Potential Driving Factors on Surface Solar Radiation Trends over China in Recent Years
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Radiative Transfer Model
2.2. Datasets
2.2.1. Reference SSR Datasets
2.2.2. Input Datasets to the Radiative Transfer Model
2.2.3. Methodology
3. Results
3.1. Validation of the CERES Dataset Using CMA Observations
3.2. Analysis of Satellite-Derived SSR Trends under Different Conditions and Their Potential Causes
3.3. Comparisons of the Model-Estimated and Satellite-Derived Relative SSR Trend Percentages Due to Different Factors
3.4. The Relative Contributions of Cloud Cover from Different Cloud Types to the Annual and Seasonal ACC-Induced SSR Trends by a Radiative Transfer Model
4. Conclusions and Discussions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pinker, R.T.; Zhang, B.; Dutton, E.G. Do Satellites Detect Trends in Surface Solar Radiation? Science 2005, 308, 850. [Google Scholar] [CrossRef] [Green Version]
- Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science 2005, 308, 847–850. [Google Scholar] [CrossRef] [Green Version]
- Wild, M. Global dimming and brightening: A review. J. Geophys. Res. Atmos. 2009, 114, D00D16. [Google Scholar] [CrossRef] [Green Version]
- Stanhill, G.; Cohen, S. Global dimming: A review of the evidence for a widespread and significant reduction in global radiation with discussion of its probable causes and possible agricultural consequences. Agric. Forest Meteorol. 2001, 107, 255–278. [Google Scholar] [CrossRef]
- Wild, M. Enlightening Global Dimming and Brightening. Bull. Am. Meteorol. Soc. 2012, 93, 27–37. [Google Scholar] [CrossRef]
- Beer, J.; Mende, W.; Stellmacher, R. The role of the sun in climate forcing. Quat. Sci. Rev. 2000, 19, 403–415. [Google Scholar] [CrossRef]
- Che, H.Z.; Shi, G.Y.; Zhang, X.Y.; Arimoto, R.; Zhao, J.Q.; Xu, L.; Wang, B.; Chen, Z.H. Analysis of 40 years of solar radiation data from China, 1961–2000. Geophys. Res. Lett. 2005, 32, L06803. [Google Scholar] [CrossRef]
- Shi, G.Y.; Hayasaka, T.; Ohmura, A.; Chen, Z.H.; Wang, B.; Zhao, J.Q.; Che, H.Z.; Xu, L. Data quality assessment and the long-term trend of ground solar radiation in China. J. Appl. Meteorol. Clim. 2008, 47, 1006–1016. [Google Scholar] [CrossRef]
- Yang, S.; Shi, G.Y.; Wang, B.; Yang, H.L.; Duan, Y.X. Trends in Surface Solar Radiation (SSR) and the Effect of Clouds on SSR during 1961–2009 in China. Chin. J. Atmos. Sci. 2013, 37, 963–970. [Google Scholar]
- Zhang, H.; Yin, Q.; Nakajima, T.; Makiko, N.M.; Lu, P.; He, J. Influence of changes in solar radiation on changes of surface temperature in China. Acta Meteorol. Sin. 2013, 27, 87–97. [Google Scholar] [CrossRef]
- Tang, W.J.; Yang, K.; Qin, J.; Cheng, C.C.K.; He, J. Solar radiation trend across China in recent decades: A revisit with quality-controlled data. Atmos. Chem. Phys. 2011, 11, 393–406. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.C. Measurement Biases Explain Discrepancies between the Observed and Simulated Decadal Variability of Surface Incident Solar Radiation. Sci. Rep. 2014, 4, 6144. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.C.; Ma, Q.; Li, Z.J.; Wang, J.K. Decadal variability of surface incident solar radiation over China: Observations, satellite retrievals, and reanalyses. J. Geophys. Res. Atmos. 2015, 120, 6500–6514. [Google Scholar] [CrossRef]
- Wang, Y.W.; Wild, M. A new look at solar dimming and brightening in China. Geophys. Res. Lett. 2016, 43, 11, 711–777, 785. [Google Scholar] [CrossRef]
- He, Y.Y.; Wang, K.C.; Zhou, C.L.; Wild, M. A Revisit of Global Dimming and Brightening Based on the Sunshine Duration. Geophys. Res. Lett. 2018, 45, 4281–4289. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.L.; Wild, M. Homogenization and Trend Analysis of the 1958–2016 In Situ Surface Solar Radiation Records in China. J. Clim. 2018, 31, 4529–4541. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.L.; Wild, M. Causes of Dimming and Brightening in China Inferred from Homogenized Daily Clear-Sky and All-Sky in situ Surface Solar Radiation Records (1958–2016). J. Clim. 2019, 32, 5901–5913. [Google Scholar] [CrossRef]
- Liang, F.; Xia, X.A. Long-term trends in solar radiation and the associated climatic factors over China for 1961–2000. Ann. Geophys. Ger. 2005, 23, 2425–2432. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Jiang, Y.W.; Xia, X.G.; Hu, Y.Y. Increase of surface solar irradiance across East China related to changes in aerosol properties during the past decade. Environ. Res. Lett. 2018, 13, 34006. [Google Scholar] [CrossRef]
- Norris, J.R.; Wild, M. Trends in aerosol radiative effects over China and Japan inferred from observed cloud cover, solar “dimming,” and solar “brightening”. J. Geophys. Res. Atmos. 2009, 114, D00D15. [Google Scholar] [CrossRef]
- Xia, X.G. Spatiotemporal changes in sunshine duration and cloud amount as well as their relationship in China during 1954–2005. J. Geophys. Res. Atmos. 2010, 115, D00K06. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.H.; Zhang, Z.F.; Tian, W.S. Factors affecting the surface radiation trends over China between 1960 and 2000. Atmos. Environ. 2011, 45, 2379–2385. [Google Scholar] [CrossRef]
- Zhang, X.T.; Liang, S.L.; Wild, M.; Jiang, B. Analysis of surface incident shortwave radiation from four satellite products. Remote Sens. Environ. 2015, 165, 186–202. [Google Scholar] [CrossRef]
- Wang, Y.W.; Yang, Y.H.; Han, S.M.; Wang, Q.X.; Zhang, J.H. Sunshine dimming and brightening in Chinese cities (1955–2011) was driven by air pollution rather than clouds. Clim. Res. 2013, 56, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.J.; Yang, K.; Qin, J.; Niu, X.L.; Lin, C.G.; Jing, X.W. A revisit to decadal change of aerosol optical depth and its impact on global radiation over China. Atmos. Environ. 2017, 150, 106–115. [Google Scholar] [CrossRef]
- Feng, F.; Wang, K.C. Does the modern-era retrospective analysis for research and applications-2 aerosol reanalysis introduce an improvement in the simulation of surface solar radiation over China? Int. J. Clim. 2019, 39, 1305–1318. [Google Scholar] [CrossRef]
- Lin, C.Q.; Liu, G.; Lau, A.K.H.; Li, Y.; Li, C.C.; Fung, J.C.H.; Lao, X.Q. High-resolution satellite remote sensing of provincial PM2.5 trends in China from 2001 to 2015. Atmos. Environ. 2018, 180, 110–116. [Google Scholar] [CrossRef]
- Zhang, H.; Nakajima, T.; Shi, G.Y.; Suzuki, T.; Imasu, R. An optimal approach to overlapping bands with correlated k distribution method and its application to radiative calculations. J. Geophys. Res. Atmos. 2003, 108, 4641. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, G.Y.; Nakajima, T.; Suzuki, T. The effects of the choice of the k-interval number on radiative calculations. J. Quant. Spectrosc. Radiat. Transfer. 2006, 98, 31–43. [Google Scholar] [CrossRef]
- Zhang, H.; Suzuki, T.; Nakajima, T.; Shi, G.Y.; Liu, Y. Effects of band division on radiative calculations. Opt. Eng. 2006, 45, 016002. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, G.Y. A new approach to solve correlated k-distribution function. J. Quant. Spectrosc. Radiat. Transfer. 2005, 96, 311–324. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, H.; Li, J.N. Correlated k-Distribution Treatment of Cloud Optical Properties and Related Radiative Impact. J. Atmos. Sci. 2011, 68, 2671–2688. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Q.; Xie, B. A new parameterization for ice cloud optical properties used in BCC-RAD and its radiative impact. J. Quant. Spectrosc. Radiat. Transfer. 2015, 150, 76–86. [Google Scholar] [CrossRef]
- Wei, X.D.; Zhang, H. Analysis of optical properties of nonspherical dust aerosols. Chin. Acta. Meteorol. Sin. 2011, 31, 7–14. [Google Scholar]
- Zhang, H.; Shen, Z.P.; Wei, X.D.; Zhang, M.; Li, Z.Q. Comparison of optical properties of nitrate and sulfate aerosol and the direct radiative forcing due to nitrate in China. Atmos. Res. 2012, 113, 113–125. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, H.; Wang, Z.L. Impact of Different Mixing Ways of Black Carbon and Non-Absorbing Aerosols on the Optical Properties. Chin. Acta Meteorol. Sin. 2013, 33, 270–281. [Google Scholar]
- Nakajima, T.; Tsukamoto, M.; Tsushima, Y.; Numaguti, A.; Kimura, T. Modeling of the radiative process in an atmospheric general circulation model. Appl. Optics. 2000, 39, 4869–4878. [Google Scholar] [CrossRef]
- Zhang, H. BCC_RAD Radiative Transfer Model; China Meteorological Press: Beijing, China, 2016. [Google Scholar]
- Randles, C.A.; Kinne, S.; Myhre, G.; Schulz, M.; Stier, P.; Fischer, J.; Doppler, L.; Highwood, E.; Ryder, C.; Harris, B.; et al. Intercomparison of shortwave radiative transfer schemes in global aerosol modeling: Results from the AeroCom Radiative Transfer Experiment. Atmos. Chem. Phys. 2013, 13, 2347–2379. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Samset, B.H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T.K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; et al. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmos. Chem. Phys. 2013, 13, 1853–1877. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhao, S.Y.; Wang, Z.L.; Zhang, X.Y.; Song, L.C. The updated effective radiative forcing of major anthropogenic aerosols and their effects on global climate at present and in the future. Int. J. Clim. 2016, 36, 4029–4044. [Google Scholar] [CrossRef]
- Zhang, H.; Xie, B.; Wang, Z.L. Effective Radiative Forcing and Climate Response to Short-Lived Climate Pollutants Under Different Scenarios. Earths Future 2018, 6, 857–866. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, H.; Zhao, S.Y.; Li, J.N. On Effective Radiative Forcing of Partial Internally and Externally Mixed Aerosols and Their Effects on Global Climate. J. Geophys. Res. Atmos. 2018, 123, 401–423. [Google Scholar] [CrossRef]
- An, Q.; Zhang, H.; Wang, Z.L.; Liu, Y.; Xie, B.; Liu, Q.X.; Wang, Z.Z.; Gong, S.L. The Development of an Atmospheric Aerosol/Chemistry-Climate Model, BCC_AGCM_CUACE2.0, and Simulated Effective Radiative Forcing of Nitrate Aerosols. J. Adv. Model. Earth Sy. 2019, 11, 3816–3835. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhu, S.H.; Zhao, S.Y.; Wei, X.D. Establishment of high-resolution aerosol parameterization and its influence on radiation calculations. J. Quant. Spectrosc. Radiat. Transfer. 2020, 243, 106802. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, M.; Chen, Q.; Wang, Q.Y.; Zhao, S.Y.; Zhou, X.X.; Peng, J. Water and ice cloud optical thickness changes and radiative effects in East Asia. J. Quant. Spectrosc. Radiat. Transfer. 2020, 254, 107213. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, H.; Chen, Q.; Zhao, M.; You, T. Analysis of Short-term Cloud Feedback in East Asia Using Cloud Radiative Kernels. Adv. Atmos. Sci. 2020, 37, 1007–1018. [Google Scholar] [CrossRef]
- Rutan, D.A.; Kato, S.; Doelling, D.R.; Rose, F.G.; Nguyen, L.T.; Caldwell, T.E.; Loeb, N.G. CERES Synoptic Product: Methodology and Validation of Surface Radiant Flux. J. Atmos. Ocean. Tech. 2015, 32, 1121–1143. [Google Scholar] [CrossRef]
- Thorsen, T.J.; Kato, S.; Loeb, N.G.; Rose, F.G. Observation-Based Decomposition of Radiative Perturbations and Radiative Kernels. J. Climate. 2018, 31, 10039–10058. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013-The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Sayer, A.M.; Munchak, L.A.; Hsu, N.C.; Levy, R.C.; Bettenhausen, C.; Jeong, M.J. MODIS Collection 6 aerosol products: Comparison between Aqua’s e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations. J. Geophys. Res. Atmos. 2014, 119, 13, 913–965, 989. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhou, T. Asian water tower evinced in total column water vapor: A comparison among multiple satellite and reanalysis data sets. Clim. Dynam. 2020, 54, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Wargan, K.; Labow, G.; Frith, S.; Pawson, S.; Livesey, N.; Partyka, G. Evaluation of the Ozone Fields in NASA’s MERRA-2 Reanalysis. J. Climate. 2017, 30, 2961–2988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Austin, R.T.; Heymsfield, A.J.; Stephens, G.L. Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res. Atmos. 2009, 114, D00A23. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.Y.; Zhang, H.; Peng, J.; Wang, Z.L.; Jing, X.W. Analysis on Global Distribution Characteristics of Cloud Microphysical and Optical Properties Based on the CloudSat Data. Chin. Plateau Meteorol. 2014, 33, 1105–1118. [Google Scholar]
- Dai, T.; Cheng, Y.M.; Zhang, P.; Shi, G.Y.; Sekiguchi, M.; Suzuki, K.; Goto, D.; Nakajima, T. Impacts of meteorological nudging on the global dust cycle simulated by NICAM coupled with an aerosol model. Atmos. Environ. 2018, 190, 99–115. [Google Scholar] [CrossRef]
- Wang, Y.W.; Trentmann, J.; Yuan, W.; Wild, M. Validation of CM SAF CLARA-A2 and SARAH-E surface solar radiation datasets over China. Remote Sens. 2018, 10, 1977. [Google Scholar] [CrossRef] [Green Version]
- Xia, X.A.; Wang, P.C.; Chen, H.B.; Liang, F. Analysis of downwelling surface solar radiation in China from National Centers for Environmental Prediction reanalysis, satellite estimates, and surface observations. J. Geophys. Res. Atmos. 2006, 111, D09103. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463. [Google Scholar] [CrossRef] [Green Version]
- Wild, M. The heat balance of the earth in general circulation model simulations of present and future climates. Anat. Histol. Embryol. 1997, 34, 117–122. [Google Scholar]
- Shen, Z.P.; Zhang, H. Analysis on the factors affecting surface solar radiation and its spectral distribution. Chin. Acta Energ. Sol. Sin. 2009, 30, 1389–1395. [Google Scholar]
- Wild, M. The global energy balance as represented in CMIP6 climate models. Clim. Dynam. 2020, 55, 553–577. [Google Scholar] [CrossRef] [PubMed]
Variables | Data Sources | Spatial-Temporal Resolution | Dimensions | Level Ranges |
---|---|---|---|---|
Water vapor, O3 T CO, CH4 | AIRS L3 | 1° × 1°/monthly | lev, lat, lon | 1000–100 hPa 1000–1 hPa 1000–0.1 hPa |
Water vapor O3, T | MERRA2 | 1° × 1°/monthly | lev, lat, lon | 100–0.1 hPa 1–0.1 hPa |
Surface albedo Surface pressure 2-m temperature Skin-temperature | ERA-Interim | 1° × 1°/monthly | lat, lon | None |
Solar Zenith angle Liquid water/Ice cloud effective radius Aerosol optical depth at 550 nm | MODIS/Aqua | 1° × 1°/monthly | lat, lon | None |
Liquid water/Ice content | CloudSat | 2.8° × 2.8°/daily | lat, lon | None |
Total/High/Mid-High/Mid-Low/ Low cloud cover | CERES SYN1deg | 1° × 1°/monthly | lat, lon | None |
During the Period 2005–2018 over China | CMA | CERES SYN1deg | ||
---|---|---|---|---|
Average SSR (W m−2) | SSR Trends (W m−2 yr−1) | Average SSR (W m−2) | SSR Trends (W m−2 yr−1) | |
ANN | 170 ± 2.31 | 0.27 | 175 ± 1.80 | 0.17 |
MAM | 202 ± 4.01 | 0.35 | 209 ± 3.15 | 0.33 |
JJA | 222 ± 3.82 | 0.34 | 223 ± 3.63 | 0.33 |
SON | 147 ± 2.06 | −0.06 | 151 ± 1.93 | −0.2 |
DJF | 108 ± 2.96 | 0.45 | 116 ± 2.96 | 0.2 |
Annual SSR Trends over China for 2005–2018 (W m−2 yr−1) | Median Trends | Average Trends |
---|---|---|
under All-sky condition | 0.13 | 0.18 |
under Clear-sky condition | 0.19 | 0.23 |
under All-sky-no-aerosol condition | −0.02 | −0.02 |
under Clear-sky-no-aerosol condition | −0.04 | −0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Zhang, H.; Yang, S.; Chen, Q.; Zhou, X.; Shi, G.; Cheng, Y.; Wild, M. Potential Driving Factors on Surface Solar Radiation Trends over China in Recent Years. Remote Sens. 2021, 13, 704. https://doi.org/10.3390/rs13040704
Wang Q, Zhang H, Yang S, Chen Q, Zhou X, Shi G, Cheng Y, Wild M. Potential Driving Factors on Surface Solar Radiation Trends over China in Recent Years. Remote Sensing. 2021; 13(4):704. https://doi.org/10.3390/rs13040704
Chicago/Turabian StyleWang, Qiuyan, Hua Zhang, Su Yang, Qi Chen, Xixun Zhou, Guangyu Shi, Yueming Cheng, and Martin Wild. 2021. "Potential Driving Factors on Surface Solar Radiation Trends over China in Recent Years" Remote Sensing 13, no. 4: 704. https://doi.org/10.3390/rs13040704
APA StyleWang, Q., Zhang, H., Yang, S., Chen, Q., Zhou, X., Shi, G., Cheng, Y., & Wild, M. (2021). Potential Driving Factors on Surface Solar Radiation Trends over China in Recent Years. Remote Sensing, 13(4), 704. https://doi.org/10.3390/rs13040704