Remotely Sensed Seasonal Shoreward Intrusion of the East Australian Current: Implications for Coastal Ocean Dynamics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. The EAC’s Shoreward Intrusion: Time Series, Wavelet Analysis and Statistics
3.2. Quantitative Maps of the EAC: Location, Frequency, Main Path and Centerline
4. Discussion
4.1. On the Mechanism of EAC’s Seasonal Intrusion: Shift or Widening?
4.2. Implications for Coastal Upwelling
4.3. Implications for Shelf Circulation
4.4. Impacts of Climate Processes on the EAC Encroachment?
5. Conclusions
- The EAC undertakes a seasonal shoreward intrusion of ~8 km upstream of 29°40′S’;
- The EAC undertakes a seasonal widening of ~10 km downstream of 29°40′S;
- The minimum EAC-to-coast distance usually occurs during summer, ranging from 15 to 25 km; and
- The maximum EAC-to-coast distance occurs during winter, ranging from 30 to 40 km.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, S.; Huang, Z.; Wang, X.H.; Leplastrier, A. Quantitative Mapping of the East Australian Current Encroachment Using Time Series Himawari-8 Sea Surface Temperature Data. J. Geophys. Res. Ocean. 2020, 125, e2019JC015647. [Google Scholar] [CrossRef]
- Ridgway, K.R.; Godfrey, J.S. Mass and heat budgets in the East Australian Current: A direct approach. J. Geophys. Res. 1994, 99, 3231–3248. [Google Scholar] [CrossRef]
- Ridgway, K.R.; Godfrey, J.S. Seasonal cycle of the East Australian Current. J. Geophys. Res. C Ocean. 1997, 102, 22921–22936. [Google Scholar] [CrossRef] [Green Version]
- Archer, M.R.; Roughan, M.; Keating, S.R.; Schaeffer, A. On the Variability of the East Australian Current: Jet Structure, Meandering, and Influence on Shelf Circulation. J. Geophys. Res. Ocean. 2017, 122, 8464–8481. [Google Scholar] [CrossRef]
- Archer, M.R.; Keating, S.R.; Roughan, M.; Johns, W.E.; Lumpkin, R.; Beron-Vera, F.J.; Shay, L.K. The Kinematic Similarity of Two Western Boundary Currents Revealed by Sustained High-Resolution Observations. Geophys Res Lett. 2018, 45, 6176–6185. [Google Scholar] [CrossRef]
- Oke, P.R.; Roughan, M.; Cetina-Heredia, P.; Pilo, G.S.; Ridgway, K.R.; Rykova, T.; Archer, M.R.; Coleman, R.C.; Kerry, C.G.; Rocha, C.; et al. Revisiting the circulation of the East Australian Current: Its path, separation, and eddy field. Prog. Oceanogr. 2019, 176, 102139. [Google Scholar] [CrossRef]
- Oke, P.R.; Middleton, J.H. Nutrient enrichment off Port Stephens: The role of the East Australian Current. Cont. Shelf Res. 2001, 21, 587–606. [Google Scholar] [CrossRef] [Green Version]
- Roughan, M.; Middleton, J.H. On the East Australian Current: Variability, encroachment, and upwelling. J. Geophys. Res. C Ocean. 2004, 109, C7. [Google Scholar] [CrossRef] [Green Version]
- Everett, J.D.; Baird, M.E.; Roughan, M.; Suthers, I.M.; Doblin, M.A. Relative impact of seasonal and oceanographic drivers on surface chlorophyll a along a Western Boundary Current. Prog. Oceanogr. 2014, 120, 340–351. [Google Scholar] [CrossRef]
- Brieva, D.; Ribbe, J.; Lemckert, C. Is the East Australian Current causing a marine ecological hot-spot and an important fisheries near Fraser Island, Australia? Estuar. Coast. Shelf Sci. 2015, 153, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Roughan, M.; Middleton, J.H. A comparison of observed upwelling mechanisms off the east coast of Australia. Cont. Shelf Res. 2002, 22, 2551–2572. [Google Scholar] [CrossRef]
- Schaeffer, A.; Roughan, M.; Wood, J.E. Observed bottom boundary layer transport and uplift on the continental shelf adjacent to a western boundary current. J. Geophys. Res. Ocean. 2014, 119, 4922–4939. [Google Scholar] [CrossRef]
- Condie, S.A.; Mansbridge, J.V.; Cahill, M.L. Contrasting local retention and cross-shore transports of the East Australian Current and the Leeuwin Current and their relative influences on the life histories of small pelagic fishes. Deep. Res. Part II Top. Stud. Oceanogr. 2011, 58, 606–615. [Google Scholar] [CrossRef]
- Malcolm, H.A.; Davies, P.L.; Jordan, A.; Smith, S.D. Variation in sea temperature and the East Australian Current in the Solitary Islands region between 2001–2008. Deep. Res. Part II Top. Stud. Oceanogr. 2011, 58, 616–627. [Google Scholar] [CrossRef]
- Roughan, M.; Macdonald, H.S.; Baird, M.E.; Glasby, T.M. Modelling coastal connectivity in a Western Boundary Current: Seasonal and inter-annual variability. Deep. Res. Part II Top. Stud. Oceanogr. 2011, 58, 628–644. [Google Scholar] [CrossRef]
- Young, J.W.; Hobday, A.J.; Campbell, R.A.; Kloser, R.J.; Bonham, P.I.; Clementson, L.A.; Lansdell, M.J. The biological oceanography of the East Australian Current and surrounding waters in relation to tuna and billfish catches off eastern Australia. Deep. Res. Part II Top. Stud. Oceanogr. 2011, 58, 720–733. [Google Scholar] [CrossRef]
- Schaeffer, A.; Roughan, M.; Jones, E.M.; White, D. Physical and biogeochemical spatial scales of variability in the East Australian Current separation from shelf glider measurements. Biogeosciences 2016, 13, 1967–1975. [Google Scholar] [CrossRef] [Green Version]
- Bull, C.Y.S.; Kiss, A.E.; Jourdain, N.C.; England, M.H.; van Sebille, E. Wind Forced Variability in Eddy Formation, Eddy Shedding, and the Separation of the East Australian Current. J. Geophys. Res. Ocean. 2017, 122, 9980–9998. [Google Scholar] [CrossRef] [Green Version]
- Bowen, M.M.; Wilkin, J.L.; Emery, W.J. Variability and forcing of the East Australian Current. J. Geophys. Res. Ocean. 2005, 110, C3. [Google Scholar] [CrossRef] [Green Version]
- Mata, M.M.; Tomczak, M.; Wijffels, S.; Church, J.A. East Australian Current volume transports at 30°S: Estimates from the World Ocean Circulation Experiment hydrographic sections PR11/P6 and the PCM3 current meter array. J. Geophys. Res. Ocean. 2000, 105, 28509–28526. [Google Scholar] [CrossRef]
- Mata, M.M.; Wijffels, S.E.; Church, J.A.; Tomczak, M. Eddy shedding and energy conversions in the East Australian Current. J. Geophys. Res. Ocean. 2006, 111, C9. [Google Scholar] [CrossRef] [Green Version]
- Ridgway, K.R.; Coleman, R.C.; Bailey, R.J.; Sutton, P. Decadal variability of East Australian Current transport inferred from repeated high-density XBT transects, a CTD survey and satellite altimetry. J. Geophys. Res. Ocean. 2008, 113, C8. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, A.; Archer, M.R.; Baumard, Q.; Roughan, M.; Kerry, C. An assessment of the East Australian Current as a renewable energy resource. J. Mar. Syst. 2020, 204, 103285. [Google Scholar] [CrossRef]
- Wilkin, J.L.; Zhang, W.G. Modes of mesoscale sea surface height and temperature variability in the East Australian current. J. Geophys. Res. Ocean. 2007, 112, C1. [Google Scholar] [CrossRef] [Green Version]
- Roughan, M.; Keating, S.R.; Schaeffer, A.; Cetina Heredia, P.; Rocha, C.; Griffin, D.; Robertson, R.; Suthers, I.M. A tale of two eddies: The biophysical characteristics of two contrasting cyclonic eddies in the East Australian Current System. J. Geophys. Res. Ocean. 2017, 122, 2494–2518. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, A.; Gramoulle, A.; Roughan, M.; Mantovanelli, A. Characterizing frontal eddies along the East Australian Current from HF radar observations. J. Geophys. Res. Ocean. 2017, 122, 3964–3980. [Google Scholar] [CrossRef]
- Schaeffer, A.; Roughan, M.; Morris, B.D. Cross-Shelf Dynamics in a Western Boundary Current Regime: Implications for Upwelling. J. Phys. Oceanogr. 2013, 43, 1042–1059. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, X.H. Mapping the spatial and temporal variability of the upwelling systems of the Australian south-eastern coast using 14-year of MODIS data. Remote Sens. Environ. 2019, 227, 90–109. [Google Scholar] [CrossRef]
- Oke, P.R.; Middleton, J.H. Topographically induced upwelling off Eastern Australia. J. Phys. Oceanogr. 2000, 30, 512–531. [Google Scholar] [CrossRef]
- Rossi, V.; Schaeffer, A.; Wood, J.; Galibert, G.; Morris, B.; Sudre, J.; Waite, A.M. Seasonality of sporadic physical processes driving temperature and nutrient high-frequency variability in the coastal ocean off southeast Australia. J. Geophys. Res. Ocean. 2014, 119, 445–460. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.E.; Schaeffer, A.; Roughan, M.; Tate, P.M. Seasonal variability in the continental shelf waters off southeastern Australia: Fact or fiction? Cont. Shelf Res. 2016, 112, 92–103. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Feng, M. Remotely sensed spatial and temporal variability of the Leeuwin Current using MODIS data. Remote Sens. Environ. 2015, 166, 214–232. [Google Scholar] [CrossRef]
- Ridgway, K.R. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Ridgway, K.R. Seasonal circulation around Tasmania: An interface between eastern and western boundary dynamics. J. Geophys. Res. Ocean. 2007, 112, C10. [Google Scholar] [CrossRef]
- Weiss, A. Topographic position and landforms analysis. In Proceedings of the ESRI User Conference, San Diego, CA, USA, 9–13 June 2001. [Google Scholar]
- Ridgway, K.R.; Dunn, J.R. Mesoscale structure of the mean East Australian Current System and its relationship with topography. Prog. Oceanogr. 2003, 56, 189–222. [Google Scholar] [CrossRef]
- Cetina-Heredia, P.; Roughan, M.; Van Sebille, E.; Coleman, M.A. Long-term trends in the East Australian Current separation latitude and eddy driven transport. J. Geophys. Res. Ocean. 2014, 119, 4351–4366. [Google Scholar] [CrossRef] [Green Version]
- Walton, C.C.; Pichel, W.G.; Sapper, J.F.; May, D.A. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. Ocean. 1998, 103, 27999–28012. [Google Scholar] [CrossRef]
- Beggs, H.; Majewski, L.; Griffin, C.; Verein, R.; Sakov, P.; Huang, X.; Garde, L.; Tingwell, C. Report to GHRSST13 from Australia—Bluelink and IMOS. In Proceedings of the GHRSST XIII Science Team Meeting, Tokyo, Japan, 8 June 2012. [Google Scholar]
- Beggs, H.; Zhong, A.; Warren, G.; Alves, O.; Brassington, G.; Pugh, T. RAMSSA-An operational, high-resolution, Regional Australian Multi-Sensor Sea surface temperature Analysis over the Australian region. Aust. Meteorol. Oceanogr. J. 2011, 61, 1. [Google Scholar] [CrossRef]
- Huang, Z.; Hu, J.; Shi, W. Mapping the coastal upwelling east of taiwan using geostationary satellite data. Remote Sens. 2021, 13, 170. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A Practical Guide to Wavelet Analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; San Liang, X.; Weisberg, R.H. Rectification of the bias in the wavelet power spectrum. J. Atmos. Ocean. Technol. 2007, 24, 2093–2102. [Google Scholar] [CrossRef]
- Harris, P.; Heap, A.D.; Passlow, V.; Sbaffi, L.; Fellows, M.; Porter-Smith, R.; Buchanan, C.; Daniell, J. Geomorphic Features of the Continental Margin of Australia; Geoscience Australia: Canberra, Australia, 2005. [Google Scholar]
- Munk, W.H. On the wind-driven ocean circulation. J. Meteorol. 1950, 7, 80–93. [Google Scholar] [CrossRef]
- Beal, L.M.; Elipot, S. Broadening not strengthening of the Agulhas Current since the early 1990s. Nature 2016, 540, 570–573. [Google Scholar] [CrossRef] [PubMed]
- Qiu, B.; Chen, S. Seasonal modulations in the Eddy Field of the South Pacific Ocean. J. Phys. Oceanogr. 2004, 34, 1515–1527. [Google Scholar] [CrossRef] [Green Version]
- Everett, J.D.; Baird, M.E.; Oke, P.R.; Suthers, I.M. An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea. Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Kerry, C.; Roughan, M. Downstream Evolution of the East Australian Current System: Mean Flow, Seasonal, and Intra-annual Variability. J. Geophys. Res. Ocean. 2020, 125, e2019JC015227. [Google Scholar] [CrossRef]
- Guo, X.; Hukuda, H.; Miyazawa, Y.; Yamagata, T. A triply nested ocean model for simulating the Kuroshio-Roles of horizontal resolution on JEBAR. J. Phys. Oceanogr. 2003, 33, 146–169. [Google Scholar] [CrossRef]
- Bhatt, V. Modelling Dynamics of the East Australian Current and the Subtropical Mode Water Off East Coast of Australia. Ph.D. Thesis, The University of New South Wales, Canberra, Australia, 2010. [Google Scholar]
- Oke, P.R.; Schiller, A.; Griffin, D.A.; Brassington, G.B. Ensemble data assimilation for an eddy-resolving ocean model of the Australian region. Q. J. R. Meteorol. Soc. 2005, 131, 3301–3311. [Google Scholar] [CrossRef] [Green Version]
- Oke, P.R.; Brassington, G.B.; Griffin, D.A.; Schiller, A. The Bluelink ocean data assimilation system (BODAS). Ocean Model. 2008, 21, 46–70. [Google Scholar] [CrossRef] [Green Version]
- Sarkisyan, A.S.; Ivanov, V.F. Joint Effect of Baroclinicity and Bottom Relief As an Important Factor in the Dynamics of Sea Currents. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 1971, 7, 173–188. [Google Scholar]
- Mertz, G.; Wright, D.G. Interpretations of the JEBAR Term. J. Phys. Oceanogr. 1992, 22, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Roughan, M.; Oke, P.R.; Middleton, J.H. A modeling study of the climatological current field and the trajectories of upwelled particles in the East Australian Current. J. Phys. Oceanogr. 2003, 33, 2551–2564. [Google Scholar] [CrossRef] [Green Version]
- Schaeffer, A.; Roughan, M. Influence of a western boundary current on shelf dynamics and upwelling from repeat glider deployments. Geophys. Res. Lett. 2015, 42, 121–128. [Google Scholar] [CrossRef]
- Holbrook, N.J.; Goodwin, I.D.; McGregor, S.; Molina, E.; Power, S.B. ENSO to multi-decadal time scale changes in East Australian Current transports and Fort Denison sea level: Oceanic Rossby waves as the connecting mechanism. Deep. Res. Part II Top. Stud. Oceanogr. 2011, 58, 547–558. [Google Scholar] [CrossRef]
- Wijffels, S.; Meyers, G. An intersection of oceanic waveguides: Variability in the Indonesian throughflow region. J. Phys. Oceanogr. 2004, 34, 1232–1253. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Huang, Z.; Wang, X.H. Remotely Sensed Seasonal Shoreward Intrusion of the East Australian Current: Implications for Coastal Ocean Dynamics. Remote Sens. 2021, 13, 854. https://doi.org/10.3390/rs13050854
Xie S, Huang Z, Wang XH. Remotely Sensed Seasonal Shoreward Intrusion of the East Australian Current: Implications for Coastal Ocean Dynamics. Remote Sensing. 2021; 13(5):854. https://doi.org/10.3390/rs13050854
Chicago/Turabian StyleXie, Senyang, Zhi Huang, and Xiao Hua Wang. 2021. "Remotely Sensed Seasonal Shoreward Intrusion of the East Australian Current: Implications for Coastal Ocean Dynamics" Remote Sensing 13, no. 5: 854. https://doi.org/10.3390/rs13050854
APA StyleXie, S., Huang, Z., & Wang, X. H. (2021). Remotely Sensed Seasonal Shoreward Intrusion of the East Australian Current: Implications for Coastal Ocean Dynamics. Remote Sensing, 13(5), 854. https://doi.org/10.3390/rs13050854