Low-Cost Automatic Slope Monitoring Using Vector Tracking Analyses on Live-Streamed Time-Lapse Imagery
Abstract
:1. Introduction
Site and Setup
2. Materials and Methods
2.1. PIV Image Analysis
2.2. The PIVlab
2.2.1. CLAHE
2.2.2. Intensity Capping
2.2.3. Multiple Interrogation Areas
3. Progressing PIVlab for Landslide Monitoring Applications
3.1. Amorphous & Multiple Regions of Interest
3.2. Image Registration
3.3. Live Monitoring with Dynamic Framerate
3.4. Cloud Detection
3.5. Morphological Filtering
3.5.1. Erosion Filters
- The pixel in the binary image is set to 0 if any pixel in the neighborhood () is 0.
- The pixel in the binary image is set to 1 if all pixels in the neighborhood are 1’s.
3.5.2. Dilation Filtering
- The pixel in the binary image is set to 1 if any pixel in the neighborhood is 1.
- The pixel in the binary image is set to 0 if all pixels in the neighborhood are 0’s.
3.6. Cosine Comparator
3.7. Validation of Time-Lapse Image Processing for Landslide Detection
4. Automatic Landslide Detection: Monitoring Slope Failure Development
5. Discussion
5.1. PIV Analyses in Dynamic Natural Environments
5.2. Recommendations for Optimizing PIV Analyses for Slope Monitoring Applications
5.3. The Potential for PIV Analyses for Slope Monitoring
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
PIV | Particle Image Velocimetry |
TLI | Time Lapsed Images |
IA | Interrogation Area |
CLAHE | Contrast Limited Adaptive Histogram Equalization |
ME | Morphological Element |
ROI | Region Of Interest |
DSLR | Digital Single-Lens Reflex |
LiPo | Lithium Polymer |
FFT | Fast-Fourier Transform |
iDFT | Inverse-Discrete Fourier Transform |
References
- Garianoab, S.L.; Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef] [Green Version]
- Reder, A.; Rianna, G.; Mercogliano, P.; Pagano, L. Assessing the potential effects of climate changes on landslide phenomena affecting pyroclastic covers in Nocera area (Southern Italy). Procedia Earth Planet. Sci. 2016, 16, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.; Rosser, N.J.; Afana, A.; Hunter, G. Can full-waveform of terrestrial laser scanning enhance our ability to monitor rock slope failure? In Proceedings of the 2013 International Symposium on Slope Stability in Open Pit Mining and Civil Engineering, Brisbane, Australia, 25–27 September 2013. [Google Scholar]
- Carlà, T.; Tofani, V.; Lombardi, L.; Raspini, F.; Bianchini, S.; Bertolo, D.; Thuegaz, P.; Casagli, N. Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment. Geomorphology 2019, 335, 62–75. [Google Scholar] [CrossRef]
- Pratesi, F.; Nolesini, T.; Bianchini, S.; Leva, D.; Lombardi, L.; Fanti, R.; Casagli, N. Early warning GBInSAR-based method for monitoring Volterra (Tuscany, Italy) city walls. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1753–1762. [Google Scholar] [CrossRef]
- Mayinger, F.; Feldmann, O. Optical Measurements. Techniques and Applications. In Optical Measurements: Techniques and Applications; Springer: Berlin/Heidelberg, Germany, 2001; pp. 337–353. [Google Scholar]
- Winter, M.; Peeling, D.; Palmer, D.; Peeling, J. Economic impacts of landslides and floods on a road network. AUC Geogr. 2012, 54, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Finlayson, A. Glacial conditioning and paraglacial sediment reworking in Glen Croe (the Rest and be Thankful), western Scotland. Proc. Geol. Assoc. 2020, 131, 138–154. [Google Scholar] [CrossRef]
- Sparkes, B.; Dunning, S.; Lim, M.; Winter, M.G. Characterisation of Recent Debris Flow Activity at the Rest and Be Thankful, Scotland; Advancing Culture of Living with Landslides; Workshop on World Landslide Forum: Ljubljana, Slovania, 2017. [Google Scholar]
- Brennen, C. Fundamentals of Multiphase Flow; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Huang, H.; Dabiri, D.; Gharib, M. On the errors of digital particle image velocimetry. Meas. Sci. Technol. 1997, 8, 1427–1440. [Google Scholar] [CrossRef] [Green Version]
- Thielicke, W. The Flapping Flight of Birds: Analysis and Application. Ph.D. Thesis, University of Groningen, Groningen, The Netherland, 2014. [Google Scholar]
- Okamoto, K.; Nishio, S.; Saga, T.; Kobayashi, T. Standard images for particle-image velocimetry. Meas. Sci. Technol. 2002, 11, 685. [Google Scholar] [CrossRef]
- Stamhuis, E.J. Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows. Aquat. Ecol. 2016, 40, 463–479. [Google Scholar] [CrossRef] [Green Version]
- Keane, R.; Adrian, R. Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 1992, 49, 191–215. [Google Scholar] [CrossRef]
- Thielicke, W.; Stamhuis, E.J. PIVlab—Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. J. Open Res. Softw. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; ter Haar Romeny, B.; Zimmerman, J.B.; Zuiderveld, K. Adaptive histogram equalization and its variations. Comput. Vis. Graph. Image Process. 1987, 39, 355–368. [Google Scholar] [CrossRef]
- Shavit, U.; Lowe, R.; Steinbuck, J. Intensity Capping: A simple method to improve cross-correlation PIV results. Exp. Fluids 2007, 42, 225–240. [Google Scholar] [CrossRef]
- Maragos, P. The Essential Guide to Image Processing; Chapter 3: Morphological filters; Academic Press: Cambridge, MA, USA, 2009; pp. 293–321. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.W.; Dunning, S.; Bainbridge, R.; Martin, J.; Diaz-Moreno, A.; Torun, H.; Jin, N.; Woodward, J.; Lim, M. Low-Cost Automatic Slope Monitoring Using Vector Tracking Analyses on Live-Streamed Time-Lapse Imagery. Remote Sens. 2021, 13, 893. https://doi.org/10.3390/rs13050893
Khan MW, Dunning S, Bainbridge R, Martin J, Diaz-Moreno A, Torun H, Jin N, Woodward J, Lim M. Low-Cost Automatic Slope Monitoring Using Vector Tracking Analyses on Live-Streamed Time-Lapse Imagery. Remote Sensing. 2021; 13(5):893. https://doi.org/10.3390/rs13050893
Chicago/Turabian StyleKhan, Muhammad Waqas, Stuart Dunning, Rupert Bainbridge, James Martin, Alejandro Diaz-Moreno, Hamdi Torun, Nanlin Jin, John Woodward, and Michael Lim. 2021. "Low-Cost Automatic Slope Monitoring Using Vector Tracking Analyses on Live-Streamed Time-Lapse Imagery" Remote Sensing 13, no. 5: 893. https://doi.org/10.3390/rs13050893
APA StyleKhan, M. W., Dunning, S., Bainbridge, R., Martin, J., Diaz-Moreno, A., Torun, H., Jin, N., Woodward, J., & Lim, M. (2021). Low-Cost Automatic Slope Monitoring Using Vector Tracking Analyses on Live-Streamed Time-Lapse Imagery. Remote Sensing, 13(5), 893. https://doi.org/10.3390/rs13050893