Mapping the Coastal Upwelling East of Taiwan Using Geostationary Satellite Data
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area, Study Period, and Its Climate
2.2. Wind Data, Upwelling Index and Significant Upwelling-favorable Wind Events
- ≥5 days of positive UI, satisfying one of the following conditions:
- ≥5 days of consecutive positive UI;
- ≥3 days of consecutive positive UI, followed by 1 day of negative UI, then followed by ≥2 days of consecutive positive UI;
- ≥4 days of consecutive positive UI, followed by 2 days of negative UI, then followed by ≥3 days of consecutive positive UI;
- ≥5 days of consecutive positive UI, followed by 3 days of negative UI, then followed by ≥5 days of consecutive positive UI.
- The cumulative UI for the first five days ≥2.0 m2 s−1
2.3. Himawari-8 SST Data and Upwelling Mapping
2.4. Analyzing Upwelling Characteristics
3. Results
3.1. Coastal Upwelling with Significant Upwelling-Favorable Wind Events
3.2. Upwelling Maps
3.3. Upwelling Characteristics
4. Discussion
5. Conclusions
- Wind-driven upwelling occurs along the entire Taiwan east coast during the summer monsoon season;
- There are three board upwelling centers along the Taiwan east coast: north, central, and south;
- The upwelling around the northern center has the longest upwelling season, lasting from May to September;
- The upwelling extents are larger between June and August during the height of the summer monsoon.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McGregor, H.V.; Dima, M.; Fischer, H.W.; Mulitza, S. Rapid 20th-century increase in coastal upwelling off Northwest Africa. Science 2007, 315, 637–639. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Gouhier, T.C.; Menge, B.A.; Ganguly, A.R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 2015, 518, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Wang, X.H. Progress on upwelling studies in the China seas. Rev. Geophys. 2016, 54, 653–673. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, X.H. Mapping the spatial and temporal variability of the upwelling systems of the Australian southeastern coast using 14-year of MODIS data. Remote Sens. Environ. 2019, 227, 90–109. [Google Scholar] [CrossRef]
- Kampf, J.; Doubell, M.; Griffin, D.; Matthews, R.L.; Ward, T.M. Evidence of a large seasonal coastal upwelling system along the southern shelf of Australia. Geophys. Res. Lett. 2004, 31, L09310. [Google Scholar] [CrossRef] [Green Version]
- Varela, R.; Alvarez, I.; Santos, F.; de Castro, M.; Gomez-Gesteira, M. Has upwelling strengthened along worldwide coasts over 1982–2010? Sci. Rep. 2015, 5, 10016. [Google Scholar] [CrossRef]
- Chang, Y.L.; Wu, C.R.; Oey, L.Y. Bimodal behavior of the seasonal upwelling off the northeastern coast of Taiwan. J. Geophys. Res. Ocean. 2009, 114, C03027. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.L.; Oey, L.Y.; Wu, C.R.; Lu, H.F. Why are there upwelling on the northern shelf of Taiwan under northeasterly winds? J. Phys. Oceanogr. 2010, 40, 1405–1417. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.W.; Liu, C.C. Spatiotemporal variation of cold eddies in the upwelling zone off Northeastern Taiwan revealed by the Geostationary satellite imagery of ocean color and sea surface temperature. Sustainability 2019, 11, 6979. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Huang, D. Short-term variations in the surface upwelling off Northeastern Taiwan observed via satellite data. J. Geophys. Res. Ocean. 2019, 124, 939–954. [Google Scholar] [CrossRef]
- Lyu, K.W.; Hu, J.Y.; Yang, X.Y. Spatial patterns in seasonal variability of sea surface wind over the South China Sea and its adjacent ocean. J. Trop. Oceanogr. 2012, 31, 41–47, (In Chinese with English Abstract). [Google Scholar]
- Hu, J.; Kawamura, H.; Hong, H.; Pan, W. A review of research on the upwelling in the Taiwan Strait. Bull. Mar. Sci. 2003, 73, 605–628. [Google Scholar]
- Jiang, Y.; Chai, F.; Wan, Z.; Zhang, X.; Hong, H. Characteristics and mechanisms of the upwelling in the southern Taiwan Strait: A three-dimensional numerical model study. J. Oceanogr. 2011, 67, 699–708. [Google Scholar] [CrossRef]
- Chao, S.Y. Circulation of the East China Sea, a numerical study. J. Oceanogr. 1991, 42, 273–295. [Google Scholar]
- McClatchie, S.; Middleton, J.F.; Ward, T.M. Water mass analysis and alongshore variation in upwelling intensity in the eastern Great Australian Bight. J. Geophys. Res. Ocean. 2006, 111, C08007. [Google Scholar] [CrossRef] [Green Version]
- Roughan, M.; Middleton, J.H. A comparison of observed upwelling mechanisms off the east coast of Australia. Cont. Shelf Res. 2002, 22, 2551–2572. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar]
- Kurihara, Y.; Murakami, H.; Kachi, M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophys. Res. Lett. 2016, 43, 1234–1240. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Kawamura, H.; Li, C.; Hong, H.; Jiang, Y. Review on current and seawater volume transport through the Taiwan Strait. J. Oceanogr. 2010, 66, 591–610. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wan, R.; Li, B.; Wei, X.; Tang, J. Using remote sensing for study of temperature and salinity of surface sea water surrounding Taiwan. Mar. Geol. Front. 2017, 33, 41–46, (In Chinese with English Abstract). [Google Scholar]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Toba, Y.; Iida, N.; Kawamura, H.; Ebuchi, N.; Jones, I.S.F. Wave dependence of sea surface wind stress. J. Phys. Oceanogr. 1990, 20, 705–721. [Google Scholar] [CrossRef]
- Dabuleviciene, T.; Kozlov, I.; Vaiciute, D.; Dailidiene, I. Remote sensing of coastal upwelling in the south-eastern Baltic Sea: Statistical properties and implications for the coastal environment. Remote Sens. 2018, 10, 1752. [Google Scholar] [CrossRef] [Green Version]
- Gill, P.C.; Morrice, M.G.; Page, B.; Pirzl, R.; Levings, A.H.; Coyne, M. Blue whale habitat selection and within-season distribution in a regional upwelling system off southern Australia. Mar. Ecol. Prog. Ser. 2011, 421, 243–263. [Google Scholar] [CrossRef] [Green Version]
- Oke, P.R.; Griffin, D. The cold-core eddy and strong upwelling off the coast of New South Wales in early 2007. Deep-Sea Res. II 2011, 58, 574–591. [Google Scholar] [CrossRef]
- Oke, P.R.; Middleton, J.H. Nutrient enrichment off Port Stephens: The role of the East Australian Current. Cont. Shelf Res. 2001, 21, 587–606. [Google Scholar] [CrossRef] [Green Version]
- Roughan, M.; Oke, P.R.; Middleton, J.F. A modelling study of the climatological current field and the trajectories of upwelled particles in the east Australian current. J. Phys. Oceanogr. 2003, 33, 2551–2564. [Google Scholar] [CrossRef] [Green Version]
- Willis, J.; Hobday, A.J. Influence of upwelling on movement of southern bluefin tuna (Thunnus maccoyii) in the Great Australian Bight. Mar. Freshw. Res. 2007, 58, 699–708. [Google Scholar] [CrossRef]
- Weiss, A.D. Topographic Position and Landforms Analysis. In Proceedings of the ESRI International User Conference, San Diego, CA, USA, 9–13 July 2001. [Google Scholar]
- Huang, Z.; Feng, M. Remotely sensed spatial and temporal variability of the Leeuwin Current using MODIS data. Remote Sens. Environ. 2015, 166, 214–232. [Google Scholar] [CrossRef]
- Xie, S.; Huang, Z.; Wang, X. Quantitative mapping of the East Australian Current encroachment using time series Himawari-8 sea surface temperature data. J. Geophys. Res. Ocean. 2020, 125, e2019JC015647. [Google Scholar] [CrossRef]
- Murakami, H. Ocean color estimation by Himawari-8/AHI. In Proceedings of the SPIE 9878, Remote Sensing of the Oceans and Inland Waters: Techniques, Applications, and Challenges, New Delhi, India, 4–7 April 2016; Curran Associates, Inc.: Red Hook, NY, USA, 2016; p. 987810. [Google Scholar]
- Zhang, W.Z.; Wang, H.; Chai, F.; Qiu, G. Physical drivers of chlorophyll variability in the open South China Sea. J. Geophys. Res. Ocean. 2016, 121, 7123–7140. [Google Scholar] [CrossRef]
- Caruso, M.J.; Gawarkiewicz, G.G.; Beardsley, R.C. Interannual variability of the Kuroshio intrusion in the South China Sea. J. Oceanogr. 2006, 62, 559–575. [Google Scholar] [CrossRef]
- Hu, J.; Kawamura, H.; Hong, H.; Qi, Y. A review on the currents in the South China Sea: Seasonal circulation, South China Sea Warm Current and Kuroshio intrusion. J. Oceanogr. 2000, 56, 607–624. [Google Scholar] [CrossRef]
- Nan, F.; Xue, H.; Yu, F. Kuroshio intrusion into the South China Sea: A review. Prog. Oceanogr. 2015, 137, 314–333. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Chai, F.; Pettigrew, N.; Xu, D.; Shi, M.; Xu, J. Kuroshio intrusion and the circulation in the South China Sea. J. Geophys. Res. Ocean. 2004, 109, C02017. [Google Scholar] [CrossRef] [Green Version]
Location | ID | Year | Number of Wind-Event Days | Upwelling Days | Non-Upwelling Days | UI5 1 (m2 s−1) | Mean UI (m2 s−1) | Detection Rate2 |
---|---|---|---|---|---|---|---|---|
North | 1 | 2015 | 18 | 16 | 2 | 18.54 | 1.36 | 88.89 |
2 | 7 | 8 | 0 | 14.42 | 2.19 | 100.00 | ||
3 | 2016 | 10 | 7 | 1 | 4.08 | 1.53 | 87.50 | |
4 | 5 | 2 | 1 | 3.07 | 0.61 | 66.67 | ||
5 | 48 | 42 | 2 | 11.82 | 1.48 | 95.45 | ||
6 | 12 | 12 | 0 | 7.53 | 0.85 | 100.00 | ||
7 | 5 | 6 | 0 | 16.68 | 3.34 | 100.00 | ||
8 | 2017 | 7 | 10 | 0 | 2.52 | 0.51 | 100.00 | |
9 | 6 | 3 | 0 | 2.71 | 0.47 | 100.00 | ||
10 | 8 | 8 | 0 | 5.80 | 1.06 | 100.00 | ||
11 | 41 | 32 | 3 | 5.12 | 1.58 | 91.43 | ||
12 | 16 | 16 | 0 | 3.06 | 0.85 | 100.00 | ||
13 | 7 | 9 | 0 | 6.68 | 1.08 | 100.00 | ||
14 | 14 | 14 | 1 | 5.62 | 0.86 | 93.33 | ||
15 | 2018 | 35 | 31 | 0 | 5.76 | 0.60 | 100.00 | |
16 | 13 | 11 | 1 | 7.31 | 1.08 | 91.67 | ||
17 | 14 | 14 | 0 | 3.27 | 1.10 | 100.00 | ||
18 | 37 | 21 | 6 | 2.58 | 1.12 | 77.78 | ||
19 | 2019 | 9 | 7 | 0 | 4.12 | 1.42 | 100.00 | |
20 | 14 | 11 | 3 | 5.26 | 1.01 | 78.57 | ||
21 | 14 | 11 | 3 | 17.08 | 1.81 | 78.57 | ||
Centre | 1 | 2015 | 14 | 12 | 1 | 22.16 | 1.76 | 92.31 |
2 | 11 | 2 | 6 | 3.56 | 0.45 | 25.00 | ||
3 | 2016 | 6 | 6 | 1 | 6.55 | 1.28 | 85.71 | |
4 | 48 | 38 | 1 | 5.35 | 0.09 | 97.44 | ||
5 | 2017 | 8 | 8 | 0 | 4.38 | 0.98 | 100.00 | |
6 | 63 | 46 | 5 | 2.24 | 0.38 | 90.20 | ||
7 | 5 | 5 | 3 | 2.89 | 0.58 | 62.50 | ||
8 | 2018 | 10 | 5 | 6 | 2.83 | 0.23 | 45.45 | |
9 | 21 | 19 | 3 | 2.47 | 0.46 | 86.36 | ||
10 | 12 | 9 | 2 | 9.10 | 1.04 | 81.82 | ||
11 | 16 | 9 | 0 | 2.02 | 1.14 | 100.00 | ||
12 | 2019 | 5 | 6 | 2 | 3.40 | 0.68 | 75.00 | |
13 | 17 | 13 | 2 | 2.08 | 0.64 | 86.67 | ||
14 | 9 | 5 | 5 | 3.78 | 0.46 | 50.00 | ||
South | 1 | 2015 | 21 | 14 | 1 | 10.02 | 1.34 | 93.33 |
2 | 11 | 7 | 0 | 27.78 | 3.15 | 100.00 | ||
3 | 10 | 5 | 1 | 5.98 | 1.41 | 83.33 | ||
4 | 2016 | 34 | 25 | 6 | 3.53 | 0.94 | 80.65 | |
5 | 16 | 15 | 0 | 22.17 | 1.87 | 100.00 | ||
6 | 6 | 6 | 0 | 8.58 | 1.44 | 100.00 | ||
7 | 2017 | 27 | 20 | 2 | 9.26 | 1.30 | 90.91 | |
8 | 19 | 17 | 0 | 22.61 | 1.84 | 100.00 | ||
9 | 2018 | 8 | 7 | 0 | 14.60 | 2.22 | 100.00 | |
10 | 7 | 4 | 0 | 11.51 | 2.06 | 100.00 | ||
11 | 26 | 11 | 3 | 2.91 | 1.21 | 78.57 | ||
12 | 2019 | 6 | 4 | 3 | 2.46 | 0.50 | 57.14 | |
13 | 58 | 42 | 3 | 4.23 | 0.92 | 93.33 | ||
14 | 11 | 4 | 2 | 14.78 | 2.07 | 66.67 | ||
15 | 5 | 4 | 3 | 2.88 | 0.58 | 57.14 |
Location | Number of Wind Events | Number of Wind-Event Days | Mean (Median) UI (m2 s−1) | Upwelling Days | Non-Upwelling Days | Uncertainty Days |
---|---|---|---|---|---|---|
North | 21 | 340 | 1.21 (0.80) | 291 | 23 | 89 |
Central | 14 | 245 | 0.56 (0.40) | 183 | 37 | 67 |
South | 15 | 265 | 1.37 (0.99) | 185 | 24 | 101 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Z.; Hu, J.; Shi, W. Mapping the Coastal Upwelling East of Taiwan Using Geostationary Satellite Data. Remote Sens. 2021, 13, 170. https://doi.org/10.3390/rs13020170
Huang Z, Hu J, Shi W. Mapping the Coastal Upwelling East of Taiwan Using Geostationary Satellite Data. Remote Sensing. 2021; 13(2):170. https://doi.org/10.3390/rs13020170
Chicago/Turabian StyleHuang, Zhi, Jianyu Hu, and Weian Shi. 2021. "Mapping the Coastal Upwelling East of Taiwan Using Geostationary Satellite Data" Remote Sensing 13, no. 2: 170. https://doi.org/10.3390/rs13020170
APA StyleHuang, Z., Hu, J., & Shi, W. (2021). Mapping the Coastal Upwelling East of Taiwan Using Geostationary Satellite Data. Remote Sensing, 13(2), 170. https://doi.org/10.3390/rs13020170