Combined Geometric Positioning and Performance Analysis of Multi-Resolution Optical Imageries from Satellite and Aerial Platforms Based on Weighted RFM Bundle Adjustment
Abstract
:1. Introduction
2. Methodology
2.1. Pre-Processing
2.2. Image Matching and Pre-Evaluation
2.3. Bundle Adjustment Model Derivation
2.4. Weight Determination
2.5. L-Curve Method for the Convergence
2.6. Accuracy Analysis
3. Experiments
3.1. Experiment Datasets
3.2. Experimental Design
3.2.1. Comparative Test Using Weighted Schemes, Unweighted Schemes, and Free Network Bundle Adjustment
3.2.2. Performance Test Using One Stereo Reference Imagery
3.2.3. Test Using Aerial Imagery (Single and Stereo) as Reference Imagery
3.2.4. Test Using Multi-Stereo Heterogeneous Imagery as Reference Imagery
4. Results and Discussion
4.1. Pre-Evaluation
4.2. Results Comparison of Using Weighted Schemes, Unweighted Schemes, and Free Network Bundle Adjustment
4.3. Overall Accuracy Evaluation of Using One Stereo Imagery as Reference Imagery
4.4. Geometric Positioning Using Aerial Imagery as Reference Imagery
4.5. Combined Geometric Positioning Using Multi-Stereo Heterogeneous Imagery as Reference Imagery Based on Adaptive Weights
4.5.1. Performance Analysis for All Ranges
4.5.2. Performance Analysis outside the Overlapping Area
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Honkavaara, E.; Arbiol, R.; Markelin, L.; Martinez, L.; Cramer, M.; Bovet, S.; Schläpfer, D. Digital airborne photogrammetry—A new tool for quantitative remote sensing—A state-of-the-art review on radiometric aspects of digital photogrammetric images. Remote Sens. 2009, 1, 577. [Google Scholar] [CrossRef] [Green Version]
- Manfreda, S.; McCabe, M.F.; Miller, P.E.; Lucas, R.; Pajuelo, M.V.; Mallinis, G.; Ben Dor, E.; Helman, E.; Estes, D.L.; Ciraolo, G.; et al. On the use of unmanned aerial systems for environmental monitoring. Remote Sens. 2018, 10, 641. [Google Scholar] [CrossRef] [Green Version]
- Yao, H.; Qin, R.J.; Chen, X.Y. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef] [Green Version]
- Song, H.; Srinivasan, R.; Sookoor, T.; Jeschke, S. Smart Cities: Foundations, Principles and Applications; Wiley: Hoboken, NJ, USA, 2017; pp. 1–20. [Google Scholar]
- Song, H.; Rawat, D.; Jeschke, S.; Brecher, C. Cyber-Physical Systems: Foundations, Principles and Applications; Academic Press: Boston, MA, USA, 2016; pp. 20–30. [Google Scholar]
- Di, K.C.; Ma, R.J.; Li, R.X. Geometric processing of Ikonos stereo imagery for coastal mapping applications. Photogramm. Eng. Remote Sens. 2003, 69, 873–879. [Google Scholar]
- Xu, L.; Jing, W.; Song, H.; Chen, G. High-Resolution Remote Sensing Image Change Detection Combined with Pixel-Level and Object-Level. IEEE Access 2019, 7, 78909–78918. [Google Scholar] [CrossRef]
- Yang, X.J.; Li, J. Advances in Mapping from Remote Sensor Imagery: Techniques and Applications; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Zanutta, A.; Lambertini, A.; Vittuari, L. UAV photogrammetry and ground surveys as a mapping tool for quickly monitoring shoreline and beach changes. J. Mar. Sci. Eng. 2018, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.; Jing, W.; Chen, G.; Lin, J.; Song, H. Multi-Label Remote Sensing Image Classification with Latent Semantic Dependencies. Remote Sens. 2020, 12, 1110. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, A.; Dazzi, S.; Vacondio, R.; Mignosa, P. Enhancing the resilience to flooding induced by levee breaches in lowland areas: A methodology based on numerical modelling. Nat. Hazards Earth Syst. Sci. 2020, 20, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Santos, D.; Alex, J.; Gosselin, P.H.; Philipp-Foliguet, S.; Torres, R.D.S.; Falcao, A.X. Interactive multiscale classification of high-resolution remote sensing images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2020–2034. [Google Scholar] [CrossRef] [Green Version]
- Fan, H.; Su, H.; Guibas, L.J. A Point Set Generation Network for 3D Object Reconstruction from a Single Image. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 605–613. [Google Scholar]
- Li, D.R.; Zhang, G.; Jiang, W.S.; Yuan, X.X. SPOT-5 HRS Satellite Imagery Block Adjustment without GCPS or with Single GCP. Geomat. Inf. Sci. Wuhan Univ. 2006, 31, 377–381. [Google Scholar]
- Lv, Z.; Song, H.; Basanta-Val, P.; Steed, A.; Jo, M. Next-Generation Big Data Analytics: State of the Art, Challenges, and Future Research Topics. IEEE Trans. Ind. Inform. 2017, 13, 1891–1899. [Google Scholar] [CrossRef] [Green Version]
- Jiang, B.; Yang, J.; Xu, H.; Song, H.; Zheng, G. Multimedia Data Throughput Maximization in Internet-of-Things System Based on Optimization of Cache-Enabled UAV. IEEE Internet Things J. 2019, 6, 3525–3532. [Google Scholar] [CrossRef]
- Hu, Y.; Tao, V.; Croitoru, A. Understanding the rational function model: Methods and applications. Int. Arch. Photogramm. Remote Sens. 2004, 20, 119–124. [Google Scholar]
- Liu, J.; Zhang, Y.S.; Wang, D.H. Precise Positioning of High Spatial Resolution Satellite Images Based on RPC Models. Acta Geod. Cartogr. Sin. 2006, 35, 30–34. [Google Scholar]
- Li, D.R. China’s first civilian three-line-array stereo mapping satellite: ZY-3. Acta Geod. Cartogr. Sin. 2012, 41, 317–322. [Google Scholar]
- Liu, Y.; Weng, X.; Wan, J.; Yue, X.; Song, H.; Vasilakos, A.V. Exploring Data Validity in Transportation Systems for Smart Cities. IEEE Commun. Mag. 2017, 55, 26–33. [Google Scholar] [CrossRef]
- Sheng, Y. Theoretical analysis of the iterative photogrammetric method to determining ground coordinates from photo coordinates and a DEM. Photogramm. Eng. Remote Sens. 2005, 71, 863–871. [Google Scholar] [CrossRef]
- Teo, T.A.; Chen, L.C.; Liu, C.L.; Tung, Y.C.; Wu, W.Y. DEM-aided block adjustment for satellite images with weak convergence geometry. IEEE Trans. Geosci. Remote Sens. 2009, 48, 1907–1918. [Google Scholar]
- Zhang, Y.J.; Wan, Y.; Huang, X.; Ling, X. DEM-assisted RFM block adjustment of pushbroom nadir viewing HRS imagery. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1025–1034. [Google Scholar] [CrossRef]
- Ling, X.; Zhang, Y.J.; Xiong, J.; Huang, X.; Chen, Z. An image matching algorithm integrating global SRTM and image segmentation for multi-source satellite imagery. Remote Sens. 2016, 8, 672. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.T.; Zhang, Y.J. DEM-aided bundle adjustment with multisource satellite imagery: ZY-3 and GF-1 in large areas. IEEE Geosci. Remote Sens. Lett. 2016, 13, 880–884. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, G.; Jiang, Y.H.; Wang, T. A SRTM-DEM-controlled ortho-rectification method for optical satellite remote sensing stereo images. Acta Geod. Cartogr. Sin. 2016, 45, 326–336. [Google Scholar]
- Wang, M.; Yang, B.; Pan, J.; Jin, S. High Precision Geometric Processing and Application of High Resolution Optical Satellite Remote Sensing Image; Science Press: Beijing, China, 2017. [Google Scholar]
- Zhou, P.; Tang, X.M.; Wang, Z.; Cao, N.; Wang, X. SRTM-assisted block adjustment for stereo pushbroom imagery. Photogramm. Rec. 2018, 33, 49–65. [Google Scholar] [CrossRef]
- Wu, B.; Guo, J.; Zhang, Y.; King, B.A.; Chen, Y. Integration of Chang’E-1 imagery and laser altimeter data for precision lunar topographic modeling. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4889–4903. [Google Scholar]
- Wu, B.; Hu, H.; Guo, J. Integration of Chang’E-2 imagery and LRO laser altimeter data with a combined block adjustment for precision lunar topographic modeling. Earth Planet. Sci. Lett. 2014, 6, 1–15. [Google Scholar] [CrossRef]
- Li, G.Y.; Tang, X.M.; Gao, X.; Wang, H.; Wang, Y. ZY-3 Block adjustment supported by glas laser altimetry data. Photogramm. Rec. 2016, 31, 88–107. [Google Scholar] [CrossRef]
- Li, G.Y.; Tang, X.M.; Gao, X.; Wang, X.; Fan, W.; Chen, J.; Mo, F. Integration of ZY3-02 Satellite Laser Altimetry Data and Stereo Images for High-Accuracy Mapping. Photogramm. Eng. Remote Sens. 2018, 84, 569–578. [Google Scholar] [CrossRef]
- Zhang, G.; Xu, K.; Jia, P.; Hao, X.; Li, D.R. Integrating Stereo Images and Laser Altimeter Data of the ZY3-02 Satellite for Improved Earth Topographic Modeling. Remote Sens. 2019, 11, 2453. [Google Scholar] [CrossRef] [Green Version]
- Guérin, C. Effect of the DTM quality on the bundle block adjustment and orthorectification process without GCP: Exemple on a steep area. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 1067–1070. [Google Scholar]
- Ali-Sisto, D.; Gopalakrishnan, R.; Kukkonen, M.; Savolainen, P.; Packalen, P. A method for vertical adjustment of digital aerial photogrammetry data by using a high-quality digital terrain model. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 954–1963. [Google Scholar] [CrossRef]
- Niu, X.; Zhou, F.; Di, K.C.; Li, R.X. 3D geopositioning accuracy analysis based on integration of QuickBird and IKONOS imagery. In Proceedings of the ISPRS Hannover Workshop 2005 in High Resolution Earth Imaging for Geospatial Information, Hannover, Germany, 17–20 May 2005. [Google Scholar]
- Eisenbeiss, H.; Baltsavias, E.; Pateraki, M.; Zhang, L. Potential of IKONOS and QUICKBIRD imagery for accurate 3D-Point positioning, orthoimage and DSM generation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 5, 522–528. [Google Scholar]
- Li, R.X.; Zhou, F.; Niu, X.T.; Di, K.C. Integration of Ikonos and QuickBird imagery for geopositioning accuracy analysis. Photogramm. Eng. Remote Sens. 2007, 73, 1067–1076. [Google Scholar]
- Li, R.X.; Deshpande, S.; Niu, X.T.; Zhou, F.; Di, K.C.; Wu, B. Geometric integration of aerial and high-resolution satellite imagery and application in shoreline mapping. Mar. Geod. 2008, 31, 143–159. [Google Scholar] [CrossRef]
- Jaehoon, J.; Kim, T. 3-D geopositioning by combination of images from different sensors based on a rigorous sensor model. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2009, 31, 11–19. [Google Scholar]
- Tong, X.H.; Liu, S.J.; Xie, H.; Wang, W.; Chen, P.; Bao, F. Geometric integration of aerial and QuickBird imagery for high accuracy geopositioning and mapping application: A case study in Shanghai. Mar. Geod. 2010, 33, 437–449. [Google Scholar] [CrossRef]
- Jaehoon, J. A study on the method for three-dimensional geo-positioning using heterogeneous satellite stereo images. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2015, 33, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Yang, C.; Kim, T. Geo-positioning accuracy using multiple-satellite images: IKONOS, QuickBird, and KOMPSAT-2 stereo images. Remote Sens. 2015, 7, 4549–4564. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.C.; Jiang, T.; Yu, A.; Wang, X.; Zhang, Y. Geo-positioning of remote sensing images with reference image. J. Remote Sens. 2019, 23, 673–684. [Google Scholar]
- Tang, S.J.; Wu, B.; Zhu, Q. Combined adjustment of multi-resolution satellite imagery for improved geo-positioning accuracy. ISPRS J. Photogramm. Remote Sens. 2016, 114, 125–136. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.X.; Yue, X.J.; Song, H.B.; Yuan, J.; Yang, T.; Seker, R. Integrating ground surveillance with aerial surveillance for enhanced amateur drone detection. Disruptive Technol. Inf. Sci. 2018, 10652, 1–7. [Google Scholar]
- Wang, J.; Liu, Y.X.; Niu, S.T.; Song, H.B. Beamforming-Constrained Swarm UAS Networking Routing. IEEE Trans. Netw. Sci. Eng. 2020, 1–13. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Y.X.; Niu, S.T.; Song, H.B. Lightweight blockchain assisted secure routing of swarm UAS networking. Comput. Commun. 2020, 165, 131–140. [Google Scholar] [CrossRef]
- Wang, Z.; Ou, J.K. Determining the ridge parameter in a ridge estimation using L-curve method. Geomat. Inf. Sci. Wuhan Univ. 2004, 29, 235–238. [Google Scholar]
- Lin, X.Y.; Yuan, X.X. A Method for Solving Rational Polynomial Coefficients Based on Ridge Estimation. Geomat. Inf. Sci. Wuhan Univ. 2008, 33, 1130–1133. [Google Scholar]
- Song, W.P.; Zhang, B.; Niu, C.L.; Guo, L.L. An Integrated Matching Correction Algorithm based on Least Squares and Phase Correlation. Remote Sens. Technol. Appl. 2019, 34, 1296–1304. [Google Scholar]
- Fraser, C.S.; Hanley, H.B. Bias compensation in rational functions for IKONOS satellite imagery. Photogramm. Eng. Remote Sens. 2003, 69, 53–57. [Google Scholar] [CrossRef]
- Tong, X.H.; Liu, S.J.; Weng, Q. Bias-corrected rational polynomial coefficients for high accuracy geo-positioning of QuickBird stereo imagery. ISPRS J. Photogramm. Remote Sens. 2010, 65, 218–226. [Google Scholar] [CrossRef]
- Tong, X.H.; Liu, S.J.; Weng, Q.H. Geometric processing of QuickBird stereo imageries for urban land use mapping: A case study in Shanghai, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2009, 2, 61–66. [Google Scholar] [CrossRef]
- Fischler, M.; Bolles, R. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Lowe, D. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Gesch, D.B.; Maune, D. Digital Elevation Model Technologies and Applications: The DEM Users Manual, 2nd ed.; The National Elevation Dataset; American Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2007; pp. 99–118. [Google Scholar]
- Grohmann, C.H. Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30. Remote Sens. Environ. 2018, 212, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018, 139, 171–182. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Pan, L.; Wang, S.G. Photogrammetry; Wuhan University Press: Wuhan, China, 2009. [Google Scholar]
- Zhang, Y.; Wang, T.; Feng, F.; Yuan, P.; Wang, X. Self-calibration block adjustment for Mapping Satellite-1three linear CCD image. J. Remote Sens. 2015, 19, 219–227. [Google Scholar]
- Cao, S.; Yuan, X. Refinement of RPCs Based on Systematic Error Compensation for Virtual Grid. Geomat. Inf. Sci. Wuhan Univ. 2011, 36, 185–190. [Google Scholar]
- Gong, J.; Wang, M.; Yang, B. High-precision Geometric Processing theory and Method of High-resolution Optical Remote Sensing Satellite Imagery without GCP. Acta Geod. Cartogr. Sin. 2017, 46, 1255–1261. [Google Scholar]
- Fraser, C.; Hanley, H. Bias-compensated RPCs for sensor orientation of high-resolution satellite imagery. Photogramm. Eng. Remote Sens. 2005, 71, 909–915. [Google Scholar] [CrossRef]
- Fraser, C.S.; Yamakawa, T. Insights into the affine model for high-resolution satellite sensor orientation. ISPRS J. Photogramm. Remote Sens. 2004, 5, 275–288. [Google Scholar] [CrossRef]
- Deng, X.; Yin, L.; Peng, S.; Ding, M. An iterative algorithm for solving ill-conditioned linear least squares problems. Geod. Geodyn. 2014, 6, 453–459. [Google Scholar] [CrossRef] [Green Version]
- Cox, D.D. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. J. Am. Stat. Assoc. 1999, 94, 1388–1398. [Google Scholar] [CrossRef]
- Hansen, P.C.; Jensen, T.K.; Rodriguez, G. An adaptive pruning algorithm for the discrete L-curve criterion. J. Comput. Appl. Math. 2007, 198, 483–492. [Google Scholar] [CrossRef]
- Wang, R.X.; Wang, X.Y.; Wang, J.R.; Zao, F.; Li, J.; Chen, G. The interior accuracy estimation in the photogrammetric calculation of the stereoscopic imagery of The Chang’e-1. Sci. Surv. Mapp. 2008, 33, 5–9. [Google Scholar]
- Liu, C.B.; Li, D.; Xue, N. Surveying Satellite Imagery RPC Block Adjustment without Ground Control Points. Hydrogr. Surv. Charting 2018, 38, 17–20. [Google Scholar]
- Jiang, Y.H.; Wang, J.Y.; Zhang, L.; Zhang, G.; Li, X.; Wu, J.Q. Geometric Processing and Accuracy Verification of Zhuhai-1 Hyperspectral Satellites. Remote Sens. 2019, 11, 996. [Google Scholar] [CrossRef] [Green Version]
- Dartmann, G.; Song, H.; Schmeink, A. Big Data Analytics for Cyber-Physical Systems: Machine Learning for the Internet of Things; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–20. [Google Scholar]
- Jiang, Y.H.; Zhang, G.; Tang, X.M.; Li, D.R.; Wang, T.Y.; Huang, W.C.; Li, L.T. Improvement and assessment of the geometric accuracy of Chinese high-resolution optical satellites. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 4841–4852. [Google Scholar] [CrossRef]
- Aguilar, M.A.; Saldaña, M.M.; Aguilar, F.J. GeoEye-1 and WorldView-2 pan-sharpened imagery for object-based classification in urban environments. Int. J. Remote Sens. 2013, 34, 2583–2606. [Google Scholar] [CrossRef]
- Liu, S.J.; Tong, X.H.; Wang, F.X.; Sun, W.Z.; Guo, C.C.; Ye, Z.; Jin, Y.M.; Xie, H.; Chen, P. Attitude jitter detection based on remotely sensed images and dense ground controls: A case study for Chinese ZY-3 satellite. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5760–5766. [Google Scholar] [CrossRef]
- Tilton, J.C.; Lin, G.Q.; Tan, B. Measurement of the band-to-band registration of the SNPP VIIRS imaging system from on-orbit data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 1056–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tilton, J.C.; Wolfe, R.E.; Lin, G.Q.; Dellomo, J.J. On-Orbit Measurement of the Effective Focal Length and Band-to-Band Registration of Satellite-Borne Whiskbroom Imaging Sensors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4622–4633. [Google Scholar] [CrossRef] [PubMed]
Specification | ZY-3 Satellite Imagery | Geoeye-1 Imagery | DMC Aerial Imagery |
---|---|---|---|
Image range | 121.052–122.143°E 30.797–31.753°N | 121.431–121.543°E 31.157–31.244°N | 121.488–121.507°E 31.294–31.277°N |
Image size | 16,306 × 16,384 pixels | 21,132 × 19,408 pixels | 7680 × 13,824 pixels |
Ground sample distance | 3.5 m/pixel | 0.5 m/pixel | 0.15 m/pixel |
Combinations | Reference Images | Images to Be Improved | Description |
---|---|---|---|
a | Geoeye-1 stereo imagery | ZY-3 stereo imagery 1 and 2 | one stereo vs. two stereo |
b | Geoeye-1 stereo imagery | ZY-3 stereo imagery 1 and 3 | one stereo vs. two stereo |
c | Geoeye-1 stereo imagery | ZY-3 stereo imagery 1 and 4 | one stereo vs. two stereo |
d | Geoeye-1 stereo imagery | ZY-3 stereo imagery 1, 2 and 3 | one stereo vs. three stereo |
e | Geoeye-1 stereo imagery | ZY-3 stereo imagery 1, 2, 3, and 4 | one stereo vs. four stereo |
Combination | Using Weighted Schemes/m | Using Unweighted Schemes/m | Free Network Bundle Adjustment/m | ||||||
---|---|---|---|---|---|---|---|---|---|
Planar | Vertical | Overall | Planar | Vertical | Overall | Planar | Vertical | Overall | |
a | 2.136 | 1.180 | 2.441 | 2.256 | 1.364 | 2.636 | 21.418 | 12.551 | 24.825 |
b | 4.351 | 1.240 | 4.524 | 4.567 | 1.260 | 4.740 | 23.921 | 13.771 | 27.602 |
c | 3.696 | 1.936 | 4.172 | 3.840 | 1.992 | 4.326 | 22.797 | 16.001 | 27.852 |
d | 3.913 | 2.161 | 4.470 | 4.516 | 2.085 | 4.974 | 18.862 | 12.059 | 22.387 |
e | 4.806 | 2.249 | 5.306 | 4.868 | 2.296 | 5.382 | 31.554 | 17.971 | 36.312 |
f | 6.889 | 2.255 | 7.250 | 6.830 | 2.912 | 7.425 | 28.231 | 16.623 | 32.761 |
Combination | Images to Be Improved | <r | [0, 2r] | [0, 3r] | [0, 4r] | [0, 5r] | [0, 6r] | All Ranges |
---|---|---|---|---|---|---|---|---|
a | ZY-3 stereo imagery 1 and 2 | 2.580 | 2.365 | 2.292 | 2.482 | 2.860 | 3.409 | 4.524 |
b | ZY-3 stereo imagery 1 and 3 | 2.576 | 3.258 | 3.698 | 3.649 | 3.558 | 3.614 | 4.172 |
c | ZY-3 stereo imagery 1 and 4 | 3.539 | 3.545 | 3.611 | 3.678 | 3.752 | 4.237 | 4.470 |
d | ZY-3 stereo imagery 1, 2 and 3 | 2.564 | 3.013 | 2.883 | 2.952 | 3.383 | 4.016 | 5.306 |
e | ZY-3 stereo imagery 1, 2,3 and 4 | 2.726 | 2.922 | 3.003 | 3.355 | 4.414 | 5.443 | 7.250 |
Combination | Images to Be Improved | <r | [r, 2r] | [2r, 3r] | [3r, 4r] | [4r, 5r] | [5r, 6r] | >6r |
---|---|---|---|---|---|---|---|---|
a | ZY-3 stereo imagery 1 and 2 | 2.580 | 2.115 | 2.038 | 3.220 | 4.135 | 7.997 | 11.084 |
b | ZY-3 stereo imagery 1 and 3 | 2.576 | 3.736 | 4.670 | 3.311 | 3.059 | 5.913 | 12.397 |
c | ZY-3 stereo imagery 1 and 4 | 3.539 | 2.753 | 3.717 | 4.107 | 5.262 | 7.640 | 10.223 |
d | ZY-3 stereo imagery 1, 2 and 3 | 2.564 | 3.323 | 2.421 | 3.289 | 4.966 | 7.806 | 10.830 |
e | ZY-3 stereo imagery 1, 2,3 and 4 | 2.726 | 3.070 | 3.248 | 4.825 | 7.609 | 11.198 | 14.774 |
Combination | All Ranges/m | Outside the Overlapping Area/m | ||
---|---|---|---|---|
Horizontal | Vertical | Horizontal | Vertical | |
Single aerial imagery 119057 + ZY-3 stereo imagery 1 | 4.973 | 2.245 | 4.903 | 1.991 |
Single aerial imagery 119058 + ZY-3 stereo imagery 1 | 5.084 | 1.789 | 5.195 | 1.527 |
Stereo aerial imagery + ZY-3 stereo imagery 1 | 3.543 | 1.475 | 4.100 | 1.704 |
Stereo aerial imagery + ZY-3 stereo imagery 1 and 2 | 3.799 | 1.526 | 4.156 | 1.655 |
Stereo aerial imagery + ZY-3 stereo imagery 1, 2, and 3 | 4.115 | 2.021 | 4.491 | 2.198 |
Stereo aerial imagery + ZY-3 stereo imagery 1, 2, 3, and 4 | 4.872 | 2.317 | 5.242 | 2.492 |
Combination | Reference Images | Accuracy for All Ranges | |
---|---|---|---|
Horizontal/m | Vertical/m | ||
Stereo aerial imagery Stereo Geoeye-1 imagery Stereo ZY-3 imagery 1 | Stereo aerial imagery | 3.694 | 1.430 |
Stereo Geoeye-1 imagery | 2.846 | 1.248 | |
Stereo aerial imagery +Stereo Geoeye-1 imagery | 1.742 | 1.139 | |
Stereo aerial imagery Stereo Geoeye-1 imagery Stereo ZY-3 imagery 1 and 2 | Stereo aerial imagery | 3.945 | 1.712 |
Stereo Geoeye-1 imagery | 2.634 | 1.189 | |
Stereo aerial imagery +Stereo Geoeye-1 imagery | 1.700 | 1.112 | |
Stereo aerial imagery Stereo Geoeye-1 imagery Stereo ZY-3 imagery 1, 2, and 3 | Stereo aerial imagery | 4.279 | 1.940 |
Stereo Geoeye-1 imagery | 3.055 | 1.869 | |
Stereo aerial imagery +Stereo Geoeye-1 imagery | 2.144 | 1.808 | |
Stereo aerial imagery Stereo Geoeye-1 imagery Stereo ZY-3 imagery 1, 2, 3, and 4 | Stereo aerial imagery | 4.799 | 2.537 |
Stereo Geoeye-1 imagery | 3.886 | 2.403 | |
Stereo aerial imagery +Stereo Geoeye-1 imagery | 3.165 | 2.363 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Liu, S.; Tong, X.; Niu, C.; Ye, Z.; Jin, Y. Combined Geometric Positioning and Performance Analysis of Multi-Resolution Optical Imageries from Satellite and Aerial Platforms Based on Weighted RFM Bundle Adjustment. Remote Sens. 2021, 13, 620. https://doi.org/10.3390/rs13040620
Song W, Liu S, Tong X, Niu C, Ye Z, Jin Y. Combined Geometric Positioning and Performance Analysis of Multi-Resolution Optical Imageries from Satellite and Aerial Platforms Based on Weighted RFM Bundle Adjustment. Remote Sensing. 2021; 13(4):620. https://doi.org/10.3390/rs13040620
Chicago/Turabian StyleSong, Wenping, Shijie Liu, Xiaohua Tong, Changling Niu, Zhen Ye, and Yanmin Jin. 2021. "Combined Geometric Positioning and Performance Analysis of Multi-Resolution Optical Imageries from Satellite and Aerial Platforms Based on Weighted RFM Bundle Adjustment" Remote Sensing 13, no. 4: 620. https://doi.org/10.3390/rs13040620
APA StyleSong, W., Liu, S., Tong, X., Niu, C., Ye, Z., & Jin, Y. (2021). Combined Geometric Positioning and Performance Analysis of Multi-Resolution Optical Imageries from Satellite and Aerial Platforms Based on Weighted RFM Bundle Adjustment. Remote Sensing, 13(4), 620. https://doi.org/10.3390/rs13040620