Hydrological and Kinematic Precursors of the 2017 Calving Event at the Petermann Glacier in Greenland Observed from Multi-Source Remote Sensing Data
Abstract
:1. Introduction
2. Study Site
3. Data and Methodologies
3.1. Satellite Images
3.2. Extracting Ice Velocity and Melt Pond Extent
3.3. Numerical Ice-Flow Modeling
4. Results
4.1. The Sub-Week Timescale Ice Flow
4.2. Damage and Stress Analysis
4.3. The Backscatter Coefficients of the Landfast Sea Ice
4.4. The Evolution of Melt Pond Extent
5. Discussion
5.1. Tributary Glacier Shear
5.2. The Weakening of Sea Ice
5.3. Meltwater Infiltrating Crevasses
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bondzio, J.H.; Morlighem, M.; Seroussi, H.; Kleiner, T.; Rückamp, M.; Mouginot, J.; Moon, T.; Larour, E.Y.; Humbert, A. The mechanisms behind Jakobshavn Isbrae’s acceleration and mass loss: A 3-D thermomechanical model study. Geophys. Res. Lett. 2017, 44, 6252–6260. [Google Scholar] [CrossRef]
- Benn, D.I.; Cowton, T.; Todd, J.; Luckman, A. Glacier calving in Greenland. Curr. Clim. Chang. Rep. 2017, 3, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Kanagaratnam, P.J.S. Changes in the velocity structure of the Greenland Ice Sheet. Science 2006, 311, 986–990. [Google Scholar] [CrossRef] [Green Version]
- Bevan, S.; Luckman, A.; Murray, T.J.C. Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers. Cryosphere 2012, 6, 923–937. [Google Scholar] [CrossRef] [Green Version]
- Jensen, T.S.; Box, J.E.; Hvidberg, C.S. A sensitivity study of annual area change for Greenland ice sheet marine terminating outlet glaciers: 1999–2013. J. Glaciol. 2016, 62, 72–81. [Google Scholar] [CrossRef] [Green Version]
- Bondzio, J.H.; Seroussi, H.; Morlighem, M.; Kleiner, T.; Rückamp, M.; Humbert, A.; Larour, E.Y. Modelling calving front dynamics using a level-set method: Application to Jakobshavn Isbræ, West Greenland. Cryosphere 2016, 10, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Podrasky, D.; Truffer, M.; Lüthi, M.; Fahnestock, M. Quantifying velocity response to ocean tides and calving near the terminus of Jakobshavn Isbræ, Greenland. J. Glaciol. 2014, 60, 609–621. [Google Scholar] [CrossRef] [Green Version]
- Cowton, T.; Sole, A.; Nienow, P.; Slater, D.; Wilton, D.; Hanna, E. Controls on the transport of oceanic heat to Kangerdlugssuaq Glacier, East Greenland. J. Glaciol. 2016, 62, 1167–1180. [Google Scholar] [CrossRef] [Green Version]
- Miles, V.V.; Miles, M.W.; Johannessen, O.M. Satellite archives reveal abrupt changes in behavior of Helheim Glacier, southeast Greenland. J. Glaciol. 2016, 62, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.A.; Kjeldsen, K.K.; Kjær, K.H.; Bevan, S.; Luckman, A.; Aschwanden, A.; Bjork, A.; Korsgaard, N.J.; Box, J.E.; van den Broeke, M.J.T.C. Glacier dynamics at Helheim and Kangerdlugssuaq glaciers, southeast Greenland, since the Little Ice Age. Cryosphere 2014, 8, 1497–1507. [Google Scholar] [CrossRef] [Green Version]
- Holland, D.M.; Thomas, R.H.; De Young, B.; Ribergaard, M.H.; Lyberth, B. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nat. Geosci. 2008, 1, 659–664. [Google Scholar] [CrossRef]
- Straneo, F.; Heimbach, P. North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature 2013, 504, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Moon, T.; Joughin, I. Changes in ice front position on Greenland’s outlet glaciers from 1992 to 2007. J. Geophys. Res. Earth Surf. 2008, 113, F02022. [Google Scholar] [CrossRef] [Green Version]
- Amundson, J.M.; Fahnestock, M.; Truffer, M.; Brown, J.; Lüthi, M.P.; Motyka, R.J. Ice mélange dynamics and implications for terminus stability, Jakobshavn Isbræ, Greenland. J. Geophys. Res. Earth Surf. 2010, 115, F01005. [Google Scholar] [CrossRef]
- Reeh, N.; Thomsen, H.H.; Higgins, A.K.; Weidick, A. Sea ice and the stability of north and northeast Greenland floating glaciers. Ann. Glaciol. 2001, 33, 474–480. [Google Scholar] [CrossRef] [Green Version]
- Shroyer, E.L.; Padman, L.; Samelson, R.M.; Münchow, A.; Stearns, L.A. Seasonal control of Petermann Gletscher ice-shelf melt by the ocean’s response to sea-ice cover in Nares Strait. J. Glaciol. 2017, 63, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Rathmann, N.M.; Hvidberg, C.S.; Solgaard, A.M.; Grinsted, A.; Gudmundsson, G.H.; Langen, P.L.; Nielsen, K.P.; Kusk, A. Highly temporally resolved response to seasonal surface melt of the Zachariae and 79N outlet glaciers in northeast Greenland. Geophys. Res. Lett. 2017, 44, 9805–9814. [Google Scholar] [CrossRef] [Green Version]
- Robel, A.A.; Banwell, A.F. A Speed Limit on Ice Shelf Collapse Through Hydrofracture. Geophys. Res. Lett. 2019, 46, 12092–12100. [Google Scholar] [CrossRef] [Green Version]
- Greene, C.A.; Young, D.A.; Gwyther, D.E.; Galton-Fenzi, B.K.; Blankenship, D.D. Seasonal dynamics of Totten Ice Shelf controlled by sea ice buttressing. Cryosphere 2018, 12, 2869–2882. [Google Scholar] [CrossRef] [Green Version]
- Khazendar, A.; Rignot, E.; Larour, E. Acceleration and spatial rheology of Larsen C Ice Shelf, Antarctic Peninsula. Geophys. Res. Lett. 2011, 38, L09502. [Google Scholar] [CrossRef] [Green Version]
- Nuth, C.; Gilbert, A.; Köhler, A.; McNabb, R.; Schellenberger, T.; Sevestre, H.; Weidle, C.; Girod, L.; Luckman, A.; Kääb, A. Dynamic vulnerability revealed in the collapse of an Arctic tidewater glacier. Sci. Rep. 2019, 9, 5541. [Google Scholar] [CrossRef] [Green Version]
- Kehrl, L.M.; Joughin, I.; Shean, D.E.; Floricioiu, D.; Krieger, L. Seasonal and interannual variabilities in terminus position, glacier velocity, and surface elevation at Helheim and Kangerlussuaq Glaciers from 2008 to 2016. J. Geophys. Res. Earth Surf. 2017, 122, 1635–1652. [Google Scholar] [CrossRef]
- Williamson, A.G.; Banwell, A.F.; Willis, I.C.; Arnold, N.S. Dual-satellite (Sentinel-2 and Landsat 8) remote sensing of supraglacial lakes in Greenland. Cryosphere 2018, 12, 3045–3065. [Google Scholar] [CrossRef] [Green Version]
- Pope, A. Reproducibly estimating and evaluating supraglacial lake depth with Landsat 8 and other multispectral sensors. Earth Space Sci. 2016, 3, 176–188. [Google Scholar] [CrossRef]
- Chudley, T.R.; Christoffersen, P.; Doyle, S.H.; Bougamont, M.; Schoonman, C.M.; Hubbard, B.; James, M.R. Supraglacial lake drainage at a fast-flowing Greenlandic outlet glacier. Proc. Natl. Acad. Sci. USA 2019, 116, 25468–25477. [Google Scholar] [CrossRef] [PubMed]
- Kingslake, J.; Ely, J.C.; Das, I.; Bell, R.E. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature 2017, 544, 349–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, S.E.L.; Small, D.; Rohner, C.; Mahmud, M.S.; Yackel, J.J.; Brady, M. Estimating melt onset over Arctic sea ice from time series multi-sensor Sentinel-1 and RADARSAT-2 backscatter. Remote Sens. Environ. 2019, 229, 48–59. [Google Scholar] [CrossRef]
- Dammann, D.O.; Eriksson, L.E.B.; Mahoney, A.R.; Eicken, H.; Meyer, F.J. Mapping pan-Arctic landfast sea ice stability using Sentinel-1 interferometry. Cryosphere 2019, 13, 557–577. [Google Scholar] [CrossRef] [Green Version]
- Joughin, I.; Smith, B.E.; Howat, I.M.; Scambos, T.; Moon, T. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol. 2010, 56, 415–430. [Google Scholar] [CrossRef] [Green Version]
- Fahnestock, M.; Scambos, T.; Moon, T.; Gardner, A.; Haran, T.; Klinger, M. Rapid large-area mapping of ice flow using Landsat 8. Remote Sens. Environ. 2016, 185, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Joughin, I.A.N.; Smith, B.E.; Howat, I.M. A complete map of Greenland ice velocity derived from satellite data collected over 20 years. J. Glaciol. 2017, 64, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Banwell, A.F.; MacAyeal, D.R.; Sergienko, O.V. Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys. Res. Lett. 2013, 40, 5872–5876. [Google Scholar] [CrossRef] [Green Version]
- Leeson, A.A.; Forster, E.; Rice, A.; Gourmelen, N.; Wessem, J.M. Evolution of Supraglacial Lakes on the Larsen B Ice Shelf in the Decades Before it Collapsed. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Vadon, H.; Baratoux, D.; Arnaud, Y.; Vincent, C.; Feigl, K.; Remy, F.; Legresy, B. Surface motion of mountain glaciers derived from satellite optical imagery. Remote. Sens. Environ. 2005, 95, 14–28. [Google Scholar] [CrossRef]
- Altena, B.; Kääb, A. Weekly Glacier Flow Estimation from Dense Satellite Time Series Using Adapted Optical Flow Technology. Front. Earth Sci. 2017, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Münchow, A.; Padman, L.; Fricker, H.A. Interannual changes of the floating ice shelf of Petermann Gletscher, North Greenland, from 2000 to 2012. J. Glaciol. 2014, 60, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Nick, F.M.; Luckman, A.; Vieli, A.; Van Der Veen, C.J.; Van As, D.; Van De Wal, R.S.W.; Pattyn, F.; Hubbard, A.L.; Floricioiu, D. The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. J. Glaciol. 2017, 58, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Rückamp, M.; Neckel, N.; Berger, S.; Humbert, A.; Helm, V. Calving Induced Speedup of Petermann Glacier. J. Geophys. Res. Earth Surf. 2019, 124, 216–228. [Google Scholar] [CrossRef] [Green Version]
- Hill, E.A.; Gudmundsson, G.H.; Carr, J.R.; Stokes, C.R. Velocity response of Petermann Glacier, northwest Greenland, to past and future calving events. Cryosphere 2018, 12, 3907–3921. [Google Scholar] [CrossRef] [Green Version]
- Tiampo, K.; Sykes, J.; Hansen, J.S.S.; Berthier, E.; Welty, E.; Leopold, M.; Loso, M.; Jacquemart, M. What drives large-scale glacier detachments? Insights from Flat Creek glacier, St. Elias Mountains, Alaska. Geology 2020, 48, 703–707. [Google Scholar] [CrossRef]
- Rignot, E.; Steffen, K. Channelized bottom melting and stability of floating ice shelves. Geophys. Res. Lett. 2008, 35, L02503. [Google Scholar] [CrossRef] [Green Version]
- Holland, P.R.; Jenkins, A.; Holland, D.M. The response of ice shelf basal melting to variations in ocean temperature. J. Clim. 2008, 21, 2558–2572. [Google Scholar] [CrossRef]
- Leprince, S.; Ayoub, F.; Klinger, Y.; Avouac, J.-P. Co-registration of optically sensed images and correlation (COSI-Corr): An operational methodology for ground deformation measurements. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 1943–1946. [Google Scholar]
- Mouginot, J.; Scheuchl, B.; Rignot, E. Mapping of Ice Motion in Antarctica Using Synthetic-Aperture Radar Data. Remote Sens. 2012, 4, 2753–2767. [Google Scholar] [CrossRef] [Green Version]
- Lüttig, C.; Neckel, N.; Humbert, A. A Combined Approach for Filtering Ice Surface Velocity Fields Derived from Remote Sensing Methods. Remote Sens. 2017, 9, 1062. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Pieczonka, T.; Benn, D.I. Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery. Cryosphere 2011, 5, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Smith, L.C. Supraglacial Streams on the Greenland Ice Sheet delineated From Combined Spectral–Shape Information in High-Resolution Satellite Imagery. IEEE Geosci. Remote Sens. Lett. 2013, 10, 801–805. [Google Scholar] [CrossRef]
- Borstad, C.; Khazendar, A.; Scheuchl, B.; Morlighem, M.; Larour, E.; Rignot, E. A constitutive framework for predicting weakening and reduced buttressing of ice shelves based on observations of the progressive deterioration of the remnant Larsen B Ice Shelf. Geophys. Res. Lett. 2016, 43, 2027–2035. [Google Scholar] [CrossRef] [Green Version]
- Cuffey, K.M.; Paterson, W.S.B. The Physics of Glaciers; Academic Press: New York, NY, USA, 2010. [Google Scholar]
- De Rydt, J.; Gudmundsson, G.H.; Nagler, T.; Wuite, J.; King, E.C. Recent rift formation and impact on the structural integrity of the Brunt Ice Shelf, East Antarctica. Cryosphere 2018, 12, 505–520. [Google Scholar] [CrossRef] [Green Version]
- Morlighem, M.; Williams, C.N.; Rignot, E.; An, L.; Arndt, J.E.; Bamber, J.L.; Catania, G.; Chauché, N.; Dowdeswell, J.A.; Dorschel, B.; et al. BedMachine v3: Complete bed topography and ocean bathymetry mapping of Greenland from multibeam echo sounding combined with mass conservation. Geophys. Res. Lett. 2017, 44, 11051–11061. [Google Scholar] [CrossRef] [Green Version]
- Harper, J.T.; Humphrey, N.; Pfeffer, W.T. Crevasse patterns and the strain-rate tensor: A high-resolution comparison. J. Glaciol. 1998, 44, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Scharien, R.K.; Segal, R.; Nasonova, S.; Nandan, V.; Howell, S.E.L.; Haas, C. Winter Sentinel-1 Backscatter as a Predictor of Spring Arctic Sea Ice Melt Pond Fraction. Geophys. Res. Lett. 2017, 44, 12262–212270. [Google Scholar] [CrossRef] [Green Version]
- Washam, P.; Nicholls, K.W.; Muhow, A.; Padman, L. Summer surface melt thins Petermann Gletscher Ice Shelf by enhancing channelized basal melt. J. Glaciol. 2019, 65, 662–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzzard, S.; Feltham, D.; Flocco, D. Modelling the fate of surface melt on the Larsen C Ice Shelf. Cryosphere 2018, 12, 3565–3575. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, J.P.; Lampkin, D.J.; Moon, T. Seasonal Variability in Regional Ice Flow Due to Meltwater Injection into the Shear Margins of Jakobshavn Isbr. J. Geophys. Res. Earth Surf. 2017, 122, 2488–2505. [Google Scholar] [CrossRef] [Green Version]
- Christoffersen, P.; Bougamont, M.; Hubbard, A.; Doyle, S.H.; Grigsby, S.; Pettersson, R. Cascading lake drainage on the Greenland Ice Sheet triggered by tensile shock and fracture. Nat. Commun. 2018, 9, 1064. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, D.; Jiang, L.; Huang, R. Hydrological and Kinematic Precursors of the 2017 Calving Event at the Petermann Glacier in Greenland Observed from Multi-Source Remote Sensing Data. Remote Sens. 2021, 13, 591. https://doi.org/10.3390/rs13040591
Li D, Jiang L, Huang R. Hydrological and Kinematic Precursors of the 2017 Calving Event at the Petermann Glacier in Greenland Observed from Multi-Source Remote Sensing Data. Remote Sensing. 2021; 13(4):591. https://doi.org/10.3390/rs13040591
Chicago/Turabian StyleLi, Daan, Liming Jiang, and Ronggang Huang. 2021. "Hydrological and Kinematic Precursors of the 2017 Calving Event at the Petermann Glacier in Greenland Observed from Multi-Source Remote Sensing Data" Remote Sensing 13, no. 4: 591. https://doi.org/10.3390/rs13040591
APA StyleLi, D., Jiang, L., & Huang, R. (2021). Hydrological and Kinematic Precursors of the 2017 Calving Event at the Petermann Glacier in Greenland Observed from Multi-Source Remote Sensing Data. Remote Sensing, 13(4), 591. https://doi.org/10.3390/rs13040591