is interesting to investigate the effect and efficiency of knowledge transfer from source
data to target data in this case.

Previous work has demonstrated that the traditional CNN-based pixel-wise HSI
classification framework can effectively extract the main spectral features of HSI in the
down-sampling process. With the increase of network depth, the spatial structure infor-
mation of the HSIs is gradually lost. Generally, the lack of spatial information in the HSI
classification will lead to unsatisfactory classification results. To obtain good classification
results, a large number of labeled samples are used in these methods to improve the per-
formance of the classifier. However, the acquisition of a considerable number of labeled
samples is expensive. Meanwhile, the increase of network depth also means that it will take
more time to train the network, because a large number of parameters need to be optimized.
To address these two problems, we design an efficient deep learning-based spectral-spatial
classification framework for HSIs with limited training samples, that is, superpixel pooling
CNNwith transfer learning (SP-CNN).The main spectral features extracted by the CNN ar-
chitecture and the spatial structure information provided by superpixel map are effectively
fused in the suggested classification scheme. This clearly contributes to satisfactory results
in the classification. Furthermore, different from previous pooling techniques, superpixel
pooling weakens the dependence of the deep learning-based classification scheme on mas-
sive labeled samples, thus alleviating the problem of insufficient training samples on both
source and target datasets. Meanwhile, for the purpose of improving the training efficiency
of SP-CNN, the introduction of transfer learning strategy in our suggested framework
obviously speed up the training process. As a result, the proposed method can classify the
HSIs accurately and quickly with a small number of training samples.

The novelties of the current work lie in:

• An efficient spectral-spatial HSI classification scheme is proposed based on superpixel
pooling CNN with transfer learning;

• The introduced superpixel pooling technique effectively alleviates the problem of
insufficient training samples in HSI classification;

• The training efficiency of the proposed classification model is improved significantly
by using transfer learning strategy.

The reminder of this work is organized as follows: In Section 2, we depict the de-
signed classification framework and the used technologies. Section 3 quantitatively reports
the classification results on three benchmarks and discusses them qualitatively. The im-
pact of the number of training samples, superpixel number and network architecture on
classification results of SP-CNN method are analyzed in Section 4.

2. Methodology

Figure 1 shows the framework of the suggested SP-CNN method. In the process
of down-sampling, the main spectral information of the HSIs is gradually extracted by
convolution and pooling. Spatial information with extracted spectral features can be
recovered in the up-sampling module. The followed superpixel pooling essentially achieves
the spatial reduction of hyperspectral data. Taking superpixels as basic inputs rather than
pixels greatly reduces the number of classification samples. Extensive experimental results
in this work confirm the effect and efficiency of this method.
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Figure 1. The framework of the proposed superpixel pooling convolutional neural network with
transfer learning (SP-CNN) method. This scheme consists of down-sampling (convolution and pooling),
up-sampling (deconvolution and up-pooling), superpixel pooling and a fully connected layer.

2.1. Convolution and Pooling

Spectral information collected through hyperspectral sensors is usually subject to
various disturbances, so the spectra of objects belonging to the same class may differ from
one another. This obviously brings great difficulties to the classification task. Fortunately,
the down-sampling technique in convolutional neural network structure can capture the
main spectral information of ground objects by using convolution and pooling techniques.

Specifically, for a given HSI with B bands of m×n size, denoted by {I(x, y)|1 ≤ x ≤ m,
1 ≤ y ≤ n}, the discrete convolution can be mathematically expressed as

(I ∗K)(x, y) =
B

∑
l=1

r

∑
i=−r

r

∑
j=−r

Il(x + i, y + i) wr+1+i, r+1+j (1)

where Il(x, y) is the l-th band image and K =
(
wi,j
)
(2r+1)×(2r+1) is the convolutional kernel

with receptive field (2r + 1)×(2r + 1). Pooling operator includes global average pooling and
global maximum pooling. In this work, we use global maximum pooling in the process of
down-sampling. Sliding convolutional kernel pixel by pixel, the main features of the HSIs
can be captured.

Generally, the activation function is adopted in CNNs to solve nonlinear problems.
The commonly used rectified linear unit function (ReLU) is defined as

R(a) =
{

a, if a > 0
0, otherwise

(2)

In the gradient optimization based methods, the adoption of ReLU function seems to
be able to effectively deal with the problems of gradient vanishing and gradient exploding,
thereby improving the training speed. In addition, the use of ReLU activation function will
also increase the nonlinear factors of neurons and the whole network, leading to network
sparseness, reducing the interdependence between parameters, preventing over-fitting and
reducing the amount of calculation without affecting the receptive field of the convolution
layer. Considering these advantages of ReLU function, we insert a ReLU layer before the
last convolution layer in the proposed framework.

In order to improve the training efficiency of the model, batch normalization layer
(BN) is utilized to normalize the input of the former layer. The regularization function is

f (x) =
x− µM√

σ2
M + ε

(3)

where x is the output of the previous layer, µM and σ2
M are the mean and variance of data

batch normalization, respectively.
The visualization of the down-sampling process in the proposed scheme is shown

in Figure 2. The main spectral features can be extracted from the original HSI by using
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different kernel sizes and different number of convolutional kernels. Table 1 lists the size
and the number of convolutional kernels, stride and output size of the feature map.

Figure 2. Structure of the down-sampling in the proposed CNN model (Taking Indian Pines dataset
as an example).

Table 1. Parameters setting in CNN model.

Layer Kernelsize Number of
Kernels Padding Stride Output Size

Conv_1 5 × 5 × 200 20 0 1 141 × 141 × 20
Conv_2 3 × 3 × 20 30 0 2 70 × 70 × 30

Max Pooling_1 2 × 2 - - 2 35 × 35 × 30
Conv_3 5 × 5 × 30 40 1 1 33 × 33 × 40
Conv_4 3 × 3 × 40 60 0 2 16 × 16 × 60

Max Pooling_2 2 × 2 - - 2 8 × 8 × 60
Conv_5 5 × 5 × 60 60 0 1 4 × 4 × 60
Conv_6 3 × 3 × 60 60 0 1 2 × 2 × 60

Max Pooling_3 2 × 2 - - 2 1 × 1 × 60
ReLU 1 × 1 × 60

Softmax 60

2.2. Deconvolution and Unpooling

It is well known that the main features of the image can be effectively extracted by us-
ing the down-sampling technique with multiple convolutional kernels. If the whole image
is taken as the classification object, this obviously helps to improve the final classification
result. However, this is not enough for the HSI classification because an HSI often contains
numerous pixels belonging to different classes. In addition, spatial structure information
of the image is gradually lost as the number of convolution layers and pooling layer in-
creases. Previous work demonstrates that in the process of HSI classification, satisfactory
classification results are usually not obtained if only considering the spectral information
of an HSI. To address this problem, deconvolution (also known as transposed convolution)
and unpooling technique are used to restore the spatial structure of feature map and to
retrieve the missing image details.

Deconvolution is a transformation process used to reverse the effect of convolution on
recorded data, which has been widely used in signal processing and image processing. In
the convolutional layer, we expand the input matrix and the output matrix into column
vectors X and Y, respectively. For a given convolution kernel K, the sparse matrix C can be
derived, such that

Y = CX. (4)
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Deconvolution is to carry on the inverse operation to the above transformation Equation (4),
that is, through the matrix C and vector Y to get X. According to the sizes of the feature map
and the convolution kernel, one can easily obtain the following deconvolution operation

X = CTY (5)

The deconvolution operation, however, only restores the size of the matrix X rather
than each element value. In the traditional upsampling process, the interpolation or
resampling techniques are commonly used to generate smooth images, such as nearest
neighbor interpolation, bilinear interpolation, cubic convolution interpolation [52–54].
These techniques rescale the image to a specific size and replenish the information of
each pixel. However, the interpolation-based method blurs the boundary of the class
when smoothing the data. Unlike interpolation and resampling approaches, unpooling is
the reverse operation of the max pooling. Unpooling is to replenish 0 at all positions in
unpooling layers, except for the maximum feature. Thus, the spatial structure information
of maximum is well preserved.

After the downsampling network, a multi-scale upsampling feature recovery scheme is
adopted in the proposed SP-CNN framework, as shown in Figure 1. Corresponding to the
downsampling process, each upsampling block also consists of two deconvolutional layers
and an unpooling layer, and is accompanied by a batch normalization layer and a rectified
linear unit layer. Furthermore, each upsampling block corresponds to a downsampling block.

2.3. Superpixel Pooling

The commonly used CNN-based HSI classification methods convert the features
extracted from the last network layer into a one-dimensional vectors through global maxi-
mum pooling or global average pooling. Then, a fully connected neural network is utilized
to classify the obtained vectors at pixel-level by activating the learned features. For this
HSI classification framework, there are several issues to be further considered: (i) a large
number of training samples are needed to train classifiers with high accuracy. However, the
acquisition of labeled samples is usually expensive; (ii) the boundary and regional shape
information of geographic objects are gradually lost after continuous downsampling. This
will undoubtedly affect the final classification results. To address these issues, we design a
superpixel pooling layer before classifier, as shown in Figure 1.

In this study, we adopt the graph-based ERS approach to segment the HSIs into
superpixels, due to its advantages of fast implementation and good edge retention [25].
Since ERS was originally designed for image segmentation, it is necessary to execute
principal component analysis (PCA) algorithm in advance to reduce the dimension of
high-dimensional HSIs. We herein take the first principal component to generate the base
image because it contains the primary information of the raw data.

The homogeneity of superpixels implies that pixels in the same superpixel should
belong to the same class with higher probability. Therefore, it is reasonable to take su-
perpixels as a whole in the classification process. This will greatly reduce the number of
samples to be classified. Additionally, the feature of adaptive size and shape of superpixel
are more conducive to maintaining spatial structure information of the HSIs. The designed
superpixel pooling layer is illustrated in Figure 3.

Figure 3. The structure of superpixel pooling layer.
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Suppose that the feature map Z ∈ RW×H×C is input into the superpixel pooling layer,
where W represents the width, H the height and C the number of channels; the HSIs with
size of W × H is divided into M superpixels, and each superpixel Si contains ni pixels.
The output of superpixel pooling layer is a matrix, denoted by O ∈ RM×C. The pooling
function is defined as

f : Si → αi ∈ RC, i = 1, 2, · · ·M (6)

where αi,j is the arithmetic mean of the mean and the median of the j-th channel of the ni
pixels in the superpixel Si. The median vector used in Equation(6) is an attempt to reduce
the effect of singular values on this function.

In the superpixel pooling layer, taking each superpixel instead of the pixel as input to the
neural network has the advantages of (i) effective fusion of main spectral features learned from
downsampling and spatial structure information provided by superpixels, (ii) preservation of
spatial information in original HSIs, and (iii) effective reduction of samples to be classified.
Particularly, the third advantage also means that the proportion of labeled samples increases.
In other words, the adoption of superpixel pooling weakens the dependence of our proposal
on massive training samples. In addition, different from traditional pooling layer, superpixel
pooling does not require a pre-designed rectangular layout.

F = average_pooling{ZM,C|i : (7)

2.4. Transfer Learning between HSIs

To improve the training efficiency and the classification performance of deep learning
model with limited labeled samples, we apply transfer learning technique to the proposed
SP-CNN framework. It is well known that the excellent classification performance of deep
learning-based methods depends on the massive parameters and plenty of labeled samples
to balance the final classification results. This means that we need a long time to train the
designed model. Transfer learning can accelerate training process by transferring well-
trained parameters from the source domain to the target. In addition, the use of superpixel
pooling technique can effectively alleviate the problem which there are insufficient training
samples on both resource and target datasets. Figure 4 shows that, transfer learning is
composed of two parts: source and target. Specifically, the SP-CNN was first pre-trained
on the source HSI, and then it was fine-tuned on the target HSI by using fewer samples. As
the pre-trained model has already been very robust, new tasks can be rapidly accomplished
by setting a subtle learning rate.

Figure 4. Transfer learning on the SP-CNN. (a) Pre-training SP-CNN on source hyperspectral image
(HSI). (b) SP-CNN classifies for target HSI.

3. Experimental Results and Analysis

To verify the effectiveness of the proposed SP-CNN method, extensive experiments
were conducted on three public hyperspectral datasets, namely, Indian Pines, Pavia Univer-
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sity and Salinas. These three typical benchmarks are widely utilized to test the performance
of the HSI classification algorithms.

3.1. Datasets and Evaluation Indicators

Indian Pines dataset was collected by an airborne visible infrared imaging spectrom-
eter (AVIRIS) sensor in a pine field in the northwestern Indiana. This image consists
of 16 different categories, 145 × 145 pixels, and 200 bands. After removing background
points, there are 10,249 pixels to be classified. The imbalance between class sizes leads to
the difficulty of accurate classification.

Pavia University image was acquired by reflective optics system imaging spectrometer
(ROSIS) sensors at University of Pavia, Italy. It has nine classes, 610 × 340 pixels, and
103 bands. The spatial structure of each class in this dataset varies greatly, which brings
great challenges to classification.

The last dataset is the Salinas dataset. This dataset was collected by AVIRIS sensor from
the Salinas Valley in California. It is composed of 16 categories, 512× 217 pixels, and 204 bands.
In this image, there are two spatially adjacent classes whose spectra are very similar.

In all experiments conducted in this work, the classification results were evaluated by
adopting three commonly used indices, that is, overall accuracy (OA), average accuracy
(AA), and kappa coefficient (κ). To overcome the classification bias caused by random
marking, the mean and standard deviation of 10 independent runs were calculated as the
final classification results.

3.2. Classification Results and Analysis

The suggested method was compared with the other four state-of-the-art HSI clas-
sification approaches, namely, artificial neural network (ANN), CNN [55], convolutional
recurrent neural network (CRNN) [56], CNN based on pixel-pair features (CNN-PPF) [57],
spectral-spatial CNN (SS-CNN) [58], because these methods are based on CNN frame-
work [56–58] and adopt ANN as the final classifier. Tables 2–4 list the comparison results
of these algorithms on the three datasets.

Table 2. Classification accuracy (%) achieved by seven different methods on Indian Pines dataset.

Class Train/Test ANN CNN CRNN CNN-PPF SS-CNN SP-CNN

Alfalfa 3/43 34.65 ± 3.32 97.22 ± 0.42 100.00 100.00 100.00 100.00
Corn-notill 30/1398 65.58 ± 5.72 62.02 ± 2.84 70.03 ± 2.86 67.99 ± 4.72 71.29 ± 1.64 89.62 ± 0.92

Corn-mintill 30/800 43.59 ± 3.73 87.79 ± 0.79 85.37 ± 2.04 66.46 ± 1.48 66.46 ± 1.48 98.12 ± 0.02
Corn 30/207 34.30 ± 2.35 51.98 ± 5.88 76.21 ± 3.92 79.66 ± 1.44 75.33 ± 1.52 100.00

Grass-pasture 30/453 81.04 ± 4.28 78.53 ± 0.64 83.07 ± 0.80 90.53 ± 2.24 93.23 ± 0.21 99.77 ± 0.12
Grass-trees 30/700 93.28 ± 2.45 97.22 ± 0.29 97.22 ± 0.20 95.78 ± 0.64 96.67 ± 0.26 100.00

Grass-pasturemowed 2/26 65.22 ± 1.49 100.00 100.00 98.55 ± 0.08 94.45 ± 0.16 100.00
Hay-windrowed 30/488 95.83 ± 0.3 98.16 ± 0.16 99.78 ± 0.08 99.45 ± 0.06 100.00 99.55 ± 0.04

Oats 1/19 36.63 ± 5.05 100.00 100.00 100.00 100.00 100.00
Soybean-notill 30/942 61.92 ± 3.13 78.84 ± 1.26 52.27 ± 1.62 75.49 ± 6.21 78.69 ± 2.82 88.85 ± 1.37

Soybean-mintill 30/2425 78.95 ± 3.32 61.92 ± 5.88 61.90 ± 4.82 83.64 ± 1.24 87.64 ± 1.64 89.36 ± 1.82
Soybean-clean 30/563 55.37 ± 7.37 80.31 ± 0.84 82.21 ± 1.04 76.99 ± 1.44 63.97 ± 3.05 95.38 ± 0.84

Wheat 30/175 93.03 ± 0.95 95.97 ± 0.86 98.97 ± 0.16 100.00 100.00 99.42 ± 0.26
Woods 30/1235 95.34 ± 2.5 96.59 ± 0.24 99.58 ± 0.01 99.64 ± 0.11 99.68 ± 0.02 99.43 ± 0.06

Building-grass-trees 30/356 42.78 ± 12.13 63.05 ± 4.82 76.32 ± 2.54 98.30 ± 0.72 97.34 ± 0.29 99.43 ± 0.11
Stone-steel-towers 6/87 86.29 ± 1.39 98.67 ± 0.04 97.61 ± 0.75 99.09 ± 0.06 98.79 ± 0.06 100.00

OA 66.04 ± 5.83 73.89 ± 1.73 75.92 ± 1.88 82.38 ± 1.26 83.67 ± 0.84 94.45 ± 0.24
AA 60.77 ± 2.74 81.68 ± 1.90 82.75 ± 2.85 89.07 ± 2.07 88.97 ± 1.67 96.43 ± 0.14

Kappa 62.75 ± 1.12 71.28 ± 0.93 72.23 ± 0.82 81.23 ± 0.28 82.7 ± 1.29 93.44 ± 0.20
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Table 3. Statistical results of six methods on Pavia University dataset.

Class Train/Test ANN CNN CRNN CNN-PPF SS-CNN SP-CNN

Asphalt 30/6601 62.85 ± 12.37 87.26 ± 1.38 68.48 ± 2.32 86.76 ± 1.54 86.36 ± 2.25 91.13 ± 1.03
Meadows 30/18619 58.68 ± 2.23 83.53 ± 1.26 85.96 ± 1.63 81.36 ± 1.36 85.50 ± 1.02 98.72 ± 0.21

Gravel 30/2069 46.56 ± 9.28 98.20 ± 0.99 99.32 ± 0.08 99.15 ± 0.23 99.95 ± 0.02 99.67 ± 0.04
Trees 30/3034 53.45 ± 8.40 56.24 ± 1.93 71.63 ± 5.06 77.62 ± 1.17 79.13 ± 2.07 78.34 ± 3.06

Metal sheets 30/1315 88.82 ± 3.51 88.68 ± 0.72 94.13 ± 1.56 85.25 ± 1.56 85.13 ± 1.07 99.34 ± 0.06
Bare soil 30/4999 59.57 ± 6.12 95.24 ± 0.66 98.84 ± 0.05 97.02 ± 0.37 96.32 ± 0.17 97.10 ± 0.42
Bitumen 30/1300 88.81 ± 4.27 99.50 ± 0.02 100.0 100.0 100.0 100.0

Bricks 30/3652 76.16 ± 2.26 92.90 ± 0.87 93.68 ± 0.65 93.27 ± 0.52 94.49 ± 0.22 99.45 ± 0.03
Shadows 30/917 81.34 ± 4.02 79.05 ± 4.24 86.05 ± 1.04 87.31 ± 2.52 87.59 ± 1.42 88.45 ± 2.03

OA 65.78 ± 2.94 80.63 ± 0.75 82.84 ± 0.64 86.53 ± 0.28 88.02 ± 0.12 93.18 ± 0.12
AA 75.59 ± 3.57 86.96 ± 0.31 88.39 ± 0.25 89.01 ± 0.30 90.15 ± 0.18 93.78 ± 0.25

Kappa 57.65 ± 2.04 77.61 ± 0.20 80.84 ± 0.12 84.34 ± 0.26 85.24 ± 0.04 92.36 ± 0.13

Table 4. Summary of classification results of six classifiers on Salinas dataset.

Class Train/Test ANN CNN CRNN CNN-PPF SS-CNN SP-CNN

Weeds_1 30/1979 100.0 100.0 100.0 100.0 100.0 100.0
Weeds_2 30/3696 92.42 ± 0.13 99.27 ± 0.02 99.66 ± 0.04 99.90 ± 0.02 99.89 ± 0.01 99.89 ± 0.02
Fallow 30/1946 100.0 100.0 100.0 100.0 100.0 100.0

Fallow_P 30/1364 99.54 ± 0.03 99.29 ± 0.04 99.54 ± 0.07 99.62 ± 0.01 99.26 ± 0.02 99.89 ± 0.01
Fallow_S 30/2648 95.28 ± 0.53 98.35 ± 0.06 97.94 ± 1.34 99.38 ± 0.04 99.43 ± 0.08 98.45 ± 0.02
Stubble 30/3929 99.03 ± 0.38 99.42 ± 0.02 99.98 ± 0.01 99.97 ± 0.01 100.0 99.56 ± 0.02
Celery 30/3549 99.20 ± 0.12 99.84 ± 0.01 99.96 ± 0.01 99.92 ± 0.03 99.32 ± 0.04 99.26 ± 0.02

Grapes_U 30/11241 61.69 ± 2.53 79.30 ± 10.59 86.52 ± 3.11 86.73 ± 1.92 90.92 ± 1.43 95.63 ± 0.14
Soil 30/6173 97.32 ± 0.72 94.59 ± 1.84 98.40 ± 0.02 97.57 ± 0.05 99.96 ± 0.01 99.53 ± 0.02

Corn 30/3248 72.06 ± 7.72 73.92 ± 0.73 95.52 ± 0.40 96.12 ± 0.13 96.02 ± 0.20 99.64 ± 0.04
Lettuce_4wk 30/1038 91.23 ± 2.24 99.20 ± 0.01 99.20 ± 0.01 99.20 ± 0.21 99.10 ± 0.17 99.22 ± 0.06
Lettuce_5wk 30/1897 97.46 ± 0.03 100.0 100.0 100.0 100.0 100.0
Lettuce_6wk 30/886 95.24 ± 0.05 96.24 ± 0.04 96.44 ± 0.03 99.04 ± 0.07 99.28 ± 0.04 100.0
Lettuce_7wk 30/1040 91.75 ± 0.57 98.02 ± 0.92 96.38 ± 0.68 99.23 ± 0.63 100.0 100.0
Vineyard_U 30/7238 48.58 ± 5.27 40.81 ± 0.55 56.37 ± 7.88 71.54 ± 2.93 84.52 ± 1.06 87.36 ± 2.10
Vineyard_T 30/1777 91.37 ± 2.81 98.15 ± 0.29 99.03 ± 0.04 99.31 ± 0.12 99.66 ± 0.04 99.49 ± 0.02

OA 82.18 ± 1.92 88.22 ± 1.36 88.63 ± 0.20 90.24 ± 1.02 91.44 ± 0.19 95.99 ± 0.07
AA 89.14 ± 2.28 90.50 ± 0.31 91.22 ± 0.48 91.36 ± 0.25 92.66 ± 0.05 95.97 ± 0.06

Kappa 80.22 ± 1.62 87.88 ± 0.62 87.98 ± 0.05 89.57 ± 0.08 90.97 ± 0.13 95.46 ± 0.05

The classification results of several competitive algorithms on Indian Pines dataset are
reported in Table 2. Compared with SS-CNN, the classification accuracy of our method
achieves 94.45%, which is about 10% higher (94.45% vs. 84.58%). The SS-CNN method
is superior to CRNN and CNN approaches, due to the use of spatial information in
classification. CNN, CRNN, SS-CNN and SP-CNN methods outperform ANN because the
CNN-based framework can extract the main spectral features from raw data. Satisfactory
results on this dataset are not obtained by CNN, CRNN and SS-CNN when there are
no more than 30 labeled pixels per class. However, these three methods can still exhibit
superior classification performance in the case of 200 labeled pixels per class [55,56,58].
Noted that in this case, seven classes with no more than 400 pixels per class were ignored
in the classification. Experimental results of this image demonstrate that the proposed
SP-CNN method can classify the unbalanced dataset with limited labeled samples. The
classification result maps of these methods are shown in Figure 5.
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Figure 5. Indian Pines image. (a) False color image. The classification maps of (b) ANN, (c) CNN, (d)
CRNN, (e) CNN-PPF, (f) SS-CNN and (g) SP-CNN.

The classification statistics of six methods on Pavia University dataset are listed in
Table 3. According to the values of three evaluation indicators, our method has defeated
the other five algorithms. The utilization of spatial information in classification makes
the classification results of SS-CNN and SP-CNN methods better than those of other four
approaches. The suggested classification scheme, however, does not identify classes “Trees”
and “Shadows” well from other ground objects. This may be because, after removing the
background points, fragmented or strip-like class distributions result in the generation
of many superpixels with very small size, thus weakening the role of spatial structure
information in classification. Particularly for class “Trees”, the spectral-based classifiers,
ANN, CNN and CRNN also do not achieve good classification accuracy. This shows that
the spectrum of this class is complex. Although good classification results can be obtained
by marking more pixels in each class, it is worth studying how to improve the recognition
accuracy of this class under the deep learning framework in the case of limited labeled
samples. Figure 6 presents the visualization of the classification results in Table 3.

Figure 6. Pavia University dataset. (a) False color image. Classification maps of (b) ANN, (c) CNN,
(d) CRNN, (e) CNN-PPF, (f) SS-CNN and (g) SP-CNN.

Table 4 summarizes the classification results of six classifiers on Salinas dataset. The
main challenge for this dataset is to classify classes “Grapes_U” and “Vineyard_U” correctly,
because there is a slight spectral difference between these two spatially adjacent categories.
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It can be seen from Table 4, none of the six methods has satisfactory classification accuracy
for class “Vineyard_U”. As shown in Figure 7c–e, most of pixels of class “Vineyard_U”
were misclassified and incorrectly assigned to the class “Grapes_U”, especially for the
classifiers ANN and CNN. As was expected, three spectral-spatial classifiers, CNN-PPF,
SS-CNN and SP-CNN show good classification completion and achieve more than 90%
classification accuracy.

Figure 7. Slinas dataset. (a) False color image. The classification maps of (b) ANN, (c) CNN,
(d) CRNN, (e) CNN-PPF, (f) SS-CNN and (g) SP-CNN.

4. Parametric Analysis

In this section, we analyze the influence of the number of training samples on clas-
sification results, the comparison of the running time of six classifiers and the impact of
transfer learning on the efficiency of the proposed method, respectively. All experiments
were carried out on the computer with Intel i3 9100F CPU, 16GB Memory and NVIDIA
GEFORCE RTX 1660 GPU.

4.1. Impact of Different Labeled Samples on Classification Results

To further demonstrate the advantage of the framework, we compare the proposed
classification framework with five other competitors for different numbers of training
samples (per class) on three datasets. As the number of training samples increases, the
classification results of six methods are obviously getting better and better (Figure 8). The
main reason should be that with the increase of the number of training samples, the initial
parameter values gradually approximate the optimal values in the training process. As a
result, the classification ability of these classifiers is enhanced and satisfactory classification
results are obtained. For our method, the number of marked superpixels may be smaller
than the number of marked pixels, because it is possible that multiple labeled pixels are
in the same superpixel block. In addition, our method is still superior to the other five
classification algorithms on three datasets. In particular, there is a about 10% and 5% gap
between the remaining classifiers and our proposal on Indian Pines and Salinas images,
respectively. This indicates the necessity of inserting a superpixel pooling layer to the
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proposed framework. As expected, three CNN-based spectral-spatial classifiers, CNN-PPF,
SS-CNN and SP-CNN, outperform the spectral classification methods of ANN, CNN and
CRNN. It shows that the use of spatial information can improve classification results. As
seen from Figure 8, the classification accuracy of our method on three datasets exceeds 90%
when marking 20 pixels per class. This means the effectiveness of the scheme in the case of
limited labeled pixels.

Figure 8. Variation of classification accuracy with the increase of number of training samples.

4.2. Running Times

Running time is another important statistics to evaluate the effectiveness of HSI
classification algorithm. An effective and efficient classification algorithm means that it may
be applied in engineering field. Table 5 reports the running times of six HSI classification
algorithms on three images. The structure of neural network in CNN-based methods is
the same as that adopted in ANN. The running time of CNN is less than ANN because
the main spectral features, instead of original spectral information are fed into the neural
network. The use of recurrent technique in ANN results in an increase of computing time
of CRNN. Since CNN-PPF method takes more time to calculate the pixel-pair model, it is
more time-consuming. Compared with the other five methods, our method is time-saving.
This should benefit from the adoption of transfer learning strategy and the smaller data
size of the input network layer in our method.

Table 5. Running time (seconds) of six classification schemes on three datasets with no more than
30 labeled pixels per class.

Indian Pines Pavia University Salinas

ANN
Training 3200 3560 4800
Testing 3.2 4.25 3.26

CNN
Training 1800 2160 3600
Testing 0.21 0.37 0.26

CRNN
Training 2900 2480 4800
Testing 1.2 1.7 1.3

CNN-PPF
Training 21,600 3600 43,200
Testing 5 17 21

SS-CNN
Training 1620 630 1680
Testing 0.74 1 0.78

SP-CNN
Training 366 320 510
Testing 0.34 0.65 0.5

4.3. Influence of the Number of Superpixels

Another factor that affects classification results of our method is the number of su-
perpixel. Thus, far, the determination of the optimal number of superpixels still depends
on the experimental results. Figure 9 presents the change of the classification results of
our method with the increase of superpixel number on three datasets. There is a change of
about 1% on Pavia University and Salinas images when the number of superpixel increases
from 300 to 1500. This indicates that the proposed algorithm is relatively robust on these
two datasets. When the number of superpixels is more than 700, the classification results
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of Indian Pines image decrease sharply (about 4%). This may be due to the unbalanced
characterictic of the dataset and the small superpixel volume, which result in the increase
of the misclassification of the superpixels. Based on the experiments, in this work, the
number of superpixel is 700, 1300 and 700 for Indian Pines, Pavia University andSalinas
images, respectively.

Figure 9. Changes of classification accuracy with the increase of the number of superpixels.

4.4. Impact of Network Architecture and Transfer Learning on Efficiency

Generally, the increase of convolution layers means that the extracted spectral infor-
mation will be more accurate. However, this will take more computational time since more
parameters are involved. Table 6 lists the classification results and the running times of the
proposed SP-CNN method for different numbers of convolution layers on three images. In
Table 6, SP-CNN-4 represents that there are four convolutional layers, two pooling layers,
one superpixel pooling layer and one fully connected layer in the proposed framework.
With the increase of network depth, the number of used parameters and computational
time show an obvious growth trend. However, the improvement of classification results is
slow and insignificant. According to the classification results and running time. A six-layer
structure is adopted in the framework to avoid over-fitting and gradient problems.

Table 6. Overall accuracy and computational time (s) of SP-CNN for different network layers on
three datasets.

SP-CNN-4 SP-CNN-6 SP-CNN-8

Parameters ≈600,000 ≈900,000 ≈1,600,000

Indian Pines
92.34% 93.46% 93.57%
290 s 366 s 880 s

Pavia University 92.61% 93.18% 93.40%
280 s 320s 765 s

Salinas
95.51% 95.99% 96.12%
420 s 510 s 930 s

For the pre-specified classification accuracy, Table 7 shows the effect of transfer learn-
ing on training efficiency of the suggested SP-CNN method. The training times of SP-CNN
on three datasets are reported in the second column without using transfer learning. If
Indian Pines, Pavia University and Salinas images are, respectively, taken as the source
domain (pre-training model) and the remaining two images as the target, the training times
of SP-CNN on the other two datasets are listed in columns 3 to 5. When the parameters
well-trained on the University of Pavia images are transferred to the model that classifies
Salinas image, or versa, the fourth and fifth columns show that the training time of SP-CNN
on the target dataset is significantly reduced. However, the opposite conclusion is obtained
while Indian Pines image acts as the target dataset. It is probably because, unlike the other
two images, Indian Pines image is an unbalanced dataset. This makes the well-trained
parameters on the other two datasets unsuitable for the dataset.
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Table 7. Effect of transfer learning on training efficiency for three datasets.

Without
Pre-Training

Indian
Pines_PT

Pavia
University_PT Salinas_PT

Indian Pines
(>93.5%) 366 s / 560 s 768 s

Pavia University
(>93.2%) 760 s 626 s / 320 s

Salinas (>95.9%) 2060 s 1096 s 510 s /

5. Conclusions

In this work, we suggest a spectral-spatial deep learning model for HSI classification
based on CNN and superpixel. Different from the traditional CNN structure, an up-
sampling process is connected after down-sampling to recover the lost spatial structure
information while preserving the extracted spectral features. The extracted spectral features
and spatial structure information provided by superpixel are effectively fused in the
designed superpixel pooling layer. Furthermore, the homogeneity of superpixels allows to
regard each superpixel instead of a pixel as the basic input of classifier, thus reducing the
number of objects to be classified. For a fixed number of training samples, the reduction
of the object to be classified means an increase in the proportion of training samples.
This is the main reason why the proposed SP-CNN method can effectively classify the
HSI with limited training samples. At the same time, this idea may serve as a feasible
solution to the problem that the CNN-based HSI classification framework cannot achieve
better classification accuracy due to insufficient training samples. As with the traditional
CNN classification framework, the efficiency of the proposed SP-CNN method relies
on the optimization process of a large number of parameters. As expected, the use of
transfer learning technique in the proposed model significantly shortens the training time.
Therefore, this method can be applied to solve other practical problems in the field of remote
sensing. As our work effectively integrates the advantages of CNN architecture, superpixel
and transfer learning, the proposed SP-CNN method can classify the hyperspectral data
with a small number of training samples accurately and quickly. Extensive experimental
and comparative results on three benchmarks confirm the effectiveness and efficiency of
the SP-CCN.

Thus far, the optimal superpixel segmentation scale is still an experimental result and
is difficult to specify in advance. In the future, we would like to adopt the superpixel
merging technique to alleviate the dependence of the superpixel-level classification method
on the segmentation scale.
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