Revisited Estimation of Moderate Resolution Sargassum Fractional Coverage Using Decametric Satellite Data (S2-MSI)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data
2.3. Data Preprocessing
2.3.1. Processing of MODIS Data for Deriving 1 km AFAI
2.3.2. Processing of MSI Data for Deriving 20 m AFAI
2.4. Methodology
2.4.1. Relationship between δAFAI and Fractional Coverage
2.4.2. Flowchart of the Overall Methodology
2.4.3. Radiative Transfer Model Taking into Account the Immersion Depth and the Fractional Coverage of Sargassum Aggregations
3. Results
3.1. Correlation between MODIS/δAFAI and MSI/δAFAI
3.2. Relationship between δAFAI and the Fractional Coverage FC
3.3. Variability in the Regression Slope between δAFAI and FC (K Value)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gower, J.; Hu, C.; Borstad, G.; King, S. Ocean Color Satellites Show Extensive Lines of Floating Sargassum in the Gulf of Mexico. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3619–3625. [Google Scholar] [CrossRef]
- Gower, J.; King, S.; Goncalves, P. Global Monitoring of Plankton Blooms Using MERIS MCI. Int. J. Remote Sens. 2008, 29, 6209–6216. [Google Scholar] [CrossRef]
- Gower, J.; Young, E.; King, S. Satellite Images Suggest a New Sargassum Source Region in 2011. Remote Sens. Lett. 2013, 4, 764–773. [Google Scholar] [CrossRef]
- Gower, J.F.; King, S.A. Distribution of Floating Sargassum in the Gulf of Mexico and the Atlantic Ocean Mapped Using MERIS. Int. J. Remote Sens. 2011, 32, 1917–1929. [Google Scholar] [CrossRef]
- Gower, J.; King, S. The Distribution of Pelagic Sargassum Observed with OLCI. Int. J. Remote Sens. 2019, 41, 5669–5679. [Google Scholar] [CrossRef]
- Hu, C. A Novel Ocean Color Index to Detect Floating Algae in the Global Oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- He, M.-X.; Liu, J.; Yu, F.; Li, D.; Hu, C. Monitoring Green Tides in Chinese Marginal Seas. In Handbook of Satellite Remote Sens-ing Image Interpretation: Applications for Marine Living Resources Conservation and Management; Morales, J., Stuart, V., Platt, T., Sathyendranath, S., Eds.; EU PRESPO and IOCCG: Dartmouth, NS, Canada, 2011; pp. 111–124. [Google Scholar]
- Hu, C.; Li, D.; Chen, C.; Ge, J.; Muller-Karger, F.E.; Liu, J.; Yu, F.; He, M.-X. On the Recurrent Ulva Prolifera Blooms in the Yellow Sea and East China Sea. J. Geophys. Res. Ocean. 2010, 115, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hu, C.; Feng, L.; Hardy, R.F.; Hochberg, E.J. Spectral and Spatial Requirements of Remote Measurements of Pelagic Sargassum Macroalgae. Remote Sens. Environ. 2015, 167, 229–246. [Google Scholar] [CrossRef]
- Wang, M.; Hu, C. Mapping and Quantifying Sargassum Distribution and Coverage in the Central West Atlantic Using MODIS Observations. Remote Sens. Environ. 2016, 183, 350–367. [Google Scholar] [CrossRef]
- Ody, A.; Thibaut, T.; Berline, L.; Changeux, T.; André, J.-M.; Chevalier, C.; Blanfuné, A.; Blanchot, J.; Ruitton, S.; Stiger-Pouvreau, V.; et al. From In Situ to Satellite Observations of Pelagic Sargassum Distribution and Aggregation in the Tropical North Atlantic Ocean. PLoS ONE 2019, 14, e0222584. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Hu, C.; Cannizzaro, J.; English, D.; Han, X.; Naar, D.; Lapointe, B.; Brewton, R.; Hernandez, F. Remote Sensing of Sargassum Biomass, Nutrients, and Pigments. Geophys. Res. Lett. 2018, 45, 12–359. [Google Scholar] [CrossRef]
- Copernicus Open Access Hub. Available online: Https://Scihub.Copernicus.Eu/ (accessed on 13 December 2021).
- NASA Level-1 and Atmosphere Archive & Distribution System (LAADS) Distributed Active Archive Center (DAAC). Available online: Https://Ladsweb.Modaps.Eosdis.Nasa.Gov/ (accessed on 13 December 2021).
- Ahmad, S.; Salomonson, V.; Barnes, W.; Xiong, X.; Leptoukh, G.; Serafino, G. Modis Radiances and Reflectances for Earth System Science Studies and Environmental Applications; NASA Goddard Space Flight Center: Greenbelt, ML, USA, 2002. [Google Scholar]
- Sentinel-2/MSI Spectral Bands. 2002. Available online: Https://Sentinels.Copernicus.Eu/Web/Sentinel/Technical-Guides/Sentinel-2-Msi/Msi-Instrument (accessed on 13 December 2021).
- Minghelli, A.; Chevalier, C.; Descloitres, J.; Berline, L.; Blanc, P.; Chami, M. Synergy between Low Earth Orbit (LEO)—MODIS and Geostationary Earth Orbit (GEO)—GOES Sensors for Sargassum Monitoring in the Atlantic Ocean. Remote Sens. 2021, 13, 1444. [Google Scholar] [CrossRef]
- Steinmetz, F.; Ramon, D. Sentinel-2 MSI and Sentinel-3 OLCI Consistent Ocean Colour Products Using POLYMER. In Remote Sensing of the Open and Coastal Ocean and Inland Waters, Proceedings of the International Society for Optics and Photonics, Honolulu, HI, USA, 30 October 2018; SPIE Press: Bellingham, WA, USA, 2018; Volume 10778, p. 107780E. [Google Scholar]
- Lee, Z.; Carder, K.L.; Mobley, C.D.; Steward, R.G.; Patch, J.S. Hyperspectral Remote Sensing for Shallow Waters. 2. Deriving Bottom Depths and Water Properties by Optimization. Appl. Opt. 1999, 38, 3831–3843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schell, J.M.; Goodwin, D.S.; Siuda, A.N. Recent Sargassum Inundation Events in the Caribbean: Shipboard Observations Reveal Dominance of a Previously Rare Form. Oceanography 2015, 28, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Dibner, S.; Martin, L.; Thibaut, T.; Aurelle, D.; Blanfuné, A.; Whittaker, K.; Cooney, L.; Schell, J.M.; Goodwin, D.S.; Siuda, A.N. Consistent Genetic Divergence Observed among Pelagic Sargassum Morphotypes in the Western North Atlantic. Mar. Ecol. 2021, e12691. [Google Scholar] [CrossRef]
- Martin, L.M.; Taylor, M.; Huston, G.; Goodwin, D.S.; Schell, J.M.; Siuda, A.N. Pelagic Sargassum Morphotypes Support Different Rafting Motile Epifauna Communities. Mar. Biol. 2021, 168, 1–17. [Google Scholar] [CrossRef]
- Russell, B.J.; Dierssen, H.M. Use of Hyperspectral Imagery to Assess Cryptic Color Matching in Sargassum Associated Crabs. PLoS ONE 2015, 10, e0136260. [Google Scholar]
Sensor | Band Number | Central Wavelength (nm) | Bandwidth (nm) | Spatial Resolution (m) |
---|---|---|---|---|
MODIS | 8 | 412 | 15 | 1000 |
9 | 443 | 10 | 1000 | |
2 | 469 | 20 | 500 | |
10 | 488 | 10 | 1000 | |
11 | 531 | 10 | 1000 | |
12 | 551 | 10 | 1000 | |
4 | 555 | 20 | 500 | |
1 | 645 | 50 | 250 | |
13 | 667 | 10 | 1000 | |
14 | 678 | 10 | 1000 | |
15 | 748 | 10 | 1000 | |
2 | 859 | 35 | 250 | |
16 | 869 | 15 | 1000 | |
17 | 905 | 30 | 1000 | |
18 | 936 | 10 | 1000 | |
19 | 940 | 50 | 1000 | |
MSI | 1 | 443 | 20 | 60 |
2 | 490 | 65 | 10 | |
2 | 560 | 35 | 10 | |
4 | 665 | 30 | 10 | |
5 | 705 | 15 | 20 | |
6 | 740 | 15 | 20 | |
7 | 783 | 20 | 20 | |
8 | 842 | 115 | 10 | |
8a | 865 | 20 | 20 | |
9 | 945 | 20 | 60 | |
10 | 1375 | 30 | 60 | |
11 | 1610 | 90 | 20 | |
12 | 2190 | 180 | 20 |
# | Study Area | Date of Acquisition | MODIS/Time (UTC) | MSI/Time (UTC) |
---|---|---|---|---|
1 | Guadeloupe (Caribbean) | 21 June 2018 | Terra/14:35 | S2B/14:47 |
2 | Gulf of Guinea (Africa) | 20 October 2018 | Terra/11:15 | S2B/10:40 |
3 | Grenadines (Caribbean) | 29 January 2019 | Terra/14:50 | S2A/14:37 |
Central Wavelength (nm) | 665 | 740 | 842 | 865 | 1610 | Impact of Striping |
---|---|---|---|---|---|---|
1st triplet | X | X | X | ++ | ||
2nd triplet | X | X | X | ++ | ||
3rd triplet | X | X | X | ++ | ||
4th triplet | X | X | X | + |
Site Number | K (Dimensionless) |
---|---|
Site #1 | 0.0828 |
Site #2 | 0.0658 |
Site #3 | 0.0824 |
Sargassum Reflectance Spectrum | K |
---|---|
Pure Sargassum measured in the mesocosm [11] | 0.1162 |
Floating (0.01 m) Sargassum measured in the mesocosm [11] (this study) | 0.0874 |
Healthy Sargassum (0.01 m) [23] | 0.0849 |
Senescent Sargassum (0.01 m) [23] | 0.0568 |
Minimum Sargassum reflectance measured by Wang et Hu [10] | 0.0257 |
Average Sargassum reflectance measured by Wang et Hu [10] | 0.0441 |
Maximum Sargassum reflectance measured by Wang et Hu [10] | 0.0724 |
Water Turbidity | K | Sargassum Depth (m) | K |
---|---|---|---|
Clear water | 0.0797 | 0 m | 0.0871 |
Mid turbid waters | 0.0871 | 0.10 m | 0.0406 |
Turbid waters | 0.1009 | 0.20 m | 0.0275 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Descloitres, J.; Minghelli, A.; Steinmetz, F.; Chevalier, C.; Chami, M.; Berline, L. Revisited Estimation of Moderate Resolution Sargassum Fractional Coverage Using Decametric Satellite Data (S2-MSI). Remote Sens. 2021, 13, 5106. https://doi.org/10.3390/rs13245106
Descloitres J, Minghelli A, Steinmetz F, Chevalier C, Chami M, Berline L. Revisited Estimation of Moderate Resolution Sargassum Fractional Coverage Using Decametric Satellite Data (S2-MSI). Remote Sensing. 2021; 13(24):5106. https://doi.org/10.3390/rs13245106
Chicago/Turabian StyleDescloitres, Jacques, Audrey Minghelli, François Steinmetz, Cristèle Chevalier, Malik Chami, and Léo Berline. 2021. "Revisited Estimation of Moderate Resolution Sargassum Fractional Coverage Using Decametric Satellite Data (S2-MSI)" Remote Sensing 13, no. 24: 5106. https://doi.org/10.3390/rs13245106
APA StyleDescloitres, J., Minghelli, A., Steinmetz, F., Chevalier, C., Chami, M., & Berline, L. (2021). Revisited Estimation of Moderate Resolution Sargassum Fractional Coverage Using Decametric Satellite Data (S2-MSI). Remote Sensing, 13(24), 5106. https://doi.org/10.3390/rs13245106