Tropical Forest and Wetland Losses and the Role of Protected Areas in Northwestern Belize, Revealed from Landsat and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environment
2.2. Land Cover Classes
2.3. Data
2.4. Training and Validation Data
2.5. Optimizing Random Forest
3. Results
3.1. Algorithm Selection and Variable Importance
3.2. 2014–2016 Land-Use Land Cover Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, D.-H.; Sexton, J.O.; Townshend, J.R. Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys. Res. Lett. 2015, 42, 3495–3501. [Google Scholar] [CrossRef] [PubMed]
- Myers, N. Threatened biotas: “Hot spots” in tropical forests. Environmentalist 1988, 8, 187–208. [Google Scholar] [CrossRef] [PubMed]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. Bioscience 2002, 52, 143. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Rudel, T.K.; Defries, R.; Asner, G.P.; Laurance, W.F. Changing Drivers of Deforestation and New Opportunities for Conservation. Conserv. Biol. 2009, 23, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.; Gibbs, H.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Lambin, E.F.; Meyfroidt, P. Global land use change, economic globalization, and the looming land scarcity. Proc. Natl. Acad. Sci. USA 2011, 108, 3465–3472. [Google Scholar] [CrossRef] [Green Version]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Chaudhary, A.; Mooers, A.O. Terrestrial vertebrate biodiversity loss under future global land use change scenarios. Sustainability 2018, 10, 2764. [Google Scholar] [CrossRef] [Green Version]
- Young, C. Belize’s Ecosystems: Threats and Challenges to Conservation in Belize. Trop. Conserv. Sci. 2008, 1, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Hofman, M.P.G.; Hayward, M.W.; Kelly, M.J.; Balkenhol, N. Enhancing conservation network design with graph-theory and a measure of protected area effectiveness: Refining wildlife corridors in Belize, Central America. Landsc. Urban Plan. 2018, 178, 51–59. [Google Scholar] [CrossRef]
- Beach, T.; Luzzadder-Beach, S.; Krause, S.; Guderjan, T.; Valdez, F.; Fernandez-Diaz, J.C.; Eshleman, S.; Doyle, C. Ancient Maya wetland fields revealed under tropical forest canopy from laser scanning and multiproxy evidence. Proc. Natl. Acad. Sci. USA 2019, 116, 21469–21477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canuto, M.A.; Estrada-Belli, F.; Garrison, T.G.; Houston, S.D.; Acuña, M.J.; Kovác, M.; Marken, D.; Nondédéo, P.; Auld-Thomas, L.; Castanet, C.; et al. Ancient lowland Maya complexity as revealed by airborne laser scanning of northern Guatemala. Science 2018, 361, 6409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chase, A.F.; Chase, D.Z.; Awe, J.J.; Weishampel, J.F.; Iannone, G.; Moyes, H.; Yaeger, J.; Brown, M.K. The use of LiDAR in understanding the Ancient Maya Landscape. Caracol and Western Belize. Adv. Archaeol. Pract. A J. Soc. Am. Archaeol. 2014, 2, 208–221. [Google Scholar] [CrossRef] [Green Version]
- Cherrington, E.A.; Ek, E.; Cho, P.; Howell, B.F.; Hernandez, B.E.; Anderson, E.R.; Flores, A.; Garcia, B.; Sempris, E.; Irwin, D. Forest Cover and Deforestation in Belize: 1980–2010. Serv. Tech. Rep. 2012. Available online: http://www.servir.net/servir_bz_forest_cover_1980-2010.pdf (accessed on 25 August 2020).
- Chicas, S.D.; Omine, K.; Ford, J.B.; Sugimura, K.; Yoshida, K. Using spatial metrics and surveys for the assessment of trans-boundary deforestation in protected areas of the Maya Mountain Massif: Belize-Guatemala border. J. Environ. Manag. 2017, 187, 320–329. [Google Scholar] [CrossRef]
- Wyman, M.S.; Stein, T.V. Modeling social and land-use/land-cover change data to assess drivers of smallholder deforestation in Belize. Appl. Geogr. 2010, 30, 329–342. [Google Scholar] [CrossRef]
- Beach, T.; Luzzadder-Beach, S.; Cook, D.; Dunning, N.; Kennett, D.J.; Krause, S.; Terry, R.; Trein, D.; Valdez, F. Ancient Maya impacts on the Earth’s surface: An Early Anthropocene analog? Quat. Sci. Rev. 2015, 124, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Camille, M.A. The Effects of Timber Haulage Improvements on Mahogany Extraction in Belize: An Historical Geography. Yearbook Conf. Latin Am. Geogr. 2000, 26, 103–115. [Google Scholar]
- Bernsten, R.H.; Herdt, R.W. Towards an Understanding of Milpa Agriculture: The Belize Case. J. Dev. Areas 1977, 11, 373–392. [Google Scholar]
- Levasseur, V.; Olivier, A. The farming system and traditional agroforestry systems in the Maya community of San Jose, Belize. Agrofor. Syst. 2000, 49, 275–288. [Google Scholar] [CrossRef]
- Steinberg, M.K. Political ecology and cultural change: Impacts on swidden-fallow agroforestry practices among the mopan maya in southern Belize. Prof. Geogr. 1998, 50, 407–417. [Google Scholar] [CrossRef]
- Chomitz, K.M.; Gray, D.A. Roads, Land Use, and Deforestation: A Spatial Model Applied to Belize. World Bank Econ. Rev. 1996, 10, 487–512. [Google Scholar] [CrossRef] [Green Version]
- Voight, C.; Hernandez-Aguilar, K.; Garcia, C.; Gutierrez, S. Predictive modeling of future forest cover change patterns in southern Belize. Remote Sens. 2019, 11, 823. [Google Scholar] [CrossRef] [Green Version]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations-A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Hu, S.; Ren, Z.; Jia, Y.; Wang, J.; Liu, M.; Zhang, D.; Zhao, W.; Luo, Y.; Fu, Y.; et al. Mapping annual land use changes in China’s poverty-stricken areas from 2013 to 2018. Remote Sens. Environ. 2019, 232, 111285. [Google Scholar] [CrossRef]
- Rodríguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar]
- Denisko, D.; Hoffman, M.M. Classification and interaction in random forests. Proc. Natl. Acad. Sci. USA 2018, 115, 1690–1692. [Google Scholar] [CrossRef] [Green Version]
- Grinand, C.; Rakotomalala, F.; Gond, V.; Vaudry, R.; Bernoux, M.; Vieilledent, G. Estimating deforestation in tropical humid and dry forests in Madagascar from 2000 to 2010 using multi-date Landsat satellite images and the random forests classifier. Remote Sens. Environ. 2013, 139, 68–80. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Lee, J.; Cardille, J.A. Agricultural Expansion in Mato Grosso from 1986–2000: A Bayesian Time Series Approach to Tracking Past Land Cover Change. Remote Sens. 2020, 12, 688. [Google Scholar] [CrossRef] [Green Version]
- Oliphant, A.J.; Thenkabail, P.S.; Teluguntla, P.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K. Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 110–124. [Google Scholar] [CrossRef]
- Roy, D.P.; Kovalskyy, V.; Zhang, H.K.; Vermote, E.F.; Yan, L.; Kumar, S.S.; Egorov, A. Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity. Remote Sens. Environ. 2016, 185, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.S. The Geomorphology and Physiographic Provinces of Central America. Cent. Am. Geol. Resour. Hazards 2007, 1, 75–121. [Google Scholar]
- Beach, T.; Luzzadder-Beach, S.; Dunning, N.; Jones, J.; Lohse, J.; Guderjan, T.; Bozarth, S.; Millspaugh, S.; Bhattacharya, T. A review of human and natural changes in Maya Lowland wetlands over the Holocene. Quat. Sci. Rev. 2009, 28, 1710–1724. [Google Scholar] [CrossRef]
- Meerman, J.C.; Sabido, W. Central American Ecosystems Map: Belize. Belize City Programme Belize 2001, 2, 1–88. [Google Scholar]
- Brokaw, N.; Mallory, E.P. Vegetation of The Rio Bravo Conservation and Management Area, Belize. Mass. Manomet Bird Obs. 1993, 1, 1–53. [Google Scholar]
- Brewer, S.W.; Webb, M.A.H. A seasonal evergreen forest in Belize: Unusually high tree species richness for northern Central America. Bot. J. Linn. Soc. 2002, 138, 275–296. [Google Scholar] [CrossRef] [Green Version]
- Patterson, C. Deforestation, agricultural intensification, and farm resilience in Northern Belize: 1980–2010. Ph.D. Thesis, University of Otago, Dunedin, New Zealand, 2016. [Google Scholar]
- Nigh, R.; Diemont, S.A.W. The Maya milpa: Fire and the legacy of living soil. Front. Ecol. Environ. 2013, 11, e45–e54. [Google Scholar] [CrossRef] [Green Version]
- Lunetta, R.S.; Balogh, M.E. Application of multi-temporal Landsat 5 TM imagery for wetland identification. Photogramm. Eng. Remote Sens. 1999, 65, 1303–1310. [Google Scholar]
- Yuan, F.; Bauer, M.E.; Heinert, N.J.; Holden, G.R. Multi-level Land Cover Mapping of the Twin Cities (Minnesota) Metropolitan Area with Multi-seasonal Landsat TM/ETM+ Data. Geocarto Int. 2005, 20, 5–13. [Google Scholar] [CrossRef]
- Wolter, P.T.; Mladenoff, D.J.; Host, G.E.; Crow, T.R. Improved forest classification in the northern Lake States using multi-temporal Landsat imagery. Photogramm. Eng. Remote Sens. 1995, 61, 1129–1143. [Google Scholar]
- United States Geologic Survey. Landsat surface reflectance data. In US Geol. Surv. Fact Sheet 2015–3034; U.S. Geological Survey: Sioux Falls, SD, USA, 2015. [Google Scholar]
- Luciano, A.C.d.S.; Picoli, M.C.A.; Rocha, J.V.; Franco, H.C.J.; Sanches, G.M.; Leal, M.R.L.V.; Maire, G.l. Generalized space-time classifiers for monitoring sugarcane areas in Brazil. Remote Sens. Environ. 2018, 215, 438–451. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2018, 144, 325–340. [Google Scholar] [CrossRef]
- Li, G.; Lu, D.; Moran, E.; Hetrick, S. Land-cover classification in a moist tropical region of Brazil with Landsat TM imagery. Int. J. Remote Sens. 2011, 32, 8207–8230. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Bridgewater, S.; Ibáñez, A.; Ratter, J.; Furley, P. Vegetation classification and floristics of the savannas and associated wetlands of the Rio Bravo Conservation and Management Area, Belize. Edinburgh J. Bot. 2002, 59, 421–442. [Google Scholar] [CrossRef] [Green Version]
- Furley, P.A.; Newey, W.W. Variations in plant communities with topography over limestone tropical soils. J. Biogeogr. 1979, 6, 1–15. [Google Scholar] [CrossRef]
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, 2, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Weiss, A. Topographic position and landform analysis. In Proceedings of the Poster Presentation, ESRI User Conference, San Diego, CA, USA, 9–13 July 2001; Volume 64, pp. 227–245. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Whitman, A.A.; Brokaw, N.V.L.; Hagan, J.M. Forest damage caused by selection logging of mahogany (Swietenia macrophylla) in northern Belize. For. Ecol. Manag. 1997, 92, 87–96. [Google Scholar] [CrossRef]
- Belize Census. Belize Population and Housing Census. Statistical Institute of Belize. 2020. Available online: http://sib.org.bz/statistics/population/ (accessed on 19 August 2020).
- Rudel, T.K.; Schneider, L.; Uriarte, M.; Turner, B.L.; DeFries, R.; Lawrence, D.; Geoghegan, J.; Hecht, S.; Ickowitz, A.; Lambin, E.; et al. Agricultural intensification and changes in cultivated areas, 1970–2005. Proc. Natl. Acad. Sci. USA 2009, 106, 20675–20680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emch, M.; Quinn, J.W.; Peterson, M.; Alexander, M. Forest Cover Change in the Toledo District, Belize from 1975 to 1999: A Remote Sensing Approach. Prof. Geogr. 2005, 57, 256–267. [Google Scholar] [CrossRef]
- Ellis, E.A.; Montero, J.A.M.; Hernández Gómez, I.U.; Porter-Bolland, L.; Ellis, P.W. Private property and Mennonites are major drivers of forest cover loss in central Yucatan Peninsula, Mexico. Land Use Policy 2017, 69, 474–484. [Google Scholar] [CrossRef]
- Devine, J.A.; Wrathall, D.; Currit, N.; Tellman, B.; Langarica, Y.R. Narco-Cattle Ranching in Political Forests. Antipode 2020, 52, 1018–1038. [Google Scholar] [CrossRef]
Land-Cover Land-Use Class * |
---|
Urban/roads |
Agricultural (all except rice) |
Rice |
Water |
Wetland |
Swamp forest |
Lowland broad-leaved moist forest |
Lowland broad-leaved moist scrub forest |
Savanna/shrubland |
forest degradation |
Time Period | Sensor | Available Scenes |
---|---|---|
1984–1987 | Landsat 4 Landsat 5 | 3 51 |
1999–2001 | Landsat 5 Landsat 7 | 97 51 |
2014–2016 | Landsat 8 | 188 |
Variable | Abbreviation | Landsat 4, 5, 7 Band | Landsat 8 Band |
---|---|---|---|
Dry season median blue | b_d | 1 | 2 |
Dry season median green | g_d | 2 | 3 |
Dry season median red | r_d | 3 | 4 |
Dry season median NIR | nir_d | 4 | 5 |
Dry season median SWIR 1 | swir1_d | 5 | 6 |
Dry season median SWIR 2 | swir2_d | 7 | 7 |
Dry season median NDVI | ndvi_d | (4 − 3)/(4 + 3) | (5 − 4)/(5 + 4) |
Dry season median NDWI | ndwi_d | (5 − 4)/(5 + 4) | (5 − 6)/(5 + 6) |
Wet season median blue | b_w | 1 | 2 |
Wet season median green | g_w | 2 | 3 |
Wet season median red | r_w | 3 | 4 |
Wet season median NIR | nir_w | 4 | 5 |
Wet season median SWIR 1 | swir1_w | 5 | 6 |
Wet season median SWIR 2 | swir2_w | 7 | 7 |
Wet season median NDVI | ndvi_w | (4 − 3)/(4 + 3) | (5 − 4)/(5 + 4) |
Wet season median NDWI | ndwi_w | (5 − 4)/(5 + 4) | (5 − 6)/(5 + 6) |
ALOS DSM elevation | dsm | N/A | N/A |
ALOS DSM slope | slope | N/A | N/A |
ALOS DSM topographic position index | tpi_500 | N/A | N/A |
2014–2016 | 1999–2001 | 1984–1987 | |||||
---|---|---|---|---|---|---|---|
Class | No. Classes | PA (%) | UA (%) | PA (%) | UA (%) | PA (%) | UA (%) |
Agriculture | 10 classes | 89.78 | 70.88 | 86.22 | 74.90 | 82.00 | 48.55 |
8 classes | 94.22 | 80.30 | 83.56 | 88.68 | 89.33 | 61.94 | |
Rice | 10 classes | 84.67 | 98.96 | 77.56 | 96.94 | NA | 0.00 |
8 classes | 85.11 | 98.97 | 77.56 | 97.21 | NA | 0.00 | |
Savanna | 10 classes | 97.56 | 89.78 | 99.56 | 81.45 | 94.67 | 84.36 |
8 classes | 97.56 | 92.23 | 99.56 | 89.07 | 94.67 | 85.37 | |
Urban | 10 classes | 82.67 | 97.64 | 87.33 | 98.25 | 40.67 | 97.34 |
8 classes | 82.67 | 97.89 | 87.33 | 100.00 | 40.67 | 97.86 | |
Forest | 10 classes | 95.33 | 90.51 | 6.00 | 100.00 | 1.11 | 100.00 |
8 classes | 99.33 | 96.13 | 97.78 | 94.02 | 93.11 | 95.88 | |
Swamp forest | 10 classes | 96.67 | 95.81 | 99.56 | 97.39 | 98.22 | 92.08 |
8 classes | 96.67 | 95.81 | 99.56 | 97.39 | 98.22 | 92.08 | |
Wetland | 10 classes | 90.22 | 87.50 | 95.33 | 80.49 | 85.33 | 82.05 |
8 classes | 90.22 | 88.84 | 95.33 | 81.25 | 85.33 | 92.53 | |
Water | 10 classes | 99.33 | 98.68 | 100.00 | 96.77 | 99.11 | 94.09 |
8 classes | 99.33 | 98.68 | 100.00 | 96.77 | 99.11 | 94.09 | |
Scrub forest | 10 classes | 91.78 | 91.37 | 96.67 | 41.91 | 83.56 | 41.23 |
8 classes | - | - | - | - | - | - | |
Forest degradation | 10 classes | 76.00 | 90.48 | 24.22 | 73.15 | 37.11 | 67.61 |
8 classes | - | - | - | - | - | - | |
Overall accuracy (OA %) | 10 classes | 90.2% | 79.4% | 69.0% | |||
8 classes | 92.6% | 93.6% | 85.7% |
Agriculture | Rice | Savanna/ Shrubland | Urban/ Roads | Lowland Forest | Swamp Forest | Wetland | Water | |
---|---|---|---|---|---|---|---|---|
Agriculture | 485.88 | 3.46 | 78.84 | 16.09 | 275.87 | 0.01 | 37.87 | 0.00 |
Rice | 3.88 | 1.24 | 8.94 | 0.36 | 0.09 | 0.06 | 7.69 | 0.01 |
Savanna/shrubland | 33.49 | 0.86 | 237.16 | 1.01 | 4.61 | 0.02 | 33.22 | 0.00 |
Urban/roads | 4.13 | 0.11 | 0.59 | 6.79 | 0.03 | 0.00 | 0.03 | 0.00 |
Lowland forest | 222.53 | 1.26 | 21.11 | 1.51 | 2415.10 | 0.06 | 16.60 | 0.00 |
Swamp forest | 0.68 | 0.23 | 0.54 | 0.00 | 7.90 | 34.29 | 20.91 | 0.23 |
Wetland | 46.80 | 8.13 | 54.91 | 0.75 | 100.18 | 5.37 | 390.17 | 1.24 |
Water | 0.02 | 0.01 | 0.04 | 0.00 | 0.29 | 0.64 | 9.94 | 29.02 |
Agriculture | Rice | Savanna/ Shrubland | Urban/ Roads | Lowland Forest | Swamp Forest | Wetland | Water | |
---|---|---|---|---|---|---|---|---|
Agriculture | 640.98 | 4.34 | 55.11 | 17.91 | 72.71 | 0.13 | 6.50 | 0.65 |
Rice | 4.86 | 5.90 | 2.66 | 0.36 | 0.20 | 0.06 | 1.45 | 0.01 |
Savanna/shrubland | 80.51 | 5.53 | 262.13 | 2.19 | 11.41 | 0.13 | 41.00 | 0.03 |
Urban/roads | 8.01 | 0.21 | 0.16 | 18.10 | 0.02 | 0.00 | 0.02 | 0.00 |
Lowland forest | 371.15 | 3.49 | 22.75 | 3.02 | 2408.51 | 0.18 | 5.74 | 0.81 |
Swamp forest | 0.03 | 0.06 | 0.02 | 0.00 | 1.48 | 26.82 | 11.86 | 0.27 |
Wetland | 39.98 | 8.02 | 43.86 | 0.24 | 110.72 | 8.57 | 302.39 | 3.25 |
Water | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.22 | 2.18 | 28.23 |
Class | 1984–1987 (km2) | 1999–2001 (km2) | 2014–2016 (km2) |
---|---|---|---|
Agriculture | 898.00 | 798.09 | 1145.77 |
Rice | 22.21 | 15.51 | 27.51 |
Savanna/scrubland | 310.47 | 403.10 | 386.70 |
Urban/roads | 11.72 | 26.57 | 41.80 |
Lowland broad-leaved moist forest | 2677.52 | 2815.55 | 2605.08 |
Swamp forest | 64.85 | 40.65 | 36.27 |
Wetland | 607.73 | 516.71 | 371.11 |
Water | 39.90 | 30.56 | 33.10 |
Population Orange Walk 1985 est, 2000, 2016 est | 26,776 | 40,301 | 50,208 |
Class | 1984–1987 to 1999–2001 | 1999–2001 to 2014–2016 |
---|---|---|
Agriculture | −99.92 (−11.1%) | +347.68 (43.6%) |
Rice | −6.70 (−30.1%) | +12.00 (77.4%) |
Savanna/scrubland | +92.63 (29.9%) | −16.40 (−4.1%) |
Urban/roads | +14.86 (126.8%) | +15.22 (57.3%) |
Lowland broad-leaved moist forest | +138.03 (5.2%) | −210.47 (−7.5%) |
Swamp forest | −24.21 (−37.3%) | −4.38 (−10.8%) |
Wetland | −91.01 (−15.0%) | −145.60 (−28.2%) |
Water | −9.34 (−23.4%) | +2.53 (8.3%) |
Population | +13,525 (33.6%) | +9907 (19.7%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doyle, C.; Beach, T.; Luzzadder-Beach, S. Tropical Forest and Wetland Losses and the Role of Protected Areas in Northwestern Belize, Revealed from Landsat and Machine Learning. Remote Sens. 2021, 13, 379. https://doi.org/10.3390/rs13030379
Doyle C, Beach T, Luzzadder-Beach S. Tropical Forest and Wetland Losses and the Role of Protected Areas in Northwestern Belize, Revealed from Landsat and Machine Learning. Remote Sensing. 2021; 13(3):379. https://doi.org/10.3390/rs13030379
Chicago/Turabian StyleDoyle, Colin, Timothy Beach, and Sheryl Luzzadder-Beach. 2021. "Tropical Forest and Wetland Losses and the Role of Protected Areas in Northwestern Belize, Revealed from Landsat and Machine Learning" Remote Sensing 13, no. 3: 379. https://doi.org/10.3390/rs13030379
APA StyleDoyle, C., Beach, T., & Luzzadder-Beach, S. (2021). Tropical Forest and Wetland Losses and the Role of Protected Areas in Northwestern Belize, Revealed from Landsat and Machine Learning. Remote Sensing, 13(3), 379. https://doi.org/10.3390/rs13030379