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Abstract: Deforestation in the Amazon rainforest results in reduced biodiversity, habitat loss, climate
change, and other destructive impacts. Hence obtaining location information on human activities is
essential for scientists and governments working to protect the Amazon rainforest. We propose a
novel remote sensing image classification framework that provides us with the key data needed to
more effectively manage deforestation and its consequences. We introduce the attention module to
separate the features which are extracted from CNN(Convolutional Neural Network) by channel,
then further send the separated features to the LSTM(Long-Short Term Memory) network to predict
labels sequentially. Moreover, we propose a loss function by calculating the co-occurrence matrix
of all labels in the dataset and assigning different weights to each label. Experimental results on
the satellite image dataset of the Amazon rainforest show that our model obtains a better F2 score
compared to other methods, which indicates that our model is effective in utilizing label dependencies
to improve the performance of multi-label image classification.

Keywords: multi-label; remote-sensing image; CNN-RNN; attention; dependencies

1. Introduction

Deforestation in the Amazon rainforest has become a severe issue in the past decades, causing
devastating impacts on the ecosystems and the environment. Therefore, tracking changes in the
rainforest and better analyzing the location of human encroachment on forests are needed, which can
help people stop deforestation and protect the earth.

The advancement achieved recently in satellite technology has led to significant growth of RS
image archives. RS images contain more detailed features of ground objects and more complex spectral
features than ordinary images. Therefore, RS images have more applications in many fields. They
can be used for smart and connected communities [1]. By distinguishing the spectral characteristics
of different materials, RS image information can be used for monitoring floods [2], typhoons and
torrential rains [3], forecasting earthquakes and tsunamis [4], tracking ships [5], monitoring forestry [6]
and the effects of climate change [7], etc.

In real-world classification tasks, since images contain rich semantic information, it is often
necessary to assign multiple labels to each instance. Multi-label image classification is more widely
used than single-label image classification, such as image retrieval, image annotation, scene recognition,
etc. These applications need to model rich semantic information and their dependencies which is
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challenging, consequently it is essential to learn multiple semantic features and classify images
with multi-labels.

Since AlexNet [8] has achieved good results on ImageNet [9], CNNs have been used in image
classification broadly. Zhao et al. [10] used multi-scale two-dimensional CNN (2d-CNN) to deeply
present remote sensing images and integrate multi-band spectral information for classification.
However, different feature extraction scales need to be designed, and feature areas may confuse
objects of different shapes and types. Maggiori et al. [11] came up with a framework based on CNNs
which is end-to-end to classify satellite images in pixel level. However, these methods ignore the
potential semantic dependencies between labels. Mou et al. [12] introduced a method based on
RNN(Recurrent Neural Network) to classify images, demonstrating the potential of the deep recursive
network to utilize label correlation in classification tasks. Therefore, people try to combine CNN and
RNN to make better use of semantic dependence to improve classification performance. However,
most of the methods mentioned above are designed for single-label classification. Since multi-label
images can be regarded as an extension of single-label images, we consider applying the method of
solving single-label image classification to the task of multi-label image classification.

In this paper, we propose a innovative framework that makes full use of the characteristics of
the LSTM model.It subjects to the ”Encoder-Decoder” design pattern, CNN is used for encoding, and
RNN is used for decoding. The CNN model uses DenseNet121-BC to extract features from the given
images, then model channels and labels with attention module, lastly using the LSTM to generate an
associated image label sequence. The contributions of this paper can be summarized as follows:

• We propose a novel framework for multi-label remote sensing image classification. By introducing
the attention module into the CNN-RNN structure, the RNN can notice some small targets which
might be neglected and easier to extract the correlation between labels.

• We propose a new loss function, which solves the problem of imbalance in the proportion of labels
in the dataset. It helps to improve the classification results of rare labels, thereby improving the
overall classification performance.

• We conduct experiments and evaluations on the dataset of the Amazon rainforest and prove
that our proposed model is superior to other leading multi-label image classification methods in
F2 scores.

The rest of the paper proceeds as follows. The Section 2 briefly introduces several methods of
multi-label image classification, and the Section 3 describes the model in detail and the pre-processing
for our task. The Section 4 introduces the dataset for multi-label classification task of remote sensing
images, the corresponding experiment and experimental results. Finally, conclusions are given in the
Section 5.

2. Related Works

Remote sensing images contain rich band information, which can show complex ground features
and meteorological features. The information extracted from these features is very crucial for
subsequent analysis and application. Xu et al. improve pixel-level detection method, which can
more accurately detect changes in RS images [13]. Peng et al. [14] trained a nonlinear kernel function
expression using the Ideal Regularization Kernel, and then combined it with Support Vector Machine
for classification. However, as the data increases, the kernel function becomes insufficient to express
the nonlinear relationship between the data and its labels. Fang et al. [15] proposed an unsupervised
RS image classification method using Hidden Markov Random Field (HMM). Yao et al. [16] proposed
using the Stacked AutoEncoder(SAE) to extract features from images. The above two methods can
automatically classify images, but good accuracy can only be achieved when the categories are small.

In recent years, the multi-label classification has attracted the attention of many researchers
and various effective methods are proposed. For example, the bag-of-words (BOW) [17–20] which
extracts features such as Scale Invariant Feature Transform(SIFT) [21], Histogram of Oriented
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Gradient(HOG) [22], Local Binary Pattern(LBP) [23] manually, Support Vector Machine(SVM) [24],
random forests [25] ) and context modeling [17,18] were proposed. Since CNNs have achieved great
success recent years, Chat-field et al. adjusted the network to adapt to new tasks with the pre-trained
CNN model on ImageNet, reducing the time and the difficulty of training. Gong et al. [26] concluded
that top-k ranking loss worked greatest among several loss functions with CNNs. Li et al. [27]
put forward a modern loss function which makes the deep network converge faster and easier
to optimize. In order to reduce the defect that the experimental results are greatly influenced by
complex background, Yang et al. [28] used the region proposals to extract the information area of the
images effectively.

To model the label dependencies, RNN was introduced into the multi-label classification task.
Wang et al. [29] proposed a model that exploits the characteristic of memory in RNN [30,31] to
explore the relevance of the labels. In the model mentioned above, the ability of the model cannot
be fully utilized based on VGG(Visual Geometry Group Network) for feature extraction. Therefore,
Zhang et al. [32] made improvements in the component CNN. Our proposed method is also based
on the CNN-RNN model. Unlike [28], the channels of the feature map are separated through
attention module, making the LSTM can pay more attention to some small size targets and capture the
dependencies between the labels to improve performance.

The attention module plays an significant role in computer vision, which has benefited many
vision tasks. For example, image classification [33,34], and image captioning [35]. Work [33] build a
recurrent attention model utilizing the attention module, and successfully applied it to the classification
tasks with low-resolution images. Feng et al. [34] used attention heatmap to explore spatial relations
between labels and thus virtually improving classification performance. The attention module have
been confirmed beneficial in label dependencies learning.

3. Methodology

The multi-label image classification task is defined as a problem of generating labels sequentially
and predict all possible labels for a given image. Given the image training set X = {x1, x2, ..., xN} and
the corresponding label Y = {y1, y2, ...yN}, where N represents the number of training images. The
corresponding label of the i-th image xi is yi = yi1, yi2, ..yiC, where C represents the number of labels;
yij = 1 represents that the image xi contains the label j, otherwise yij = 0. Build an end-to-end model
and learn the mapping from image to label f : X→ Y. At the time of testing, an image is given, and a
plurality of labels corresponding to the image are predicted by mapping f .

Our model consists of three subsections: DenseNet121- BC, attention module, and LSTM network.
Figure 1 illustrates the overall architecture of our model. The model is based on the CNN-RNN
structure and treats multiple labels of an image as a sequence. The feature FI is extracted from the
image using DenseNet. In order to take full advantages of the characteristics of the deep neural
network, features are extracted from the last layer of the fully connected layer. Attention module is
used to separate features of different targets, and the LSTM decodes the channels of these feature maps
to predict the labels.

3.1. Densenet for Feature Extraction

Because of the different scales and semantics of the labels to predict, DenseNet is an excellent
choice for feature extraction. DenseNet is composed of dense blocks. The dense blocks are composed
of a stack of convolutional layers which make each dense layer can receive features from all previous
dense layers. This design allows the high-level layer to directly access all the information of the
previous layers, which facilitates the use of the classifier to access the information from different
layers of the architecture for label prediction. And accordingly we use DenseNet121-BC as the feature
extraction network. The DenseNet121-BC network has 121 layers, which is enough to handle the
classification task. B(Bottleneck)C(Compression) indicates that the model uses the bottleneck layer
and the compression ratio is greater than 0. As described in [7], the bottleneck layer and compression
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can improve the computational efficiency. Given an image xn, We use DenseNet121-BC to extract the
features of the image which can be formulated as:

FI = CNN(xn) (1)

FI is the output feature map of the DenseNet121-BC. In DenseNet121-BC, the input image size is 224 ×
224, the corresponding output feature map size is 7 × 7, which is further sent to the attention module
to model the relation between labels and channels.

CNN
Attention

Feature 
map FI

...

Feature 
map A

CONV LSTM

CONV

CONV LSTM

LSTM .
.
.

.

.
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.

.

.
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Figure 1. Overview of our method for multi-label remote sensing image classification. Given an image,
We extract the features from the image using CNN, and the output feature map FI is further sent to the
attention module which separates features of different targets. The LSTM predicts labels on the basis of
the extracted correlation between labels.

3.2. Attention Module

In order to exploit the semantic dependencies between multiple labels of an image, RNN is
introduced to improve the classification performance. If directly input the feature maps output by
DenseNet into the LSTM network, the feature map at this time contains multiple objects so that the
LSTM cannot only focus on the exploration of label correlation. Therefore, the attention module is used
to separate the features of different targets in the channel dimension of the feature map. By sending
separated channels one by one into the LSTM network, LSTM can focus on capturing dependencies
between labels and improving recognition performance. Given the input feature map FI ∈ R7×7×C,
generate the attention values for each label:

Z = Convatt(FI), Z ∈ R7×7×C (2)

where Z is the unnormalized label attention value, and each channel corresponds to one label. Spatial
normalization of Z using the softmax function to obtain the final attention map A:

al
i,j =

exp(zl
i,j)

∑i,j exp(zl
i,j)

, A ∈ R7×7×C (3)

where zl
i,j and al

i,j represent the unnormalized and normalized attention values at (i, j) of the l −
th channel.

Each image has only one or several labels, but each channel has responses to each class. The
responses for labels that do not exist have a negative impact on labels prediction. In order to suppress
negative impacts, we introducing a confidence map S to learn spatial regularizations from weighted
attention maps U ∈ R7×7×C ,
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U = σ(S)⊗ A, U ∈ R7×7×C (4)

where σ(·) = 1/(1 + e−·) normalizes label confidences S to the range (0,1), and ⊗ represents the
element-wise multiplication. U is a weighted attention map of the A. The attention module is used
to separate the features of different targets of the feature map, so that the channel corresponds to the
label, and the feature map channel is sequentially fed to the LSTM for decoding.

3.3. Lstm for Latent Semantic Dependencies

LSTM is a type of RNN that has a strong ability to handle sequence problems. LSTM not only
predicts labels based on features, but also captures latent semantic dependencies between labels.
LSTM extends RNN by adding three control gates to an RNN neuron: a forget gate, an input gate
and an output gate. They respectively control whether to forget the current state, whether to obtain
the information of current input and whether to output the state. These three gates enable LSTM
to perform well in both long-term and short-term sequence and make the model easier to optimize.
Figure 2 is the basic structure of LSTM. The LSTM update progress for time step t can be expressed as:

mt = tanh(Wxcxt + Whcht−1 + bc) (5)

it = σ(Wxixt + Whiht−1 + bi) (6)

ft = σ(Wx f xt + Wh f ht1 + b f ) (7)

ot = σ(Wxoxt + Whoht−1 + bo) (8)

ct = ft ⊗ ct−1 + it ⊗mt (9)

ht = ot × tanh(ct) (10)

where all of the W and b represent the parameters to be trained, and xt represents the input at time t.
it, ft and ot represent the output of the input, forget and output gates in the LSTM, respectively. ct and
ht represent the memory and the hidden state of the LSTM. σ(·) is the sigmoid activation function.

+

σ

tanh

σ σTanh

╳

xt

╳

╳

ht

ht-1

ct

ht

ct-1

Figure 2. The basic structure of the LSTM.

We can see that LSTM uses its structure to capture the relevance of labels by the storage unit
encodes useful information at each time step. When predicting the label corresponding to the channel
of each feature map, ct fuses the correlation of the labels of all the previous channels, thus, the
recognition ability of the current prediction label can be easily improved.

Each channel of the feature map corresponds to one label that allows the LSTM network to focus
on capturing semantic dependencies between labels. To be specific, first to encode the channel vt, and
the obtained result xt is then fed to the LSTM one by one to obtain the predicted probability of the
label pt:

xt = relu(Wvxvt + bx) (11)
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ht = LSTM(xt, ht−1, ct−1) (12)

pt = σ(Whpht + bh) (13)

where Wvx and bx are the convolutional parameters, and Whp and bh are the classification
layer parameters.

3.4. Max-Pooling and Loss Function

After K + 1 iterations, the score vector {s1, s2, ..., sK} of the LSTM output is obtained, where
sk =

{
s1

k , s2
k , ..., sC

k
}

denotes the scores over C class labels. We use the category-wise max-pooling
method to get the final label probability value s =

{
s1, s2, ..., sC} :

si = max(si
1, si

2, ..., si
K), i ∈ (1, 2, ..., C) (14)

Since an image may correspond to several labels, but the objects corresponding to these labels
occupy different proportions in the images. In order to deal with the imbalance, we propose a new
loss function. Firstly, we calculate the co-occurrence matrix of all the labels on the whole training set.
The ground-true probability vector of the i − th sample is defined as p̂i. Then given the predicted
probability vector pi:

Pc
i =

exp(sc
i )

∑C
c′=1 exp(sc

i )
, c = 1, 2, ..., C (15)

The classification loss function is defined as:

Lcls = −
1
N

N

∑
j=1

C

∑
c=1

ai( p̂c
i − pc

i )
2 (16)

where ai is calculated from the co-occurrence matrix of all the labels on the training set. Assuming
that the label set of an image is L, we acquire a set Q, which are the probabilities of labels in L appear
together according to the co-occurrence matrix. The weight of ai of each label in L is calculated as:

ai =
qi

∑L
j=1 qj

(17)

3.5. Data Augmentation

To improve generalization and prevent overfitting, we apply various modifications to increase
the diversity of the training images called augmentation.

• The size of original images from our dataset is 256 × 256, they are then cropped to 224 × 224
to fit the network input size. We take five crops for each image(four in the corners and one in
the center);

• Unlike ordinary images such as what is in the ImageNet, satellite images can preserve semantic
information after flipping and rotation, accordingly we applied both horizontal and vertical flips;

• We rotate each image to 90, 180, and 270 degrees.

In this way, we transform each image into 6 × 2 × 3 = 36 training samples. In training, we
randomly pick 1 of the 36 transformations for each image in each epoch. In the test period, we only
use the images which obtain complete image information. These transformations make our model
more robust and ameliorate the poor performance on rare features.
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4. Experiment

4.1. Dataset

We use the data from the kaggle competition ”Planet: Understanding the Amazon from Space”.
It is a satellite remote sensing image of the Amazon rainforest from Planet Flock2 satellite from
January 2016 to January 2017. The spatial resolution is 3.7 m and the resolution of the image is
256 × 256. The dataset contains 40,479 labelled training images and 61,192 unlabelled images. We
randomly selected the 20% (8096) of the labelled images for training, and then 20% (8096) of the
labelled images for validation, the rest is used for training. Each image has up to 17 labels, and these
labels can be approximately divided into three categories: four atmosphere condition labels ( haze,
cloudy, partly_cloudy, clear), six land condition labels ( water, habitation, agriculture, cultivation,
road, primary) and seven rare labels ( bare_ground, artisinal_mine, slash_burn, conventional_mine,
selective_logging, blooming, blow_down). We randomly select 8 images as shown in Figure 3.

Figure 3. Several example images taken from the dataset. For the first row, the labels for the image
from left to right are: partly_cloudy, primary, water; agriculture, clear, habitation, primary, road;
partly_cloudy, primary, water; agriculture, partly_cloudy, primary, selective_logging. For the second
row, the labels for the image from left to right are: partly_cloudy, primary; clear, primary; agriculture,
clear, cultivation, primary, water; clear, primary.

Figure 4 shows the label distribution of the images from dataset. It can be seen that the
distribution of the label is severely skewed, and the frequency of the labels appears from more than 90%
(primary) to less than 1% (i.e., blow_down, conventional_mine, slash_burn, blooming, artisanal_mine,
selective_logging,etc.). There may be an under-fitting problem due to the small number of rare labels.
Therefore, proper data augmentation can improve the performance of classification.
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Figure 4. The number of each of the 17 labels in the dataset. The blue ones belong to rare labels, the red
ones belong to land condition labels,the green ones belong to atmosphere condition labels.
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The co-occurrence matrix can provide a large amount of information for multi-label classification.
Figure 5 is a heat map of the co-occurrence matrix between different labels. If we narrow down the
heat map, we can see that each image can only have one of the four atmosphere condition labels, but
the land condition labels and the rare labels may overlap. For example, the primary and agriculture,
agriculture and water have a trend to occur together. Therefore, we hope to explore the potential
relevance of image labels through LSTM to improve the performance of classification.

Figure 5. Heat maps of co-occurrence matrix between different labels, reflecting the frequency of two
labels co-occurring. Left of the first row: heat map of co-occurrence matrix for all 17 different categories;
right of the first row: heat map of co-occurrence matrix for four atmosphere condition labels; left of the
second row: heat map of co-occurrence matrix for six land condition labels; right of the second row:
heat map of co-occurrence matrix for seven rare labels.

4.2. Evaluation

In this paper, the F2 score is used as the evaluation standard of experimental results. Calculated
as follows:

F2 = (1 + β2)
p · r

β2 p + r
, p =

tp
tp + f p

, r =
tp

tp + f n
, β = 2 (18)

Where p is the precision of the predicted set of labels and r is the recall . tp , f p , and f n
represent the number of true positives, the number of false positives, and the number of false negatives,
respectively. β represents weights that are used to balance the importance of precision and recall.

4.3. Classification Performance

Unfortunately, when directly using our model to classify images after data augmentation, the
obtained classification results are not good compared with the excellent results that already exist.
Because the number of our dataset is not enough, especially the rare labels, the weights can not
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converge to their optimal values when training from scratch. To solve this problem, we use a training
method based on transfer learning. Transfer learning refers to migrating already trained model
parameters to a new model. ImageNet is a vast dataset and there are already some deep architectures
trained on it which are a good source of pre-trained models for other classification problems. Thus,
we regard the CNN model pre-trained on the ImageNet dataset as the starting point for our model.
Specifically, we make the last fully connected layer of Densenet121-BC adapted to our task. Use a
learning rate of 0.001 to train this layer for ten epochs with all convolutional layers frozen, then training
all layers using a smaller learning rate to fine-tune the parameters of both the CNN and the fully
connected layer.

Based on the above training method, we use several models to classify RS images on the dataset.
The baseline CNN contains three convolutional layers followed by two fully connected layers, and
every convolutional layer used a ReLU nonlinearity, batch-norm and max-pooling layer. Table 1
provides the F2 scores for each model on the training, validation andte set and the validation set.

Table 1. The m.F2 score for each model on training, validation and test set. m.F2 refers to the average of
F2 scores obtained from 20 repeated experiments. And all the standard deviation(std) is less than 0.01.

Networks Training m.F2 Validition m.F2 Test m.F2

baseline 0.859 0.851 0.849
VGG16 0.915 0.912 0.909

ResNet-50 0.921 0.917 0.915
VGG16-LSTM 0.918 0.914 0.913

ResNet50-LSTM 0.924 0.920 0.919
DenseNet121-LSTM 0.926 0.923 0.922

From Table 1, we can find that the results of models based on convolutional networks are
good. The results of baseline CNN is not bad, but as the depth of the network increases, the
classification performs better, indicating that the depth of the model has a great impact on the
multi-label classification. Our model obtained the highest F2 score among these models, which
is mainly due to the use of the dependencies between labels and selecting the DenseNet network as the
feature extractor. By exploiting the dependencies between labels, some rare labels may be predicted
accordingly based on other predicted labels. The DenseNet architecture allows each block to get
information from the previous blocks, and this characteristic matches the task for generating labels
sequentially, the prediction of the current label needs the information from the previous labels.

We plot the co-occurrence matrix of the real labels and the prediction labels on the validation set
as shown in Figure 6. It is not difficult to find that the two figures are very similar, indicating that our
model has predicted the correlation between labels very well. Figure 6 shows that the plot on the right
side is lighter than the left. Because the model is more inclined to predict more positive than the basic
fact, the classifier tends to predict more labels to conservatively reduce its losses, even if there are fakes
in the labels. This strategy can also be verified from a fast and stable loss curve. From Figure 6, we see
that the model successfully captured some relationships between the labels.
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Figure 6. Co-occurrence matrices on true labels vs predicted labels on test set. Left of the first row: heat
map of co-occurrence matrix on true labels; right of the first row: heat map of co-occurrence matrix for
predicted labels by our model; left of the second row: heat map of co-occurrence matrix for predicted
labels by VGG16; right of the second row: heat map of co-occurrence matrix for predicted labels by
VGG16-LSTM.

Figure 7 shows a few examples on which we use to generate predictions. For the first row, we
successfully predicted all the labels for the leftmost image: agriculture, haze, primary, road and water.
In the next image, we also successfully predicted all the labels including the rare label blooming, which
verified the effectiveness of our model in modeling the label dependencies. The middle image in
the second row also successfully predicted all the labels, indicating that the model is very effective
for predicting non-rare labels. The rightmost images of both rows successfully predicted all the
labels, respectively are agriculture, cultivation, partial_cloudy, primary and agriculture, habitation,
partly_cloudy, primary, road, illustrating the superiority of the model which can accurately predict the
labels. For the leftmost image of the second row, we predicted clear, primary, bare_ground, slash_burn,
but failed to predict the label blow_burn, erroneously predicted the conventional_mine, indicating
that the model has some difficulty in predicting particularly rare labels.
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Figure 7. Some examples on which we generate predictions. The true labels of these images are as
followed. For the first row, the labels for the image from left to right are: agriculture, haze, primary,
road and water; blooming, clear, primary; agriculture, cultivation, partial_cloudy, primary. For the
second row, the labels for the image from left to right are: clear, primary, bare_ground, slash_burn,
blow_burn, conventional_mine; agriculture, clear, primary, road; agriculture, habitation, partly_cloudy,
primary, road.

Figure 8 gives a loss curve of our model during 20 training epochs and the F2 convergence curves
during the training and validation periods. The increase in training epochs correspond to the decreases
in the training loss and the increases in F2 scores, and the F2 score at the time of validation does not
decrease significantly compared with the training period, suggesting that our model does not suffer
from overfitting. Therefore, in the process of further improving the classification performance, we
can consider increasing the model complexity and other model optimization methods to improve the
F2 score.

Figure 8. Left: training loss curve of our model; Right: F2 convergence curve comparison between
training set and validation set(the blue curve represents the convergence curve of F2 scores on the
training set, and the yellow represents on the validation set).

The F2 score distribution for each of the labels shown in Figure 9 is similar to the frequency
distribution of the labels shown in Figure 4. This is reasonable because more data allows the
model to learn more features for better results. Labels with a small number of visual differences in
different samples, such as bare ground, selective_logging, conventional_mine, blooming, blow_down,
slash_burn, etc., have significantly lower F2 scores due to severe under-fitting. It can be seen that the
differences in the samples and the imbalance of the data have a significant impact on the multi-label
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image classification. Consequently, it is possible to improve performance by increasing the frequencies
of the rare labels in the training set.

Figure 9. Training m.F2 score (Tra m.F2), validation m.F2 score (Val m.F2) and test m.F2 score (Test m.F2)
for each of the labels.

5. Conclusions

In this paper, a multi-label classification model Densenet121-LSTM is proposed for RS images.
All experiments on the RS image dataset of the Amazon rainforest are under the same experimental
conditions, compared with several multi-label classification models based on CNN, our method
achieves the best test F2 score.

In the future, in order to make the classification performs better, we can improve from the
following aspects: optimize and adjust the network structure to get a better test F2 score; use Generative
Adversarial Nets (GAN) to generate new training samples and replace traditional data augmentation
methods to increase the proportion of rare landmarks.
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