Adjacent-Track InSAR Processing for Large-Scale Land Subsidence Monitoring in the Hebei Plain
Abstract
:1. Introduction
- Monitor land subsidence in the Hebei Plain (45,000 km2) by using two TS-InSAR techniques with 166 Sentinel-1A images of two adjacent-track from May 2017 to May 2019;
- Propose a novel data fusion flow for the generation of land subsidence vertical velocity of adjacent-track;
- Analyze the spatial and temporal evolution characteristics of subsidence features in the Hebei Plain and qualitatively analyze the causes of typical land subsidence bowls’ response to groundwater funnels, three land use types, and faults.
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methodology
3.1. TS-InSAR Technologies
3.2. Fusion of TS-InSAR Results of Adjacent-Track Using SAR Amplitude Images (FTASA)
3.3. Data Processing
4. Results
4.1. Fusion of Adjacent-Track PS Results
4.2. Validation of the InSAR Results
5. Discussion
5.1. Groundwater Funnels and Land Subsidence
5.2. Building Constructions and Land Subsidence
5.3. Industrial Areas and Land Subsidence
5.4. Dense Residential Areas and Land Subsidence
5.5. Faults and Land Subsidence
6. Conclusions
- The land subsidence bowls have a positive correlation with the shallow or deep groundwater funnels. We found that there were six ground subsidence bowls in the shallow ground-water funnel, and two ground subsidence bowls in the deep groundwater funnel. In the future, the mechanisms underlying groundwater-induced land surface displacement deserves further analysis.
- Building constructions increase surface loads, aggravating land subsidence. Three remarkable subsidence bowl centers associated with building construction were successfully detected. For the first time, we tried to analyze the subsidence causes from the perspective of change detection in the Hebei Plain. Whether it is the load of the building that provokes the subsidence, or the required groundwater pumping to have a dry environment to build the foundations of those buildings, the subsidence mechanism needs to be further studied.
- Six remarkable subsidence bowl centers associated with an industrial area were found. The larger the industrial plants, the more groundwater consumed for industrial production, leading to land subsidence. A relatively high spatial correlation also existed between locations of land subsidence bowls and industrial areas.
- A high spatial correlation existed between the locations of four land subsidence bowls and dense residential areas. Precipitation was one of the factors influencing land subsidence. We can analyze the causes of land subsidence from the hydrogeological properties of rocks in our future work.
- There was a strong correlation between three land subsidence and fault distributions where the main deformation direction is basically parallel to the faults. A total of 21 subsidence bowls were distributed on both sides of major faults. These high-velocity gradients correlate with faults in three subsidence bowls, indicating that these faults coincide with the subsidence bowls.
Author Contributions
Funding
Conflicts of Interest
References
- Galloway, D.L.; Burbey, T.J. Review: Regional land subsidence accompanying groundwater extraction. Hydrogeol. J. 2011, 19, 1459–1486. [Google Scholar] [CrossRef]
- Cigna, F.; Tapete, D. Satellite InSAR survey of structurally controlled land subsidence due to groundwater exploitation in the Aguascalientes Valley, Mexico. Remote Sens. Environ. 2021, 254, 112254. [Google Scholar] [CrossRef]
- Mahmoudpour, M.; Khamehchiyan, M.; Nikudel, M.R.; Ghassemi, M.R. Characterization of Regional Land Subsidence Induced by Groundwater Withdrawals in Tehran, Iran. Geopersia 2013, 3, 49–62. [Google Scholar]
- Erkens, G.; Bucx, T.; Dam, R.; De Lange, G.; Lambert, J. Sinking Coastal Cities. In Proceedings of the International Association of Hydrological Sciences, Nagoya, Japan, 15–19 November 2015. [Google Scholar]
- Guzy, A.; Malinowska, A.A. State of the art and recent advancements in the modelling of land subsidence induced by groundwater withdrawal. Water 2020, 12, 2051. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, Y.; Liu, M.; Wang, R.; Wang, H. Research of Features Related to Land Subsidence and Ground Fissure Disasters in the Beijing Plain. In Proceedings of the International Association of Hydrological Sciences, Nagoya, Japan, 15–19 November 2015. [Google Scholar]
- Gong, H.; Pan, Y.; Zheng, L.; Li, X.; Zhu, L.; Zhang, C.; Huang, Z.; Li, Z.; Wang, H.; Zhou, C. Long-term groundwater storage changes and land subsidence development in the North China Plain (1971–2015). Hydrogeol. J. 2018, 26, 1417–1427. [Google Scholar] [CrossRef] [Green Version]
- Guo, H.; Zhang, Z.; Cheng, G.; Li, W.; Li, T.; Jiao, J.J. Groundwater-derived land subsidence in the North China Plain. Environ. Earth Sci. 2015, 74, 1415–1427. [Google Scholar] [CrossRef]
- Yang, Y. Land Subsidence Disaster Prevention and Cure in Beijing-Tianjin-Hebei Area, China. Urban Geol. 2015, 1, 1–7. [Google Scholar]
- Tang, Q.; Zhang, X.; Tang, Y. Anthropogenic impacts on mass change in North China. Geophys. Res. Lett. 2013, 40, 3924–3928. [Google Scholar] [CrossRef]
- Zhang, J.; Chu, L.; Xiao, Z.; Lu, Z.; Shen, R.; Chen, Y. Main progress and achievements of land subsidence survey and monitoring in Hebei Plain. Geol. Surv. China. 2014, 1, 45–50. [Google Scholar]
- Ge, Y. Impacts of Crop Production on Groundwater Depletion in the Hebei Plain. Master’s Thesis, Tsinghua University, Beijing, China, 2 June 2017. [Google Scholar]
- Liu, Y.; Li, Y.; Jin, X.; Ma, B. Analysis of groundwater dynamics and influencing factors in Hebei Plain during the “Eleventh Five-Year Plan”. Groundwater 2015, 37, 52–55. [Google Scholar]
- Li, Z. Characteristics and mechanism of land subsidence in Hebei Plain. Ph.D. Thesis, China University of Geosciences, Beijing, China, 6 June 2012. [Google Scholar]
- Zhao, Q.; Zhang, B.; Yao, Y.; Wu, W.; Meng, G.; Chen, Q. Geodetic and hydrological measurements reveal therecent acceleration of groundwater depletion in North China Plain. J. Hydrol. 2019, 575, 1065–1072. [Google Scholar] [CrossRef]
- Shi, M.; Gong, H.; Gao, M.; Chen, B.; Zhang, S.; Zhou, C. Recent Ground Subsidence in the North China Plain, China, Revealed by Sentinel-1A Datasets. Remote Sens. 2020, 12, 3579. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Y.; Yan, S.; Wu, Y.; Liu, Q. Land subsidence monitoring and analyzing of Cangzhou area Sentinel-1A/B based time-series InSAR. Bull Surv. Map. 2017, 7, 89–93. [Google Scholar]
- Gabriel, A.K.; Goldstein, R.M.; Zebker, H.A. Mapping small elevation changes over large areas: Differential radar interferometry. J. Geophys. Res. Atmos. 1989, 94, 9183–9191. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote. Sens. 2015, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Galloway, D.L.; Hudnut, K.W.; Ingebritsen, S.E.; Phillips, S.P.; Peltzer, G.; Rogez, F.; Rosen, P.A. Detection of aquifer system compaction and land subsidence using interferometric synthetic aperture radar, Antelope Valley, Mojave Desert, California. Water Resour. Res. 1998, 34, 2573–2585. [Google Scholar] [CrossRef]
- Hanssen, R.F. Radar Interferometry: Data Interpretation and Error Analysis; Springer Science & Business Media: Berlin, Germany, 2001. [Google Scholar]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansoto, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yang, Z.; Li, Z.; Zhu, J.; Wu, L. Fusing adjacent-track InSAR datasets to densify the temporal resolution of time-series 3-D displacement estimation over mining areas with a prior deformation model and a generalized weighting least-squares method. J. Geod. 2020, 94, 1–17. [Google Scholar] [CrossRef]
- Tong, X.; Liu, S.; Li, R.; Xie, H.; Liu, S.; Qiao, G.; Feng, T.; Tian, Y.; Zhen, Y. Multi-track extraction of two-dimensional surface velocity by the combined use of differential and multiple-aperture InSAR in the Amery Ice Shelf, East Antarctica. Remote Sens. Environ. 2018, 204, 122–137. [Google Scholar] [CrossRef]
- Samsonov, S.; Oreye, N.; González, P.; Tiampo, K.; Ertolahti, L.; Clague, J. Rapidly accelerating subsidence in the Greater Vancouver region from two decades of ERS-ENVISAT-RADARSAT-2 DInSAR measurements. Remote Sens. Environ. 2014, 143, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Ma, G.; Wang, Q.; Yang, T.; Liu, M.; Gao, W.; Falabella, F.; Mastro, P.; Pepe, A. Generation of long-term InSAR ground displacement time-series through a novel multi-sensor data merging technique: The case study of the Shanghai coastal area. ISPRS J. Photogramm. Remote Sens. 2019, 154, 10–27. [Google Scholar] [CrossRef]
- Ketelaar, G.; Leijen, F.; Marinkovic, P.; Hanssen, R. Multi-track PS-InSAR datum connection. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–27 July 2007. [Google Scholar]
- Perissin, D.; Prati, C.; Rocca, F. ASAR Parallel-track PS Analysis in Urban Sites. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–27 July 2007. [Google Scholar]
- Zhao, C.; Liu, C.; Zhang, Q.; Lu, Z.; Yang, C. Deformation of Linfen-Yuncheng Basin (China) and its mechanisms revealed by Π-RATE InSAR technique. Remote Sens. Environ. 2018, 218, 221–230. [Google Scholar] [CrossRef]
- Hong, S.; Wdowinski, S. Multitemporal multitrack monitoring of wetland water levels in the Florida Everglades using ALOS PALSAR data with interferometric processing. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1355–1359. [Google Scholar] [CrossRef]
- Pepe, A.; Bonano, M.; Zhao, Q.; Yang, T.; Wang, H. The Use of C-/X-Band Time-Gapped SAR Data and Geotechnical Models for the Study of Shanghai’s Ocean-Reclaimed Lands through the SBAS-DInSAR Technique. Remote Sens. 2016, 8, 911. [Google Scholar] [CrossRef] [Green Version]
- Duan, L.; Gong, H.; Chen, B.; Zhou, C.; Lei, K.; Gao, M.; Yu, H.; Cao, Q.; Cao, J. An Improved Multi-Sensor MTI Time-Series Fusion Method to Monitor the Subsidence of Beijing Subway Network during the Past 15 Years. Remote Sens. 2020, 12, 2125. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.; Yu, Y.; Lin, H.; Jiang, L.; Li, C.; Qiu, G. InSAR reveals coastal subsidence in the Pearl River Delta, China. Geophys. J. Int. 2012, 191, 1119–1128. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Zhang, Q.; Zhao, C.; Yang, C.; Sun, Q.; Chen, W. Monitoring land subsidence in the southern part of the lower Liaohe plain, China with a multi-track PS-InSAR technique. Remote Sens. Environ. 2017, 188, 73–84. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Feng, G.; Liu, L.; Fu, H.; Peng, X.; Wen, D. Understanding Land Subsidence Along the Coastal Areas of Guangdong, China, by Analyzing Multi-Track MTInSAR Data. Remote Sens. 2020, 12, 299. [Google Scholar] [CrossRef] [Green Version]
- Shirzaei, M. A seamless multitrack multitemporal InSAR algorithm. Geochem. Geophys. Geosyst. 2015, 16, 1656–1669. [Google Scholar] [CrossRef]
- Jiang, L.; Bai, L.; Zhao, Y.; Cao, G.; Wang, H.; Sun, Q. Combining InSAR and hydraulic head measurements to estimate aquifer parameters and storage variations of confined aquifer system in Cangzhou, North China Plain. Water Resour. Res. 2018, 54, 8234–8252. [Google Scholar] [CrossRef]
- Ge, D.Q.; Wang, Y.; Guo, X.F.; Fan, J.H.; Liu, S.W. Surface deformation field monitoring by use of small-baseline differential interferograms stack. J. Geod. Geodyn. 2008, 28, 61–66. [Google Scholar]
- Ge, D.Q.; Wang, Y.; Guo, X.F.; Liu, S.W.; Fan, J.H. Surface deformation monitoring with multi-baseline D-InSAR based on coherent point target. J. Remote Sens. 2007, 11, 574–580. [Google Scholar]
- Zhang, Y.; Wu, H.; Kang, Y.; Zhu, C. Ground Subsidence in the Beijing-Tianjin-Hebei Region from 1992 to 2014 Revealed by Multiple SAR Stacks. Remote Sens. 2016, 8, 675. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Zhang, H.; Wang, C.; Tang, Y. Multi-Temporal InSAR Parallel Processing for Sentinel-1 Large-Scale Surface Deformation Mapping. Remote Sens. 2020, 12, 3749. [Google Scholar] [CrossRef]
- Zhou, C.; Gong, H.; Chen, B.; Gao, M.; Cao, Q.; Cao, J.; Duan, L.; Zuo, J.; Shi, M. Land Subsidence Response to Different Land Use Types and Water Resource Utilization in Beijing-Tianjin-Hebei, China. Remote Sens. 2020, 12, 457. [Google Scholar] [CrossRef] [Green Version]
- Samsonov, S.; van der Kooij, M.; Tiampo, K. A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique. Comput. Geosci. 2011, 37, 1083–1091. [Google Scholar] [CrossRef]
- Department of Water Resources of Hebei Province. Hebei Water Resources Bulletin 2019. Available online: http://slt.hebei.gov.cn/resources/43/202010/1603098695816085596.pdf (accessed on 6 September 2020).
- Department of Water Resources of Hebei Province. Hebei Water Resources Bulletin 2018. Available online: http://slt.hebei.gov.cn/resources/43/201909/1568618211289023678.pdf (accessed on 28 October 2020).
- Copernicus. Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 8 September 2019).
- Sentinel-1 Quality Control. POD Precise Orbit Ephemerides. Available online: https://qc.sentinel1.eo.esa.int/ (accessed on 8 September 2019).
- Lopez-Quiroz, P.; Doin, M.; Tupin, F.; Briole, P.; Nicolas, J. Time-series analysis of Mexico City subsidence constrained by radar interferometry. J. Appl. Geophys. 2009, 69, 1–15. [Google Scholar] [CrossRef]
- Jolivet, R.; Lasserre, C.; Doin, M.; Guillaso, S.; Peltzer, G.; Dailu, R.; Sun, J.; Shen, Z.; Xu, X. Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry. J. Geophys. Res. Solid Earth. 2012, 117, B06401. [Google Scholar] [CrossRef] [Green Version]
- Doin, M.; Lodge, F.; Guillaso, S.; Jolivet, R.; Lasserre, C.; Ducret, G.; Grandin, R.; Pathier, E.; Pinel, V. Presentation of the small baseline NSBAS processing chain on a case example: The Etna deformation monitoring from 2003 to 2010 using Envisat data. Proceedings the of Fringe Esa Conference, Frascati, Italy, 19–23 September 2011. [Google Scholar]
- Agram, P.; Jolivet, R.; Riel, B.; Lin, Y.N.; Simons, M.; Hetland, E.; Doin, M.-P.; Lasserre, C. New Radar Interferometric Time-series Analysis Toolbox Released. Eos Trans. Am. Geophys. Union 2013, 94, 69–70. [Google Scholar] [CrossRef] [Green Version]
- Earthdef. Generic InSAR Analysis Toolbox (GIAnT)—User Guide. 2012. Available online: http://earthdef.caltech.edu (accessed on 6 September 2020).
- Lin, Y.; Simons, M.; Hetland, E.; Muse, P.; DiCaprio, C. A multiscale approach to estimating topographically correlated propagation delays in radar interferograms. Geochem. Geophys. Geosyst. 2010, 11. [Google Scholar] [CrossRef]
- CMDC. China Meteorological Data Service Centre. Available online: http://data.cma.cn (accessed on 18 September 2020).
Year | Areas of Shallow Groundwater Levels Falling | Areas of Shallow Groundwater Levels Rising |
---|---|---|
2018 | Southern Handan Central Hengshui Central Shijiazhuang Central and eastern Baoding | Central Handan Eastern Xingtai Western Shijiazhuang Western Baoding Southeastern Cangzhou |
2019 | Western Handan Central and southern Xingtai Most of Hengshui Southern and eastern Shijiazhuang Eastern and northern Baoding Most of Cangzhou Northwest Langfang | Western Shijiazhuang Western Baoding Southern Hengshui |
Track | Frame | Date Period | Date of Master Image | Number of SAR Data |
---|---|---|---|---|
40 | 117/122 | 13 May 2017–15 May 2019 | 11 October 2018 | 43 × 2 |
142 | 116/121 | 20 May 2017–22 May 2019 | 11 November 2018 | 40 × 2 |
Band | Polarization | Orbit Direction | Repeat Time (d) | Azimuth Resolution (m) | Slant Range Resolution (m) | Track |
---|---|---|---|---|---|---|
C | VV | Ascending | 12 | 13.9 | 2.3 | 40/142 |
Cities | Subsidence Bowls | Locations | Average Subsidence Velocities (mm/year) | Maximum Subsidence Velocities (mm/year) |
---|---|---|---|---|
Handan | d0 | Huaguanying Town of Hanshan District | −23 | −44 |
d1 | Huangliangmeng Town of Congtai District | −17 | −39 | |
d2 | Xinan Town of Feixiang District | −15 | −36 | |
d3 | Guangfu Town of Yongnian District | −24 | −39 | |
d4 | Quzhou County of Quzhou District | −31 | −48 | |
d23 | Feixiang Town | −44 | −65 | |
Xingtai | d5 | Daliangzhuang Town of Xiangdu District | 0 | −58 |
d6 | Rencheng Town of Renze District | −4 | −27 | |
d7 | Mingzhou Town of Wei County | −18 | −56 | |
d8 | Julu Town | −28 | −59 | |
d9 | Fenggang Street of Nangong City | −26 | −43 | |
d10 | Fenghuang Town of Ningjin County | −14 | −38 | |
d24 | Julu County | −55 | −71 | |
Shijiazhuang | d11 | Xinji Town of Xinji City | −13 | −35 |
d12 | Xinleitou Town of Xinji City | −24 | −50 | |
Hengshui | d13 | Shenzhou Town of Shenzhou City | −28 | −51 |
d14 | Zhengkou Town of Gucheng County | −18 | −54 | |
d15 | Jingzhou Town of Jing County | −21 | −57 | |
d18 | Anping County | −17 | −32 | |
d19 | Raoyang County | −29 | −55 | |
d25 | Zaoqiang County | −42 | −62 | |
Cangzhou | d16 | Dongguang Town of Dongguang County | −26 | −45 |
d17 | Xian County | −21 | −39 | |
d20 | Suning County | −30 | −54 | |
Baoding | d21 | Liwu Town of Li County | −21 | −50 |
d22 | Gaoyang Town and Yuejiazuo Town of Gaoyang County | −51 | −79 |
Groundwater Funnels | Groundwater Level | Groundwater Funnels Centers | Depth Surrounding Funnel/m | Area/km2 | |||
---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||
NingBaiLong | Shallow | Lijiaying, Ningjin County | Beitian, Baixiang County | 50 | 50 | 1330 | 1566 |
Gaoliqing-Sunning | Shallow | Nanbaoxu, Lixian County | Hongshanbao, Lixian County | 30 | 30 | 1160 | 2029 |
JiZaoHeng | Deep | Bali Village, Jingxian County | Bali Village, Jingxian County | 90 | 95 | 508 | 842 |
Nangong | Deep | Jiaowang, Nangong City | 90 | 95 | 664 | 947 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Yan, L.; Lu, L.; Huang, G.; Zhao, Z.; Lu, Z. Adjacent-Track InSAR Processing for Large-Scale Land Subsidence Monitoring in the Hebei Plain. Remote Sens. 2021, 13, 795. https://doi.org/10.3390/rs13040795
Li X, Yan L, Lu L, Huang G, Zhao Z, Lu Z. Adjacent-Track InSAR Processing for Large-Scale Land Subsidence Monitoring in the Hebei Plain. Remote Sensing. 2021; 13(4):795. https://doi.org/10.3390/rs13040795
Chicago/Turabian StyleLi, Xi, Li Yan, Lijun Lu, Guoman Huang, Zheng Zhao, and Zechang Lu. 2021. "Adjacent-Track InSAR Processing for Large-Scale Land Subsidence Monitoring in the Hebei Plain" Remote Sensing 13, no. 4: 795. https://doi.org/10.3390/rs13040795
APA StyleLi, X., Yan, L., Lu, L., Huang, G., Zhao, Z., & Lu, Z. (2021). Adjacent-Track InSAR Processing for Large-Scale Land Subsidence Monitoring in the Hebei Plain. Remote Sensing, 13(4), 795. https://doi.org/10.3390/rs13040795