Monitoring Wet Snow Over an Alpine Region Using Sentinel-1 Observations
Abstract
:1. Introduction
2. Data and Method
2.1. Location and Time Period
2.2. Sentinel-1 Data
2.3. Methods
2.4. Elements About Snow and Meteorological Conditions
3. Results
3.1. Focus on Two Situations
3.2. Sentinel-1 Ascending/Descending Orbits for Monitoring Snowmelt
3.3. Seasonal Evolution of Wet Snow
3.4. Some Issues Regarding Wet Snow Retrieval from Sentinel-1
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Altitude–Orientation Wet Snow Diagrams
References
- Bellaire, S.; Herwijnen, A.V.; Mitterer, C.; Schweizer, J. On forecasting wet-snow avalanche activity using simulated snow cover data. Cold Reg. Sci. Technol. 2017, 144, 28–38. [Google Scholar] [CrossRef]
- Jonas, T.; Rixen, C.; Sturm, M.; Stoeckli, V. How alpine plant growth is linked to snow cover and climate variability. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Nolin, A.W. Recent advances in remote sensing of seasonal snow. J. Glaciol. 2010, 56, 1141–1150. [Google Scholar] [CrossRef] [Green Version]
- Nagler, T.; Rott, H.; Ripper, E.; Bippus, G.; Hetzenecker, M. Advancements for Snowmelt Monitoring by Means of Sentinel-1 SAR. Remote Sens. 2016, 8, 348. [Google Scholar] [CrossRef] [Green Version]
- Baghdadi, N.; Gauthier, Y.; Bernier, M. Capability of multitemporal ERS-1 SAR data for wet-snow mapping. Remote Sens. Environ. 1997, 60, 174–186. [Google Scholar] [CrossRef]
- Magagi, R.; Bernier, M. Optimal conditions for wet snow detection using RADARSAT SAR data. Remote Sens. Environ. 2003, 84, 221–233. [Google Scholar] [CrossRef]
- Nagler, T.; Rott, H. Retrieval of wet snow by means of multitemporal SAR data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 754–765. [Google Scholar] [CrossRef]
- Marin, C.; Bertoldi, G.; Premier, V.; Callegari, M.; Brida, C.; Hürkamp, K.; Tschiersch, J.; Zebisch, M.; Notarnicola, C. Use of Sentinel-1 radar observations to evaluate snowmelt dynamics in alpine regions. Cryosphere 2020, 14, 935–956. [Google Scholar] [CrossRef] [Green Version]
- Lievens, H.; Demuzere, M.; Marshall, H.P.; Reichle, R.H.; Brucker, L.I.B.; de Rosnay, P.; Dumont, M.; Girotto, M.; Immerzeel, W.W.; Jonas, T.; et al. Snow depth variability in the Northern Hemisphere mountains observed from space. Nat. Commun. 2019, 10, 4629. [Google Scholar] [CrossRef]
- Veyssière, G.; Karbou, F.; Morin, S.; Lafaysse, M.; Vionnet, V. Evaluation of Sub-Kilometric Numerical Simulations of C-Band Radar Backscatter over the French Alps against Sentinel-1 Observations. Remote Sens. 2019, 11, 8. [Google Scholar] [CrossRef] [Green Version]
- Tsai, Y.L.; Dietz, S.; Oppelt, A.; Kuenzer, N. Remote Sensing of Snow Cover Using Spaceborne SAR: A Review. Remote Sens. 2019, 11, 1456. [Google Scholar] [CrossRef] [Green Version]
- Martini, A.; Ferro-Famil, L.; Pottier, E.; Dedieu, J.P. Dry snow discrimination in alpine areas from multi-frequency and multi-temporal SAR data. IEE Proc. Radar Sonar Navig. 2006, 153, 271–278. [Google Scholar] [CrossRef]
- Floricioiu, D.; Rott, H. Seasonal and short-term variability of multifrequency, polarimetric radar backscatter of alpine terrain from SIR-C/X- SAR and AIRSAR data. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2634–2648. [Google Scholar] [CrossRef]
- Rott, H.; Davis, R.E. Multifrequency and polarimetric SAR observations on alpine glaciers. Ann. Glaciol. 1993, 17, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Ulaby, F.; Moore, R.; Fung, A. Microwave dielectric properties of natural earth materials. Microw. Remote Sens. 1986, 3, 2017–2027. [Google Scholar]
- Shi, J.; Dozier, J. Inferring Snow Wetness Using C-Band Data from SIR-C’s Polarimetric Synthetic Aperture Radar. IEEE Trans. Geosci. Remote 1995, 33, 905–914. [Google Scholar]
- Baghdadi, N.C.L.; Bernier, M. Airborne C-band SAR measurements of wet snow-covered areas. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1977–1981. [Google Scholar] [CrossRef]
- Guneriussen, T.; Johnsen, H.; Lauknes, I. RADARSAT, ERS and EMISAR for snow monitoring in mountainous areas. In SAR Workshop: CEOS Committee on Earth Observation Satellites; European Space Agency: Paris, France, 2000; Volume 450, p. 11. [Google Scholar]
- Besic, N.; Vasile, G.; Dedieu, J.P.; Chanussot, J.; Stankovic, S. Stochastic approach in wet snow detection using multitemporal SAR data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 244–248. [Google Scholar] [CrossRef] [Green Version]
- Haefner, H.; Piesbergen, J. High alpine snow cover monitoring using ERS-1 SAR and Landsat TM data. IAHS Publ.-Ser. Proc. Rep. Intern. Assoc. Hydrol. Sci. 1997, 242, 113–118. [Google Scholar]
- Solberg, R.; Amlien, J.; Koren, H.; Eikvil, L.; Malnes, E.; Storvold, R. Multi-sensor and time-series approaches for monitoring of snow parameters. In Proceedings of the Geoscience and Remote Sensing Symposium, 2004. IGARSS’04, Anchorage, AK, USA, 20–24 September 2004; Volume 3, pp. 1661–1666. [Google Scholar]
- Goetz, D. Bilan Nivo-Météorologique De L’hiver 2017–2018. Revue de L’ANENA. 2018. Available online: https://www.anena.org/5042-la-revue-n-a.htm (accessed on 1 March 2018).
- Stoffel, M.; Corona, C. Future winters glimpsed in the Alps. Nat. Geosci. 2018, 11, 458–460. [Google Scholar] [CrossRef]
- Kropatsch, W.G.; Strobl, D. The generation of SAR layover and shadow maps from digital elevation models. IEEE Trans. Geosci. Remote Sens. 1990, 28, 98–107. [Google Scholar] [CrossRef]
- Gelautz, M.; Frick, H.; Raggam, J.; Burgstaller, J.; Leberl, F. SAR image simulation and analysis of alpine terrain. ISPRS J. Photogramm. Remote Sens. 1998, 53, 17–38. [Google Scholar] [CrossRef]
- Frost, V.S.; Shanmugan, K.S.; Stiles, J.A.; Holtzman, J.C. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise. IEEE Trans. Pattern Anal. Mach. Intell. 1982, 4, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Small, D. Flattening gamma: Radiometric terrain correction for SAR imagery. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3081–3093. [Google Scholar] [CrossRef]
- Wang, P.; Ma, Q.; Wang, J.; Hong, W.; Li, Y.; Chen, Z. An Improved SAR Radiometric Terrain Correction Method and its Application in Polarimetric SAR Terrain Effect Reduction. Prog. Electromagn. Res. B 2013, 54, 107–128. [Google Scholar] [CrossRef] [Green Version]
- Gascoin, S.; Grizonnet, M.; Bouchet, M.; Salgues, G.; Hagolle, O. Theia Snow collection: High-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth Syst. Sci. Data 2019, 11, 492–514. [Google Scholar] [CrossRef] [Green Version]
- Techel, F.; Pielmeier, C. Point Observations of liquid water content in natural snow—Investigating methodical, spatial and temporal aspects. Cryosphere Discuss. 2010, 4, 1967–2011. [Google Scholar] [CrossRef]
- Wever, N.; Jonas, T.; Fierz, C.; Lehning, M. Model simulations of the modulating effect of the snow cover in a rain-on-snow event. Hydrol. Earth Syst. Sci. 2014, 18, 4657–4669. [Google Scholar] [CrossRef] [Green Version]
- Heilig, A.; Mitterer, C.; Schmid, L.; Wever, N.; Schweizer, J.; Marshall, H.P.; Eisen, O. Seasonal and diurnal cycles of liquid water in snow—Measurements and modeling. J. Geophys. Res. Earth Surf. 2015, 120, 2139–2154. [Google Scholar] [CrossRef] [Green Version]
- Brun, E. Investigation on wet-snow metamorphism in respect of liquid-water content. Ann. Glaciol. 1989, 13, 22–26. [Google Scholar] [CrossRef] [Green Version]
- Waldner, P.; Schneebeli, M.; Schultze-Zimmermann, U.; Flühler, H. Effect of snow structure on water flow and solute transport. Hydrol. Process. 2004, 18, 1271–1290. [Google Scholar] [CrossRef]
- Baghdadi, N.; Gauthier, Y.; Bernier, M.; Fortin, J.P. Potential and Limitations of RADARSAT SAR Data for Wet Snow Monitoring. IEEE Trans. Geosci. Remote Sens. 2000, 38, 316–320. [Google Scholar] [CrossRef]
- Koskinen, J.; Pulliainen, J.; Hallikainen, M. The use of ERS-1 SAR data in snow melt monitoring. IEEE Trans. Geosci. Remote Sens. 1997, 35, 601–610. [Google Scholar] [CrossRef]
- Luojus, K.; Pulliainen, J.; Metsamaki, S.; Hallikainen, M. Snow-Covered Area Estimation Using Satellite Radar Wide-Swath Images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 978–989. [Google Scholar] [CrossRef]
- Quegan, S.; Toan, T.L.; Yu, J.J.; Ribbes, F.; Floury, N. Multi-temporal ERS SAR analysis applied to forest mapping. IEEE Trans. Geosci. Remote Sens. 2000, 38, 741–753. [Google Scholar] [CrossRef]
- Le, T.T.; Atto, A.; Trouvé, E.; Nicolas, J.M. Adaptive Multitemporal SAR Image Filtering Based on the Change Detection Matrix. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1826–1830. [Google Scholar]
- Karbou, F.; James, G.; Durand, P.; Atto, A. Thresholds and distances to better detect wet snow over mountains with Sentinel-1 SAR image time series. In ISTE-WILEY Science- Change Detection and Image Time-Series Analysis, ISTE-WILEY; 2021; Chapter 5; in prep. [Google Scholar]
- Malnes, E.; Guneriussen, T. Mapping of snow covered area with Radarsat in Norway. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS’2002), Toronto, ON, Canada, 24–28 June 2002. [Google Scholar]
- Longepe, N.; Allain, S.; Ferro-Famil, L.; Pottier, E.; Durand, Y. Snowpack Characterization in Mountainous Regions Using C-Band SAR Data and a Meteorological Model. IEEE Trans. Geosci. Remote Sens. 2009, 47, 406–418. [Google Scholar] [CrossRef]
- Rondeau-Genesse, G.; Trudel, M.; Leconte, R. Monitoring snow wetness in an Alpine Basin using combined C-band SAR and MODIS data. Remote Sens. Environ. 2016, 183, 304–317. [Google Scholar] [CrossRef]
- Starovoitov, V.; Samal, D. Experimental study of color image similarity. Mach. Graph. Vis. 1998, 11, 455–462. [Google Scholar]
- Di Gesu, V.; Starovoitov, V. Distance-based functionsfor image comparison. Pattern Recognit. Lett. 1999, 20, 207–214. [Google Scholar] [CrossRef]
- Zamperoni, P.; Starovoitov, V. On measures of dissimilarity between arbitrary gray-scale images. Int. J. Shape Model. 1996, 2, 189–213. [Google Scholar] [CrossRef]
- Kumar, V.; Venkataraman, G. SAR interferometric coherence analysis for snow cover mapping in the western Himalayan region. Int. J. Digit. Earth 2011, 4, 78–90. [Google Scholar] [CrossRef]
- Tsai, Y.L.; Dietz, S.; Oppelt, A.; Kuenzer, N. Wet and Dry Snow Detection Using Sentinel-1 SAR Data for Mountainous Areas with a Machine Learning Technique. Remote Sens. 2019, 11, 895. [Google Scholar] [CrossRef] [Green Version]
Date | Satellite | Relative Orbit | Meteorological Event | Snow-Rain Line Elevation | Snowlines North/South | Highlight |
---|---|---|---|---|---|---|
24 August 2017 | Sentinel-1 | D139 | ||||
25 August 2017 | Sentinel-1 | A161 | ||||
10–11 December 2017 | – | – | Ana storm | 500 to 2200 m | 1200 m/1400 m | ROSE |
16 December 2017 | Sentinel-1 | D139 | Snowfall | 600 to 400 m | 1000 m/1000 m | SLA |
17 December 2017 | Sentinel-1 | A161 | ||||
22 December 2017 | Sentinel-1 | D139 | 1000 m/1000 m | |||
23 December 2017 | Sentinel-1 | A161 | ||||
28 December 2017 | Sentinel-1 | D139 | Snowfall | 1000 to 200 m | 1000 m/1000 m | SLA |
29 December 2017 | Sentinel-1 | A161 | Snowfall | 600 m | SLA | |
3 January 2018 | Sentinel-1 | D139 | Eleanor | 1500 to 2000 m | ROSE | |
4 January 2018 | Sentinel-1 | A161 | storm | 2200 m | ROSE | |
5 January 2018 | Sentinel-2 | – | 1000 m/1300 m | |||
9 January 2018 | Sentinel-1 | D139 | Retour d’Est | 1800 to 1400 m | ROSE | |
10 January 2018 | Sentinel-1 | A161 | ||||
15 January 2018 | Sentinel-1 | D139 | ||||
15 January 2018 | Sentinel-2 | – | 1000 m/1400 m | Cloudy | ||
16 January 2018 | Sentinel-1 | A161 | Snowfall | 700 to 1300 m | ||
21 January 2018 | Sentinel-1 | D139 | Heavy snowfall | 1000 to 1400 mm | ||
22 January 2018 | Sentinel-1 | A161 | Heavy snowfall | 2000 m | ROSE | |
25 January 2018 | Sentinel-2 | – | 1000 m/1100 m | Cloudy | ||
27 January 2018 | Sentinel-1 | D139 | Snowfall | 1000 m | ||
28 January 2018 | Sentinel-1 | A161 | 1000 m/1200 m | |||
30 January 2018 | Sentinel-2 | – | 1000 m/1200 m | Sea of clouds | ||
2 February 2018 | Sentinel-1 | D139 | ||||
3 February 2018 | Sentinel-1 | A161 | ||||
4 February 2018 | Sentinel-2 | – | 1000 m/1200 m | Cloudy | ||
8 February 2018 | Sentinel-1 | D139 | ||||
9 February 2018 | Sentinel-1 | A161 | ||||
9 February 2018 | Sentinel-2 | – | 1000 m/1300 m | |||
14 February 2018 | Sentinel-1 | D139 | ||||
14 February 2018 | Sentinel-2 | – | 1000 m/1000 m | |||
15 February 2018 | Sentinel-1 | A161 | Snowfall | 1800 to 2300 m | ROSE | |
19 February 2018 | Sentinel-2 | – | 1100 m/1200 m | Cloudy | ||
20 February 2018 | Sentinel-1 | D139 | ||||
21 February 2018 | Sentinel-1 | A161 | ||||
24 February 2018 | Sentinel-2 | – | 1100 m/1300 m | Cloudy | ||
26 February 2018 | Sentinel-1 | D139 | Very cold | |||
27 February 2018 | Sentinel-1 | A161 | Very cold | |||
4 March 2018 | Sentinel-1 | D139 | ||||
5 March 2018 | Sentinel-1 | A161 | ||||
10 March 2018 | Sentinel-1 | D139 | Snowfall | 2400 m | ROSE | |
11 March 2018 | Sentinel-1 | A161 | Snowfall | 2500 to 1900 m | ROSE | |
21 March 2018 | Sentinel-2 | – | 1100 m/1300 m | Cloudy | ||
22 March 2018 | Sentinel-1 | D139 | ||||
23 March 2018 | Sentinel-1 | A161 | ||||
26 March 2018 | Sentinel-2 | – | 1200 m/1500 m | Cloudy | ||
28 March 2018 | Sentinel-1 | D139 | Snowfall | 1600 to 18,000 m | ||
29 March 2018 | Sentinel-1 | A161 | Snowfall | 1800 to 16,000 m | ||
31 March 2018 | Sentinel-2 | – | Heavy snowfall | 1100 m | 1100 m/1300 m | SLA for the time |
Date | Satellite | Relative Orbit | Meteorological Event | Snow-Rain Line Elevation | Snowlines North/South | Highlight |
---|---|---|---|---|---|---|
2 April 2018 | – | – | 1000 m/1000 m | Onset of the melt season | ||
3 April 2018 | Sentinel-1 | D139 | 1000 m/1000 m | ME | ||
4 April 2018 | Sentinel-1 | A161 | 1000 m/1200 m | ME | ||
5 April 2018 | Sentinel-2 | – | 1200 m/1500 m | ME Cloudy | ||
9 April 2018 | Sentinel-1 | D139 | 1200 m/1500 m | ME | ||
10 April 2018 | Sentinel-1 | A161 | Snowfall | 1200 m | 1200 m/1400 m | SLA for the time |
15 April 2018 | Sentinel-1 | D139 | 1400 m/1700 m | ME | ||
15 April 2018 | Sentinel-2 | – | 1400 m/1700 m | ME | ||
16 April 2018 | Sentinel-1 | A161 | 1400 m/1700 m | ME | ||
20 April 2018 | Sentinel-2 | – | 1400 m/1700 m | ME | ||
21 April 2018 | Sentinel-1 | D139 | 1500 m/1800 m | ME | ||
22 April 2018 | Sentinel-1 | A161 | 1600 m/1900 m | ME | ||
25 April 2018 | Sentinel-2 | – | 1600 m/2000 m | ME | ||
27 April 2018 | Sentinel-1 | D139 | 1700 m/2000 m | ME | ||
28 April 2018 | Sentinel-1 | A161 | 1700 m/2000 m | ME | ||
3 May 2018 | Sentinel-1 | D139 | Retour d’Est | 2800 m | 1900 m/2200 m | Small amount |
4 May 2018 | Sentinel-1 | A161 | Retour d’Est | 2500 m | 1900 m/2300 m | Small amount |
5 May 2018 | Sentinel-2 | – | 1900 m/2300 m | Cloudy | ||
9 May 2018 | Sentinel-1 | D139 | 1700 m/2000 m | ME | ||
10 May 2018 | Sentinel-1 | A161 | Snowfall | 2600 m | 1700 m/2000 m | MS/ ROSE |
13 May 2018 | – | – | Snowfall | 1500 m | 1500 m/2300 m | SLA for the time |
15 May 2018 | Sentinel-1 | D139 | Snowfall | 2000 to 2400 m | 1500 m/2000 m | ROSE |
15 May 2018 | Sentinel-2 | – | Snowfall | 2000 to 2400 m | 1500 m/2000 m | Cloudy |
16 May 2018 | Sentinel-1 | A161 | 1900 m/2300 m | ME | ||
20 May 2018 | Sentinel-2 | – | 2000 m/2300 m | Stormy | ||
21 May 2018 | Sentinel-1 | D139 | Instable | 2600 m | 2000 m/2300 m | ME |
22 May 2018 | Sentinel-1 | A161 | Instable | 2800 m | 2000 m/2300 m | ME |
25 May 2018 | Sentinel-2 | – | 2000 m/2300 m | Partly cloudy | ||
27 May 2018 | Sentinel-1 | D139 | Instable | 3400 m | 2000 m/2400 m | ME |
28 May 2018 | Sentinel-1 | A161 | Instable | 3200 m | 2000 m/2500 m | ME |
2 June 2018 | Sentinel-1 | D139 | Instable | 3500 m | 2000 m/2600 m | ME |
3 June 2018 | Sentinel-1 | A161 | Instable | 3400 m | 2100 m/2600 m | ME |
8 June 2018 | Sentinel-1 | D139 | Instable | 2200 m/2600 m | ME | |
9 June 2018 | Sentinel-2 | – | Instable | 2200 m/2600 m | Cloudy | |
9 June 2018 | Sentinel-1 | A161 | Instable | 2200 m/2600 m | ME | |
14 June 2018 | Sentinel-1 | D139 | // | ME | ||
14 June 2018 | Sentinel-2 | – | // | ME Cloudy | ||
15 June 2018 | Sentinel-1 | A161 | // | ME | ||
19 June 2018 | Sentinel-2 | – | - | ME | ||
20 June 2018 | Sentinel-1 | D139 | - | ME | ||
21 June 2018 | Sentinel-1 | A161 | - | ME | ||
26 June 2018 | Sentinel-1 | D139 | - | ME | ||
27 June 2018 | Sentinel-1 | A161 | - | ME |
Date | Summer | Early Sep. | Date | Summer | Early Sep. | |
---|---|---|---|---|---|---|
28 March 2018 | 7.1 | 6.9 | 29 March 2018 | 21.3 | 18.6 | |
3 April 2018 | 14.9 | 15.4 | 4 April 2018 | 24.4 | 21.7 | |
9 April 2018 | 27.4 | 26.3 | 10 April 2018 | 34.2 | 30.4 | |
15 April 2018 | 24.9 | 24.5 | 16 April 2018 | 43.0 | 40.6 | |
21 April 2018 | 32.0 | 31.5 | 22 April 2018 | 39.3 | 36.6 | |
27 April 2018 | 35.7 | 35.7 | 28 April 2018 | 38.6 | 36.4 | |
3 May 2018 | 30.9 | 30.8 | 4 May 2018 | 33.2 | 30.8 | |
9 May 2018 | 32.3 | 32.3 | 10 May 2018 | 33.1 | 31.1 | |
15 May 2018 | 27.7 | 27.7 | 16 May 2018 | 37.3 | 34.2 | |
21 May 2018 | 28.5 | 28.7 | 22 May 2018 | 28.4 | 26.2 | |
27 May 2018 | 19.5 | 19.4 | 28 May 2018 | 20.5 | 19.8 | |
2 June 2018 | 21.2 | 21.2 | 3 June 2018 | 19.6 | 18.9 | |
8 June 2018 | 15.7 | 15.3 | 9 June 2018 | 16.0 | 14.9 | |
14 June 2018 | 16.5 | 16.5 | 15 June 2018 | 15.5 | 14.4 | |
20 June 2018 | 10.9 | 10.8 | 21 June 2018 | 10.5 | 10.0 | |
26 June 2018 | 10.7 | 11.4 | 27 June 2018 | 9.9 | 9.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karbou, F.; Veyssière, G.; Coleou, C.; Dufour, A.; Gouttevin, I.; Durand, P.; Gascoin, S.; Grizonnet, M. Monitoring Wet Snow Over an Alpine Region Using Sentinel-1 Observations. Remote Sens. 2021, 13, 381. https://doi.org/10.3390/rs13030381
Karbou F, Veyssière G, Coleou C, Dufour A, Gouttevin I, Durand P, Gascoin S, Grizonnet M. Monitoring Wet Snow Over an Alpine Region Using Sentinel-1 Observations. Remote Sensing. 2021; 13(3):381. https://doi.org/10.3390/rs13030381
Chicago/Turabian StyleKarbou, Fatima, Gaëlle Veyssière, Cécile Coleou, Anne Dufour, Isabelle Gouttevin, Philippe Durand, Simon Gascoin, and Manuel Grizonnet. 2021. "Monitoring Wet Snow Over an Alpine Region Using Sentinel-1 Observations" Remote Sensing 13, no. 3: 381. https://doi.org/10.3390/rs13030381
APA StyleKarbou, F., Veyssière, G., Coleou, C., Dufour, A., Gouttevin, I., Durand, P., Gascoin, S., & Grizonnet, M. (2021). Monitoring Wet Snow Over an Alpine Region Using Sentinel-1 Observations. Remote Sensing, 13(3), 381. https://doi.org/10.3390/rs13030381