Long-Term Changes in the Unique and Largest Seagrass Meadows in the Bohai Sea (China) Using Satellite (1974–2019) and Sonar Data: Implication for Conservation and Restoration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Sonar Survey of the Seagrass Distribution in 2018
2.3. Seagrass Distribution Changes Inferred from Satellite Remote-Sensing Data
2.3.1. Satellite Image Analysis
2.3.2. Accuracy Assessment
2.4. Field Survey of Eelgrass Population
2.5. Statistical Analyses
3. Results
3.1. Sonar Survey of Seagrass Distribution in 2018
3.2. Seagrass Distribution Changes Inferred from Satellite Remote-Sensing Data
3.3. Field Survey of Eelgrass Population
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Jackson, E.L.; Rowden, A.A.; Attrill, M.J.; Bossey, S.J.; Jones, M.B. The importance of seagrass beds as a habitat for fishery species. Oceanogr. Mar. Biol. 2001, 39, 269–303. [Google Scholar]
- Duffy, J.E. Biodiversity and the functioning of seagrass ecosystems. Mar. Ecol. Prog. Ser. 2006, 311, 233–250. [Google Scholar] [CrossRef] [Green Version]
- Verweij, M.C.; Ivan, N.; Ingmar, H.; Ruseler, S.M.; Mason, P.R.D. Seagrass nurseries contribute to coral reef populations. Limnol. Oceanogr. 2008, 53, 1540–1547. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Tol, S.J.; Coles, R.G.; Congdon, B.C. Dugong dugon feeding in tropical Australian seagrass meadows: Implications for conservation planning. PeerJ 2016, 4, e2194. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.D.; Fry, B.; Becker, A.; Moltschaniwskyj, N. Recruitment and connectivity influence the role of seagrass as a penaeid nursery habitat in a wave dominated estuary. Sci. Tot. Environ. 2017, 584–585, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Waycott, M.; Duarte, C.M.; Carruthers, T.J.; Orth, R.J.; Dennison, W.C.; Olyarnik, S.; Calladine, A.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12377–12381. [Google Scholar] [CrossRef] [Green Version]
- Mumby, P.J.; Green, E.P.; Edwards, A.J.; Clark, C.D. The cost-effectiveness of remote sensing for tropical coastal resources assessment and management. J. Environ. Manag. 1999, 55, 157–166. [Google Scholar] [CrossRef]
- Lyons, M.B.; Roelfsema, C.M.; Phinn, S.R. Towards understanding temporal and spatial dynamics of seagrass landscapes using time-series remote sensing. Estuar. Coast. Shelf Sci. 2013, 120, 42–53. [Google Scholar] [CrossRef]
- Kim, K.; Choi, J.-K.; Ryu, J.-H.; Jeong, H.J.; Lee, K.; Gil Park, M.; Kim, K.Y. Observation of typhoon-induced seagrass die-off using remote sensing. Estuar. Coast. Shelf Sci. 2015, 154, 111–121. [Google Scholar] [CrossRef]
- Short, F.T.; Short, C.A.; Novak, A. Seagrasses. In The Wetland Book: II: Distribution, Description and Conservation; Finlayson, C.M., Milton, G.R., Prentice, R.C., Davidson, N.C., Eds.; Springer Science: Dordrecht, The Netherlands, 2016. [Google Scholar]
- Guo, D.; Zhang, P.D.; Zhang, X.M.; Li, W.T.; Zhang, X.J.; Yuan, Y.D. Preliminary investigation and study on seagrass species of inshore areas in Shandong Province. Trans. Oceanol. Limnol. 2010, 2, 17–21, (In Chinese with English Abstract). [Google Scholar]
- Liu, B.J. Foundational Studies on Resource Investigation and Ecological Restoration of Eelgrass in Typical Bays in Shandong. Master’s Thesis, The University of Chinese Academy of Sciences, Beijing, China, 2012. [Google Scholar]
- Xu, S.C.; Xu, S.; Zhou, Y.; Yue, S.D.; Qiao, Y.L.; Liu, M.J.; Gu, R.T.; Song, X.Y.; Zhang, Y.; Zhang, X.M. Sonar and in situ surveys of eelgrass distribution, reproductive effort, and sexual recruitment contribution in a eutrophic bay with intensive human activities: Implication for seagrass conservation. Mar. Pollut. Bull. 2020, 161, 111706. [Google Scholar] [CrossRef] [PubMed]
- Call, K.A.; Hardy, J.T.; Wallin, D.O. Coral reef habitat discrimination using multivariate spectral analysis and satellite remote sensing. Int. J. Remote Sens. 2003, 24, 2627–2639. [Google Scholar] [CrossRef]
- Hossain, M.S.; Bujang, J.S.; Zakaria, M.H.; Hashim, M. The application of remote sensing to seagrass ecosystems: An overview and future research prospects. International Journal of Remote Sensing. Int. J. Remote Sens. 2014, 36, 61–113. [Google Scholar] [CrossRef]
- Barrell, J.; Grant, J. High-resolution, low-altitude aerial photography in physical geography: A case study characterizing eelgrass (Zostera marina L.) and blue mussel (Mytilus edulis L.) landscape mosaic structure. Prog. Phys. Geog. 2015, 39, 440–459. [Google Scholar] [CrossRef]
- Barrell, J.; Grant, J.; Hanson, A.; Mahoney, M. Evaluating the complementarity of acoustic and satellite remote sensing for seagrass landscape mapping. Int. J. Remote Sens. 2015, 36, 4069–4094. [Google Scholar] [CrossRef]
- Ferguson, R.L.; Korfmacher, K. Remote sensing and GIS analysis of seagrass meadows in North Carolina, USA. Aquat. Bot. 1997, 58, 241–258. [Google Scholar] [CrossRef]
- Howari, F.M.; Jordan, B.R.; Bouhouche, N.; Wyllie-Echeverria, S. Field and remote-sensing assessment of mangrove forests and seagrass beds in the northwestern part of the United Arab Emirates. J. Coast. Res. 2009, 251, 48–56. [Google Scholar] [CrossRef]
- Barillé, L.; Robin, M.; Harin, N.; Bargain, A.; Launeau, P. Increase in seagrass distribution at Bourgneuf Bay (France) detected by spatial remote sensing. Aquat. Bot. 2010, 92, 185–194. [Google Scholar] [CrossRef]
- Knudby, A.; Nordlund, L. Remote sensing of seagrasses in a patchy multi-species environment. Int. J. Remote Sens. 2011, 32, 2227–2244. [Google Scholar] [CrossRef]
- Short, F.T.; Polidoro, B.; Livingstone, S.R.; Carpenter, K.E.; Bandeira, S.; Bujang, J.S.; Calumpong, H.P.; Carruthers, T.J.B.; Coles, R.G.; Dennison, W.C.; et al. Extinction risk assessment of the world’s seagrass species. Biol. Conserv. 2011, 144, 1961–1971. [Google Scholar] [CrossRef]
- Green, E.P.; Short, F.T. World Atlas of Seagrasses; University of California Press: Berkeley, CA, USA, 2003. [Google Scholar]
- Ferwerda, J.G.; Leeuw, J.; Atzberger, C.; Vekerdy, Z. Satellite-based monitoring of tropical seagrass vegetation: Current techniques and future developments. Hydrobiologia 2007, 591, 59–71. [Google Scholar] [CrossRef]
- Zheng, F.Y.; Qiu, G.L.; Fan, H.Q.; Zhang, W. Diversity, distribution and conservation of Chinese seagrass species. Biodivers. Sci. 2013, 21, 517–526, (In Chinese with English Abstract). [Google Scholar]
- Meinesz, A.; Lefevre, J.R.; Astier, J.M. Impact of coastal development on the infralittoral zone along the southeastern Mediterranean shore of continental France. Mar. Pollut. Bull. 1991, 23, 343–347. [Google Scholar] [CrossRef]
- Wu, Y.; Yang, W.B.; Wang, L.; Zhang, Z.; Li, J.L. Primary study on the spatial-temporal changes and the effect of sea reclamation in Caofeidian based on remote sensing. Trans. Oceanol. Limnol. 2013, 1, 153–158, (In Chinese with English Abstract). [Google Scholar]
- Orth, R.J.; Carruthers, T.J.; Dennison, W.C.; Duarte, C.M.; Fourqurean, J.W.; Heck, K.L.; Hughes, A.R.; Kendrick, G.A.; Kenworthy, W.J.; Olyarnik, S. A global crisis for seagrass ecosystems. Bioscience 2006, 56, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.P.; Guo, L.X.; Zhang, W.Y.; Hou, S.X. Analysis on the causes of storm surge in coastal area of Tangshan. Ann. Meet. China Meteorol. Soc. 2006, 1487–1489. (In Chinese) [Google Scholar]
- Li, B.L.; Zhao, Y.H.; Yang, K.; Zhao, B. Current environmental status and the protection of the Bohai Sea. Ocean Dev. Manag. 2016, 33, 59–62. [Google Scholar]
- Gao, S.M.; Li, Y.F.; An, F.T.; Li, F.X. The formation of sand bars on the Luanhe River Delta and the change of the coast line. Acta Oceanol. Sin. 1981, 2, 102–113, (In Chinese with English Abstract). [Google Scholar]
- Wang, Y.; Fu, G.H.; Zhang, Y.Z. River-sea interactive sedimentation and plain morphological evolution. Quat. Sci. 2007, 27, 674–689, (In Chinese with English Abstract). [Google Scholar]
- Zhang, R.S.; Li, K.P. Evolution of tidal inlet-drainage basin system on Luanhe River Delta. Ocean Eng. 1996, 14, 45–52, (In Chinese with English Abstract). [Google Scholar]
- Lu, Y.J.; Zuo, L.Q.; Ji, R.Y.; Zhang, J.S. Effect of development of Caofeidian harbor area in Bohai bay on hydrodynamic sediment environment. Adv. Water Sci. 2007, 18, 793–800, (In Chinese with English Abstract). [Google Scholar]
- Yin, Y.H. Thoughts on large area reclamation of Caofeidian shoal in Tangshan, Hebei Province. Mar. Geol. Lett. 2007, 23, 1–10. (In Chinese) [Google Scholar]
- Gu, J.Q.; Zhang, B.H. Evolution, development and utilization of sedimentary Sand Island in Eastern Hebei Province. Geogr. Territ. Res. 1997, 13, 36–40. (In Chinese) [Google Scholar]
- Tian, H.L.; Liu, X.H.; Shi, Y.J.; Li, Q.C.; Wang, Y.X. Study on the morphologic change of Caofeidian islands. Mar. Sci. Bull. 2015, 34, 695–702, (In Chinese with English Abstract). [Google Scholar]
- Xu, S.C.; Wang, P.M.; Zhou, Y.; Wang, F.; Zhang, X.M.; Gu, R.T.; Xu, S.; Yue, S.D.; Zhang, Y.; Suonan, Z.X. Sheaths of Zostera marina L. as ecological indicators of shoot length and the elemental stoichiometry of aboveground tissues. Mar. Pollut. Bull. 2020, 160, 111545. [Google Scholar] [CrossRef]
- Zimmerman, R.C.; Dekker, A.G. Aquatic optics: Basic concepts for understanding how light affects seagrasses and makes them measurable from space. In Seagrasses: Biology, Ecology, and Conservation; Larkum, A.W.D., Orth, R.J., Duarte, C.M., Eds.; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Wicaksono, P.; Hafizt, M. Mapping seagrass from space: Addressing the complexity of seagrass LAI mapping. Eur. J. Remote Sens. 2013, 46, 18–39. [Google Scholar] [CrossRef]
- Scaramuzza, P.; Micijevic, E.; Chander, G. SLC Gap-Filled Products Phase One Methodology. 2004. Available online: http://landsat.usgs.gov/documents/SLC_Gap_Fill_Methodology.pdf (accessed on 1 January 2020).
- Research Systems Inc. ENVI FLAASH User’s Guide; ENVI FLAASH Version 4.1; Research Systems Inc.: Norwalk, CT, USA, 2004; pp. 1–80. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Lepš, J.; Šmilauer, P. Multivariate Analysis of Ecological Data Using CANOCO; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Cuttriss, A.K.; Prince, J.B.; Castley, J.G. Seagrass communities in southern Moreton Bay, Australia: Coverage and fragmentation trends between 1987 and 2005. Aquat. Bot. 2013, 108, 41–47. [Google Scholar] [CrossRef]
- Mohammad, S.H.; Mazlan, H.; Japar, S.B.; Muta, H.Z.; Aidy, M.M. Assessment of the impact of coastal reclamation activities on seagrass meadows in Sungai Pulai estuary, Malaysia, using Landsat data (1994–2017). Int. J. Remote Sens. 2018, 40, 3571–3605. [Google Scholar]
- Seddon, S.; Connolly, R.M.; Edyvane, K.S. Large-scale seagrass dieback in northern Spencer Gulf, South Australia. Aquat. Bot. 2000, 66, 297–310. [Google Scholar] [CrossRef]
- Skinner, M.A.; Courtenay, S.C.; McKindsey, C.W. Reductions in distribution, photosynthesis, and productivity of eelgrass Zostera marina associated with oyster Crassostrea virginica aquaculture. Mar. Ecol. Prog. Ser. 2013, 486, 105–119. [Google Scholar] [CrossRef] [Green Version]
- Cabaço, S.; Santos, R.; Duarte, C.M. The impact of sediment burial and erosion on seagrasses: A review. Estuar. Coast. Shelf Sci. 2008, 79, 354–366. [Google Scholar] [CrossRef]
- Greve, T.M.; Krause-Jensen, D.; Rasmussen, M.B.; Christensen, P.B. Means of rapid eelgrass (Zostera marina L.) recolonisation in former dieback areas. Aquat. Bot. 2005, 82, 143–156. [Google Scholar] [CrossRef]
- Rasheed, M.A.; McKenna, S.A.; Carter, A.B.; Coles, C.R. Contrasting recovery of shallow and deep water seagrass communities following climate associated losses in tropical north Queensland, Australia. Mar. Pollut. Bull. 2014, 83, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.M.; Yang, J.X. Analysis on evolution of offshore bars in the north area of the Bohai Sea Bay using remote sensing. Geogr. Geo Inf. Sci. 2006, 22, 41–44, (In Chinese with English Abstract). [Google Scholar]
- Lewis, R.R. The potential importance of the longshore bar system to the persistence and restoration of Tampa Bay seagrass meadows. In Proceedings of the Conference on Seagrass Management: It’s Not Just Nutrients, St. Petersburg, FL, USA, 22–24 August 2000. [Google Scholar]
- Hebei Coastal Zone Resources Editorial Committee. Coastal Resources of Hebei Province; Hebei Province Science and Technology Press: Shijiazhuang, China, 1988; pp. 94–95. (In Chinese) [Google Scholar]
- Gong, R.; Mu, Z.Y. Harm and control of storm surge in Hebei Coastal Area. Geogr. Territ. Res. 1994, 10, 21–24. (In Chinese) [Google Scholar]
- Ghazali, N.; Hisham, M. Coastal Erosion and Reclamation in Malaysia. Aquat. Ecosyst. Health Manag. 2006, 9, 237–247. [Google Scholar] [CrossRef]
- Erftemeijer, P.L.A.; Lewis, R.R.R. Environmental impacts of dredging on seagrasses: A review. Mar. Pollut. Bull. 2006, 52, 1553–1572. [Google Scholar] [CrossRef]
- Schemske, D.W.; Husband, B.C.; Ruckelshaus, M.H.; Goodwillie, C.; Parker, I.M.; Bishop, J.G. Evaluating approaches to the conservation of rare and endangered plants. Ecology 1994, 75, 584–606. [Google Scholar] [CrossRef] [Green Version]
- Fonseca, M.S.; Kenworthy, W.J.; Thayer, G.W. Guidelines for the conservation and restoration of seagrasses in the United States and adjacent Waters. In Decision Analysis Series No. 12. U.S. Department of Commerce—NOAA, Maryland; NsCO Program Ed.; NOAA/National Centers for Coastal Ocean Science: Silver Spring, MD, USA, 1998. [Google Scholar]
- Lee-Long, W.J.; Coles, R.G.; McKenzie, L.J. Issues for seagrass conservation management in Queensland. Pac. Conserv. Biol. 2000, 5, 321–328. [Google Scholar] [CrossRef]
Verification Points from Acoustic Data | No. Points | No. Points Same Class to Classification | No. Points Different Class to Classification | Accuracy of Classification |
---|---|---|---|---|
Total verification points | 128,619 | 112,155 | 16,464 | 87.20% |
Vegetated class points | 37,153 | 28,659 | 8494 | 77.14% |
Unvegetated class points | 91,466 | 83,496 | 7970 | 91.29% |
Site | Total Biomass (g m−2 DW) | Belowground Biomass Ratio to Total Biomass (%) | Plant Height (cm) | Total Shoot Density (shoots m−2) |
---|---|---|---|---|
A | 189.35 ± 54.05 | 38.26 ± 8.77 | 56.71 ± 20.93 | 152.84 ± 20.36 |
B | 352.85 ± 160.24 | 37.72 ± 15.38 | 70.55 ± 15.50 | 305.68 ± 146.84 |
C | 214.19 ± 37.68 | 26.82 ± 1.71 | 78.44 ± 9.37 | 141.08 ± 35.27 |
D | 263.49 ± 177.27 | 26.29 ± 8.88 | 92.11 ± 12.03 | 211.63 ± 153.74 |
E | 229.74 ± 12.36 | 31.81 ± 7.39 | 68.86 ± 10.56 | 235.14 ± 40.73 |
F | 134.66 ± 18.90 | 37.37 ± 1.35 | 42.00 ± 10.68 | 223.38 ± 53.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Xu, S.; Zhou, Y.; Yue, S.; Zhang, X.; Gu, R.; Zhang, Y.; Qiao, Y.; Liu, M. Long-Term Changes in the Unique and Largest Seagrass Meadows in the Bohai Sea (China) Using Satellite (1974–2019) and Sonar Data: Implication for Conservation and Restoration. Remote Sens. 2021, 13, 856. https://doi.org/10.3390/rs13050856
Xu S, Xu S, Zhou Y, Yue S, Zhang X, Gu R, Zhang Y, Qiao Y, Liu M. Long-Term Changes in the Unique and Largest Seagrass Meadows in the Bohai Sea (China) Using Satellite (1974–2019) and Sonar Data: Implication for Conservation and Restoration. Remote Sensing. 2021; 13(5):856. https://doi.org/10.3390/rs13050856
Chicago/Turabian StyleXu, Shaochun, Shuai Xu, Yi Zhou, Shidong Yue, Xiaomei Zhang, Ruiting Gu, Yu Zhang, Yongliang Qiao, and Mingjie Liu. 2021. "Long-Term Changes in the Unique and Largest Seagrass Meadows in the Bohai Sea (China) Using Satellite (1974–2019) and Sonar Data: Implication for Conservation and Restoration" Remote Sensing 13, no. 5: 856. https://doi.org/10.3390/rs13050856
APA StyleXu, S., Xu, S., Zhou, Y., Yue, S., Zhang, X., Gu, R., Zhang, Y., Qiao, Y., & Liu, M. (2021). Long-Term Changes in the Unique and Largest Seagrass Meadows in the Bohai Sea (China) Using Satellite (1974–2019) and Sonar Data: Implication for Conservation and Restoration. Remote Sensing, 13(5), 856. https://doi.org/10.3390/rs13050856