Fault Geometry and Mechanism of the Mw 5.7 Nakchu Earthquake in Tibet Inferred from InSAR Observations and Stress Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic Aperture Radar and Stress Data
2.2. Coulomb Stress Change Calculation
2.2.1. Viscoelastic Stratified Model
2.2.2. Rupture Source Model
3. Results
3.1. Fault Geometry and Slip Distribution
3.2. Tectonic Stress Field
3.3. Coulomb Stress Change at the Hypocenter of the Nakchu Earthquake
4. Discussion
4.1. Fault Geometry of the Nakchu Earthquake
4.2. Sensitivity Test of the Coulomb Stress Changes
4.3. Geodynamics Implications
5. Conclusions
- (1)
- The focal mechanism parameters of the Nakchu earthquake are 237°/69°/−70° (strike/dip/rake), indicating that the earthquake occurred on a NEE-trending, NW-dipping fault dominated by normal faulting with minor sinistral strike–slip components.
- (2)
- The maximum principal compressive stress orientation at the epicenter of the Nakchu earthquake is NNE, subparallel to the fault strike. Meanwhile, the direction of the maximum extensional principal strain rate is almost perpendicular to the strike of the seismogenic fault. This tectonic stress–strain environment controlled the dominant normal faulting of the Nakchu earthquake.
- (3)
- Seven strong historical earthquakes caused the combined ΔCFS increase at the hypocenter of the Nakchu earthquake by 1.16 × 105 Pa, which significantly hastened the occurrence of the Nakchu earthquake. This study provides a basis for understanding the fault geometry and dynamic mechanism of the Nakchu earthquake.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Tian, Y.; Yu, C.; Su, Z.; Jiang, W.; Li, Z.; Zhang, J.; Luo, Y.; Li, B. Present-day interseismic deformation characteristics of the Beng Co-Dongqiao conjugate fault system in central Tibet: Implications from InSAR observations. Geophys. J. Int. 2020, 221, 492–503. [Google Scholar] [CrossRef]
- Chlieh, M.; De Chabalier, J.; Ruegg, J.; Armijo, R.; Dmowska, R.; Campos, J.; Feigl, K. Crustal deformation and fault slip during the seismic cycle in the North Chile subduction zone, from GPS and InSAR observations. Geophys. J. Int. 2004, 158, 695–711. [Google Scholar] [CrossRef] [Green Version]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31, L23611. [Google Scholar] [CrossRef]
- Li, Z.; Elliott, J.R.; Feng, W.; Jackson, J.A.; Parsons, B.E.; Walters, R.J. The 2010 MW 6.8 Yushu (Qinghai, China) earthquake: Constraints provided by InSAR and body wave seismology. J. Geophys. Res. 2011, 116, B10302. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Li, Z.; Elliott, J.R.; Fukushima, Y.; Hoey, T.; Singleton, A.; Cook, R.; Xu, Z. The 2011 Mw 6.8 Burma earthquake: Fault constraints provided by multiple SAR techniques. Geophys. J. Int. 2013, 195, 650–660. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xu, W.; Jónsson, S.; Klinger, Y.; Zhang, G. Source Model of the 2014 Mw 6.9 Yutian Earthquake at the Southwestern End of the Altyn Tagh Fault in Tibet Estimated from Satellite Images. Seismol. Res. Lett. 2020, 91, 3161–3170. [Google Scholar] [CrossRef]
- Sangha, S.; Peltzer, G.; Zhang, A.; Meng, L.; Liang, C.; Lundgren, P.; Fielding, E. Fault geometry of 2015, Mw7.2 Murghab, Tajikistan earthquake controls rupture propagation: Insights from InSAR and seismological data. Earth Planet. Sci. Lett. 2017, 462, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.H.; Hu, J.C.; Chen, Q.; Wang, Z.G.; Tsai, M.C. A Blind Thrust and Overlying Folding Earthquake of the 2016 Mw6.0 Hutubi Earthquake in the Northern Tien Shan Fold-and-Thrust Belts, China. Bull. Seismol. Soc. Am. 2019, 109, 770–779. [Google Scholar] [CrossRef]
- Chen, H.; Qu, C.; Zhao, D.; Ma, C.; Shan, X. Rupture Kinematics and Coseismic Slip Model of the 2021 Mw 7.3 Maduo (China) Earthquake: Implications for the Seismic Hazard of the Kunlun Fault. Remote Sens. 2021, 13, 3327. [Google Scholar] [CrossRef]
- Song, C.; Yu, C.; Li, Z.; Li, Y.; Xiao, R. Coseismic Slip Distribution of the 2019 Mw 7.5 New Ireland Earthquake from the Integration of Multiple Remote Sensing Techniques. Remote Sens. 2019, 11, 2767. [Google Scholar] [CrossRef] [Green Version]
- Gong, W.; Zhang, Y.; Li, T.; Wen, S.; Zhao, D.; Hou, L.; Shan, X. Multi-Sensor Geodetic Observations and Modeling of the 2017 Mw 6.3 Jinghe Earthquake. Remote Sens. 2019, 11, 2157. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Shen, Z.-K. Present-Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications. J. Geophys. Res. 2020, 125, e2019JB018774. [Google Scholar] [CrossRef] [Green Version]
- Heidbach, O.; Rajabi, M.; Cui, X.; Fuchs, K.; Müller, B.; Reinecker, J.; Reiter, K.; Tingay, M.; Wenzel, F.; Xie, F. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics 2018, 744, 484–498. [Google Scholar] [CrossRef]
- Hu, J.-C.; Angelier, J. Stress permutations: Three-dimensional distinct element analysis accounts for a common phenomenon in brittle tectonics. J. Geophys. Res. 2004, 109, B09403. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.P.; Zang, A.; Heidbach, O.; Cui, X.F.; Xie, F.R.; Chen, J.W. Crustal stress pattern in China and its adjacent areas. J. Asian Earth Sci. 2017, 149, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.X.; Wan, Y.G.; Cui, H.W.; LI, Z.Y.; Hu, X.H.; Huang, J.C.; Jin, Z.T. Characteristics analysis of tectonic stress field around the Mojiang earthquake and its adjacent areas on September 8, 2018. Chin. J. Geophys. 2020, 63, 1431–1443. [Google Scholar]
- Martínez-Garzón, P.; Heidbach, O.; Bohnhoff, M. Contemporary stress and strain field in the Mediterranean from stress inversion of focal mechanisms and GPS data. Tectonophysics 2020, 774, 228286. [Google Scholar] [CrossRef]
- Zoback, M.L. First-and second-order patterns of stress in the lithosphere: The World Stress Map Project. J. Geophys. Res. 1992, 97, 11703–11728. [Google Scholar] [CrossRef]
- Cheng, H.H.; Pang, Y.J.; Dong, P.Y.; Zhang, H.; Shi, Y.-L. Analysis of the stress environment of the 2008 and 2014 Yutian Ms 7.3 earthquakes. Chin. J. Geophys. 2014, 57, 3238–3246. [Google Scholar]
- Li, Y.J.; Liu, S.F.; Chen, L.W.; Du, Y.; Li, H.; Liu, D.Y. Mechanism of crustal deformation in the Sichuan-Yunnan region, southeastern Tibetan Plateau: Insights from numerical modeling. J. Asian Earth Sci. 2017, 146, 142–151. [Google Scholar] [CrossRef]
- Heidbach, O.; Ben-Avraham, Z. Stress evolution and seismic hazard of the Dead Sea fault system. Earth Planet. Sci. Lett. 2007, 257, 299–312. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.A. Introduction to special section: Stress triggers, stress shadows, and implications for seismic hazard. J. Geophys. Res. 1998, 103, 24347–24358. [Google Scholar] [CrossRef]
- Nalbant, S.S.; McCloskey, J.; Steacy, S.; Barka, A.A. Stress accumulation and increased seismic risk in eastern Turkey. Earth Planet. Sci. Lett. 2002, 195, 291–298. [Google Scholar] [CrossRef]
- Shan, B.; Xiong, X.; Wang, R.; Zheng, Y.; Yang, S. Coulomb stress evolution along Xianshuihe–Xiaojiang Fault System since 1713 and its interaction with Wenchuan earthquake, May 12, 2008. Earth Planet. Sci. Lett. 2013, 377–378, 199–210. [Google Scholar] [CrossRef] [Green Version]
- King, G.C.; Stein, R.S.; Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 1994, 84, 935–953. [Google Scholar]
- Parsons, T.; Segou, M. Stress, Distance, Magnitude, and Clustering Influences on the Success or Failure of an Aftershock Forecast: The 2013 M 6.6 Lushan Earthquake and Other Examples. Seismol. Res. Lett. 2014, 85, 44–51. [Google Scholar] [CrossRef]
- Stein, R.S. The role of stress transfer in earthquake occurrence. Nature 1999, 402, 605–609. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Freymueller, J.T.; Wen, Y.; Xiao, Z. AutoCoulomb: An Automated Configurable Program to Calculate Coulomb Stress Changes on Receiver Faults with Any Orientation and its Application to the 2020 Mw 7.8 Simeonof Island, Alaska, Earthquake. Seismol. Res. Lett. 2021, 92, 2591–2609. [Google Scholar] [CrossRef]
- Jia, K. Modeling the Spatiotemporal Seismicity Patterns of the Longmen Shan Fault Zone Based on the Coulomb Rate and State Model. Seismol. Res. Lett. 2020, 92, 275–286. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Freymueller, J.T.; Li, Z.; Shen, W. Sensitivity of Coulomb stress change to the parameters of the Coulomb failure model: A case study using the 2008 Mw 7.9 Wenchuan earthquake. J. Geophys. Res. 2014, 119, 3371–3392. [Google Scholar] [CrossRef]
- Xu, D.Y.; Xiao, J.; He, J.K.; Wang, W.M. Strong earthquake clustering around the eastern Tibetan Plateau after the 2008 Mw 7.9 Wenchuan earthquake. Sci. China Earth Sci. 2020, 63, 999–1012. [Google Scholar] [CrossRef]
- Armijo, R.; Tapponnier, P.; Han, T. Late Cenozoic right-lateral strike-slip faulting in southern Tibet. J. Geophys. Res. 1989, 94, 2787–2838. [Google Scholar] [CrossRef]
- Wu, Z.M.; Cao, Z.Q. Review on intensity of Damxung earthquake (Ms= 7.5) in 1952, Tibet. Chin. J. Geophys. 1991, 34, 64–72. [Google Scholar]
- Wu, Z.M.; Deng, Q.D. Deformation features and fracture mechanism of surface rupture of 1951 Bengco, Tibet Ms= 8 earthquake. Seismol. Geol. 1989, 11, 15–25. [Google Scholar]
- Li, Y.; Jiang, W.; Zhang, J.; Li, B.; Yan, R.; Wang, X. Sentinel-1 SAR-Based coseismic deformation monitoring service for rapid geodetic imaging of global earthquakes. Nat. Hazards Res. 2021, 1, 11–19. [Google Scholar] [CrossRef]
- Feng, W. Modelling Co-and Post-Seismic Displacements Revealed by InSAR, and Their Implications for Fault Behaviour. Ph.D. Thesis, University of Glasgow, Scotland, UK, 2015. [Google Scholar]
- Hansen, K.M.; Mount, V.S. Smoothing and extrapolation of crustal stress orientation measurements. J. Geophys. Res. 1990, 95, 1155–1165. [Google Scholar] [CrossRef]
- Heidbach, O.; Tingay, M.; Barth, A.; Reinecker, J.; Kurfeß, D.; Müller, B. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics 2010, 482, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.G.; Xu, J.; Ma, H.S.; Zhang, L.P. Coulomb stress evolution over the past 200years and seismic hazard along the Xianshuihe fault zone of Sichuan, China. Tectonophysics 2016, 670, 48–65. [Google Scholar] [CrossRef]
- Pollitz, F.F.; Wicks, C.; Thatcher, W. Mantle flow beneath a continental strike-slip fault: Postseismic deformation after the 1999 Hector Mine earthquake. Science 2001, 293, 1814–1818. [Google Scholar] [CrossRef]
- Wang, K.L.; Hu, Y.; He, J.H. Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature 2012, 484, 327–332. [Google Scholar] [CrossRef]
- Li, Y.J.; Shao, Z.G.; Shi, F.Q.; Chen, L.W. Stress evolution on active faults in the southwestern Yunnan region, southeastern Tibetan Plateau, and implications for seismic hazard. J. Asian Earth Sci. 2020, 200, 104470. [Google Scholar] [CrossRef]
- Wang, R.; Lorenzo-Martín, F.; Roth, F. PSGRN/PSCMP—a new code for calculating co-and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci. 2006, 32, 527–541. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.W.; Yuan, X.M.; Zhang, Y.Q.; Hu, G.Z.; Yan, Y.F. The stratificational velocity structure of crust and covering strata of upper mantle and the orbit of deep interaquifer substance locus of movement for Tibetan Plateau. Acta Petrol. Sin. 2012, 28, 4077–4100. [Google Scholar]
- Wang, K.; Fialko, Y. Observations and modeling of coseismic and postseismic deformation due to the 2015 Mw 7.8 Gorkha (Nepal) earthquake. J. Geophys. Res. 2018, 123, 761–779. [Google Scholar] [CrossRef]
- Zhao, B.; Bürgmann, R.; Wang, D.; Tan, K.; Du, R.; Zhang, R. Dominant controls of downdip afterslip and viscous relaxation on the postseismic displacements following the Mw7. 9 Gorkha, Nepal, earthquake. J. Geophys. Res. 2017, 122, 8376–8401. [Google Scholar] [CrossRef] [Green Version]
- Coudurier-Curveur, A.; Tapponnier, P.; Okal, E.; Van der Woerd, J.; Kali, E.; Choudhury, S.; Baruah, S.; Etchebes, M.; Karakaş, Ç. A composite rupture model for the great 1950 Assam earthquake across the cusp of the East Himalayan Syntaxis. Earth Planet. Sci. Lett. 2020, 531, 115928. [Google Scholar] [CrossRef]
- Li, B.K.; Diao, G.L.; Zou, L.Y.; Xu, X.W.; Feng, X.D. The redetermination of the source parameters of the big earthquake M7.7 in the southeast of Lang country in Tibet in 1947. Seismol. Geomagn. Obs. Res. 2014, 35, 85–91. [Google Scholar]
- Xu, L.S.; Chen, Y.T. Tempo-spatial rupture process of the 1997 Mani, Xizang (Tibet), China earthquake of Ms=7.9. Acta Seism. Sin. 1999, 12, 495–506. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, L.S.; Chen, Y.T. Source process of the 2010 Yushu, Qinghai, earthquake. Sci. China Earth Sci. 2010, 53, 1249–1251. [Google Scholar] [CrossRef]
- Wells, D.L.; Coppersmith, K.J. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar] [CrossRef]
- Mildon, Z.; Roberts, G.; Walker, J.F.; Toda, S. Coulomb pre-stress and fault bends are ignored yet vital factors for earthquake triggering and hazard. Nat. Commun. 2019, 10, 2744. [Google Scholar] [CrossRef] [Green Version]
- Xiong, X.; Shan, B.; Zheng, Y.; Wang, R. Stress transfer and its implication for earthquake hazard on the Kunlun Fault, Tibet. Tectonophysics 2010, 482, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, E.O.; Natsuaki, R.; Xu, X.; Shimada, M.; Hashimoto, M.; Melgar, D.; Sandwell, D.T. Line-of-sight displacement from ALOS-2 interferometry: Mw 7.8 Gorkha Earthquake and Mw 7.3 aftershock. Geophys. Res. Lett. 2015, 42, 6655–6661. [Google Scholar] [CrossRef]
- Wang, H.; Wright, T.J.; Liu-Zeng, J.; Peng, L. Strain Rate Distribution in South-Central Tibet From Two Decades of InSAR and GPS. Geophys. Res. Lett. 2019, 46, 5170–5179. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Yin, A.; Ryerson, F.J.; Kapp, P.; Ding, L. Conjugate strike-slip faulting along the Bangong-Nujiang suture zone accommodates coeval east-west extension and north-south shortening in the interior of the Tibetan Plateau. Tectonics 2003, 22, 1044. [Google Scholar] [CrossRef] [Green Version]
- Yin, A.; Taylor, M.H. Mechanics of V-shaped conjugate strike-slip faults and the corresponding continuum mode of continental deformation. GSA Bull. 2011, 123, 1798–1821. [Google Scholar] [CrossRef]
- Bai, L.; Li, G.; Khan, N.G.; Zhao, J.; Ding, L. Focal depths and mechanisms of shallow earthquakes in the Himalayan–Tibetan region. Gondwana Res. 2017, 41, 390–399. [Google Scholar] [CrossRef]
- Ji, L.; Xu, J.; Zhao, Q.; Yang, C. Source Parameters of the 2003–2004 Bange Earthquake Sequence, Central Tibet, China, Estimated from InSAR Data. Remote Sens. 2016, 8, 516. [Google Scholar] [CrossRef] [Green Version]
- Tape, C.; Musé, P.; Simons, M.; Dong, D.; Webb, F. Multiscale estimation of GPS velocity fields. Geophys. J. Int. 2009, 179, 945–971. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.X.; Yao, R.; Cui, X.F.; Chen, Q.C.; Huang, L.Y. Analysis of the characteristics of measured stress in Chinese mainland and its active blocks and North-South seismic belt. Chin. J. Geophys. 2012, 55, 4207–4217. [Google Scholar] [CrossRef]
- Gan, W.J.; Zhang, P.Z.; Shen, Z.K.; Niu, Z.J.; Wang, M.; Wan, Y.G.; Zhou, D.M.; Cheng, J. Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Allmendinger, R.W.; Reilinger, R.; Loveless, J. Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. Tectonics 2007, 26, TC3013. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.; Wang, H.; Wright, T.J.; Lou, Y.; Zhang, R.; Zhang, W.; Shi, C.; Huang, J.; Wei, N. Crustal Deformation in the India-Eurasia Collision Zone From 25 Years of GPS Measurements. J. Geophys. Res. 2017, 122, 9290–9312. [Google Scholar] [CrossRef]
- Yin, F.; Jiang, C.; Han, L.; Zhang, H.; Zhang, B. Seismic hazard assessment for the Red River fault: Insights from Coulomb stress evolution. Chin. J. Geophys. 2018, 61, 183–198. [Google Scholar] [CrossRef]
- Zha, X.J.; Dai, Z.Y. Using geodetic data to calculate stress changes on faults in the Tibetan Plateau caused by the 2015 Mw7. 8 Nepal earthquake. J. Asian Earth Sci. 2017, 133, 38–45. [Google Scholar] [CrossRef]
No. | Lon. /(°) | Lat. /(°) | Depth/km | Nodal Plane I | Nodal Plane II | Source | ||||
---|---|---|---|---|---|---|---|---|---|---|
strike/ (°) | Dip/ (°) | Rake/ (°) | Strike/ (°) | Dip/ (°) | Rake/ (°) | |||||
1 | 92.74 | 31.94 | 11 | 71 | 86 | −11 | 161.8 | 79 | −175.9 | IEF |
2 | 92.827 | 31.914 | 10 | 243 | 55 | −25 | 348 | 69 | −142 | GeoAu |
3 | 92.74 | 31.94 | 6 | 231 | 55 | −65 | 12 | 42 | −121 | IG |
4 | 92.899 | 31.906 | 10 | 225 | 56 | −74 | 17 | 37 | −113 | USGS |
5 | 92.92 | 31.85 | 10 | 237 | 62 | −47 | 354 | 50 | −142 | GCMT |
6 | 92.89 | 31.88 | 10 | 233 | 64 | −58 | 358 | 39 | −138 | GFZ |
7 | 92.899 | 31.906 | 10 | 232 | 56 | −61 | 7 | 43 | −126 | IPGP |
No. | Date | Epicenter | Strike/Dip/Rake | Rupture Length/km | SS /m | DS /m | Magnitude | Location | References | |
---|---|---|---|---|---|---|---|---|---|---|
Lon./(°) | Lat./(°) | |||||||||
1 | 19341215 | 89.16 | 31.25 | 125°/36°/−132° | 35 | −3.35 | 3.7 | 7.0 | Shenza | [32] |
2 | 19470729 | 93.65 | 28.61 | 195/84/172 | 141 | −3.96 | −0.56 | 7.7 | Lang county | [48,51] |
3 | 19500815 | 96.72 | 28.38 | 315°/25°/120° | 180 | −8.5 | −14.7 | 8.7 | Assam | [47] |
245°/15°/70° | 150 | 3.76 | −10.34 | |||||||
4 | 19511118 | 91.20 | 31.20 | 310°/69°/180° | 120 | −1.15 | 0 | 8 | Bengco | [34] |
5 | 19520818 | 91.52 | 30.63 | 27°/88°/−131° | 57.7 | −4.65 | 5.25 | 7.5 | Northern Damxung | [33] |
6 | 19971108 | 87.33 | 35.26 | Coseismic rupture model | 7.5 | Manyi | [49] | |||
7 | 20100414 | 96.6 | 33.2 | 7.1 | Yushu | [50] |
No. | Co-Seismic ΔCFS (kPa) | Combined ΔCFS (kPa) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
μ′ = 0 | μ′ = 0.2 | μ′ = 0.4 | μ′ = 0.6 | μ′ = 0.8 | μ′ = 0 | μ′ = 0.2 | μ′ = 0.4 | μ′ = 0.6 | μ′ = 0.8 | |
1 | −0.03 | −0.035 | −0.04 | −0.046 | −0.05 | −0.21 | −0.215 | −0.22 | −0.23 | −0.24 |
2 | −0.82 | −1.43 | −2.03 | −2.64 | −3.24 | −3.41 | −7.31 | −11.22 | −15.12 | −19.03 |
3 | 10.9 | 14.9 | 18.89 | 22.89 | 26.88 | 56.8 | 77.39 | 97.96 | 118.52 | 139.09 |
4 | 0.16 | −0.84 | −1.83 | −2.83 | −3.83 | 26.4 | 28.62 | 30.81 | 33.01 | 35.2 |
5 | −0.03 | 0.19 | 0.42 | 0.64 | 0.86 | −1.96 | −1.19 | −0.42 | 0.36 | 1.13 |
6 | −0.15 | −0.21 | −0.27 | −0.34 | −0.4 | −0.38 | −0.54 | −0.71 | −0.87 | −1.03 |
7 | −0.04 | 0.04 | 0.05 | 0.06 | 0.067 | 0.063 | 0.068 | 0.07 | 0.078 | 0.083 |
Cumulative | 9.99 | 12.62 | 15.19 | 17.73 | 20.29 | 77.3 | 96.82 | 116.27 | 135.75 | 155.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, Y.; Hu, X.; Liu, H. Fault Geometry and Mechanism of the Mw 5.7 Nakchu Earthquake in Tibet Inferred from InSAR Observations and Stress Measurements. Remote Sens. 2021, 13, 5142. https://doi.org/10.3390/rs13245142
Li Y, Li Y, Hu X, Liu H. Fault Geometry and Mechanism of the Mw 5.7 Nakchu Earthquake in Tibet Inferred from InSAR Observations and Stress Measurements. Remote Sensing. 2021; 13(24):5142. https://doi.org/10.3390/rs13245142
Chicago/Turabian StyleLi, Yujiang, Yongsheng Li, Xingping Hu, and Haoqing Liu. 2021. "Fault Geometry and Mechanism of the Mw 5.7 Nakchu Earthquake in Tibet Inferred from InSAR Observations and Stress Measurements" Remote Sensing 13, no. 24: 5142. https://doi.org/10.3390/rs13245142