Land-Surface Quantitative Analysis to Investigate the Spatial Distribution of Gravitational Landforms along Rocky Coasts
Abstract
:1. Introduction
2. Study Area
2.1. Geological Setting
2.2. Geomorphological Setting
3. Materials and Methods
Morphometric Variables
4. Results
4.1. Geomorphological and Geological Field Data
4.2. Spatial Distribution of Morphometric Variables
4.3. Descriptive Statistics of Morphometric Variables
4.4. Cross Comparison of Morphometric Variables
4.5. Spatial Variation of Morphometric Variables
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sunamura, T. Geomorphology of Rocky Coasts; Wiley: New York, NY, USA, 1992; pp. 1–314. [Google Scholar]
- Furlani, S.; Pappalardo, M.; Gómez-Pujol, L.; Chelli, A. The rock coast of the Mediterranean and Black seas. In Rock Coast Geomorphology: A Global Synthesis; Kennedy, D.M., Stephenson, W.J., Naylor, L.A., Eds.; Geological Society of London: London, UK, 2014; Volume 40, pp. 89–123. [Google Scholar]
- Miccadei, E.; Mascioli, F.; Ricci, F.; Piacentini, T. Geomorphology of soft clastic rock coasts in the mid-western Adriatic Sea (Abruzzo, Italy). Geomorphology 2019, 324, 72–94. [Google Scholar] [CrossRef]
- Soldati, M.; Maquaire, O.; Zezere, J.L.; Piacentini, D.; Lissak, C. Coastline at Risk: Methods for Multi-Hazard Assessment. J. Coast. Res. 2011, 61, 335–339. [Google Scholar] [CrossRef]
- Gibson, A.D.; Culshaw, M.G.; Dashwood, C.; Pennington, C.V.L. Landslide management in the UK—The problem of managing hazards in a ‘low-risk’ environment. Landslides 2013, 10, 599–610. [Google Scholar] [CrossRef] [Green Version]
- Troiani, F.; Martino, S.; Marmoni, G.M.; Menichetti, M.; Torre, D.; Iacobucci, G.; Piacentini, D. Integrated Field Surveying and Land Surface Quantitative Analysis to Assess Landslide Proneness in the Conero Promontory Rocky Coast (Italy). Appl. Sci. 2020, 10, 4793. [Google Scholar] [CrossRef]
- Devoto, S.; Hastewell, L.J.; Prampolini, M.; Furlani, S. Dataset of Gravity-Induced Landforms and Sinkholes of the Northeast Coast of Malta (Central Mediterranean Sea). Data 2021, 6, 81. [Google Scholar] [CrossRef]
- Furlani, S.; Piacentini, D.; Troiani, F.; Biolchi, S.; Roccheggiani, M.; Tamburini, A.; Tirincanti, E.; Vaccher, V.; Antonioli, F.; Devoto, S.; et al. Tidal notches (TN) along the western Adriatic coast as markers of coastal stability during the late Holocene. Geogr. Fis. Dinam. Quat. 2018, 41, 33–46. [Google Scholar]
- Furlani, S. Integrating observational targets and instrumental data on rock coasts through snorkel surveys: A methodological approach. Mar. Geol. 2020, 425, 106191. [Google Scholar] [CrossRef]
- Mora, O.E.; Liu, J.; Lenzano, M.G.; Toth, C.; Grejner-Brzezinska, D.A. Small Landslide Susceptibility and Hazard Assessment Based on Airborne Lidar Data. Photogramm. Eng. Remote Sens. 2015, 81, 239–247. [Google Scholar] [CrossRef]
- Devoto, S.; Macovaz, V.; Mantovani, M.; Soldati, M.; Furlani, S. Advantages of Using UAV Digital Photogrammetry in the Study of Slow-Moving Coastal Landslides. Remote Sens. 2020, 12, 3566. [Google Scholar] [CrossRef]
- Sofia, G. Combining geomorphometry, feature extraction techniques and Earth-surface processes research: The way forward. Geomorphology 2020, 355, 107055. [Google Scholar] [CrossRef]
- Shary, P.A.; Sharaya, L.S.; Mitusov, A.V. Fundamental quantitative methods of land surface analysis. Geoderma 2002, 107, 1–32. [Google Scholar] [CrossRef]
- Florinsky, I.V. An illustrated introduction to general geomorphometry. Prog. Phys. Geogr. Earth Environ. 2017, 41, 723–752. [Google Scholar] [CrossRef]
- Amatulli, G.; McInerney, D.; Sethi, T.; Strobl, P.; Domisch, S. Geomorpho90m, empirical evaluation and accuracy assessment of global high-resolution geomorphometric layers. Sci. Data 2020, 7, 162. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, G.B.M. Semi-automatic classification of glaciovolcanic landforms: An object-based mapping approach based on geomorphometry. J. Vulcanol. Geotherm. Res. 2016, 311, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Granados-Bolaños, S.; Quesada-Román, A.; Alvarado, G.E. Low-cost UAV applications in dynamic tropical volcanic landforms. J. Vulcanol. Geotherm. Res. 2021, 410, 107143. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Landslides: Investigation and Mitigation; National Academy Press: Washington, DC, USA, 1996; pp. 36–75. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Coccioni, R. Verso la Gestione Integrata della Costa del Monte San Bartolo: Risultati di un Progetto Pilota; Quaderni del Centro di Geobiologia dell’Università degli Studi di Urbino “Carlo Bo”: Urbino, Italy, 2003; pp. 1–163. [Google Scholar]
- Elmi, C.; Gori, U. Variazioni della morfologia costiera prodotte da opere di difesa sul litorale pesarese. Mem. Soc. Geol. It. 1987, 37, 417–426. [Google Scholar]
- Dall’Aglio, P.L.; De Donatis, M.; Franceschelli, C.; Guerra, C.; Guerra, V.; Nesci, O.; Piacentini, D.; Savelli, D. Geomorphological and Anthropic Control of the Development of Some Adriatic Historical Towns (Italy) Since the Roman Age. Quaest. Geogr. 2017, 36, 111–123. [Google Scholar] [CrossRef] [Green Version]
- D’Ambra, S. Analisi Morfoevolutiva e Stabilità dei Versanti della Falesia del Colle San Bartolo (PU). Ph.D. Thesis, Università Degli Studi di Roma Tre, Rome, Italy, 2006. [Google Scholar]
- Rete Ondametrica Nazionale (RON). Available online: www.mareografico.it (accessed on 14 October 2021).
- Colantoni, P.; Mencucci, D.; Nesci, O. Coastal processes and cliff recession between Gabicce and Pesaro (northern Adriatic Sea): A case history. Geomorphology 2004, 62, 257–268. [Google Scholar] [CrossRef]
- Köppen, W. Das Geographische System der Klimate; Borntraeger: Berlin, Germany, 1936. [Google Scholar]
- Tramontana, M.; Guerrera, F. Note Illustrative Della Carta Geologica d’Italia Alla Scala 1:50.000, Foglio 268 PESARO; Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) e Servizio Geologico d’Italia: Rome, Italy, 2011; pp. 1–132. [Google Scholar]
- Roveri, M.; Boscolo Gallo, A.; Rossi, M.; Gennari, R.; Iaccarino, S.M.; Lugli, S.; Manzi, V.; Negri, A.; Rizzini, F.; Taviani, M. The Adriatic foreland record of Messinian events (Central Adriatic Sea, Italy). GeoActa 2005, 4, 139–158. [Google Scholar]
- Savelli, D.; Wezel, F.C. Schema geologico del Messiniano del Pesarese. Boll. Soc. Geol. Ital. 1978, 97, 165–188. [Google Scholar]
- Menichetti, M.; De Feyter, A.J.; Corsi, M. CROP 03—Il tratto Val Tiberina—Mare Adriatico. Sezione Geologica e caratterizzazione tettonico sedimentaria delle avanfosse della zona umbro-marchigiano-romagnola. Studi Geol. Camerti 1991, 1, 279–293. [Google Scholar]
- Mayer, L.; Menichetti, M.; Nesci, O.; Savelli, D. Morphotectonic approach to the drainage analysis in the North Marche region, central Italy. Quat. Int. 2003, 101–102, 157–167. [Google Scholar] [CrossRef]
- Elmi, C.; Nesci, O. Carta Geomorfologica del Rilievo Costiero fra Gabicce e Pesaro (Colle S. Bartolo); IRIS Università degli Studi di Urbino: Urbino, Italy, 1990. [Google Scholar]
- Nesci, O. Evoluzione geomorfologica della falesia costiera del monte San Bartolo (Marche Settentrionali). In Verso la Gestione Integrata Della Costa del Monte San Bartolo: Risultati di un Progetto Pilota; Coccioni, R., Ed.; Quaderni del Centro di Geobiologia dell’Università degli Studi di Urbino “Carlo Bo”: Urbino, Italy, 2003; pp. 41–53. [Google Scholar]
- Veggiani, A. L’arretramento Della Linea di Costa Adriatica tra Gabicce e Pesaro nell’Olocene e le Leggende Sulle Città Sommerse; Gruppo Nazionale di Geografia Fisica e Geomorfologica: Rome, Italy, 1988; pp. 61–70. [Google Scholar]
- Gori, U.; Luzi, M. Concorso Nazionale di Idee per la Sistemazione Urbanistica del Colle San Bartolo. Assetto Geologico, Terrestre e Marino; Progetti e Ricerche Della Città di Pesaro: Pesaro, Italy, 1978; pp. 82–119. [Google Scholar]
- MATTM—Ministero dell’Ambiente e della Tutela del Territorio e del Mare. Progetto Piano Straordinario di Telerilevamento. Available online: www.pcn.miniambiente.it (accessed on 14 October 2021).
- Wilson, J.P.; Gallant, J.C. Digital Terrain Analysis. In Terrain Analysis: Principles and Applications; Wilson, J.P., Gallant, J.C., Eds.; Wiley: New York, NY, USA, 2000; pp. 1–27. [Google Scholar]
- Hengl, T.; Reuter, H.I. (Eds.) Geomorphometry: Concepts, Software, Applications; Elsevier Science Publishing Co. Inc.: Amsterdam, The Netherlands, 2009; pp. 1–772. [Google Scholar]
- Burrough, P.A.; Mcdonnel, R.A. Principles of Geographical Information Systems, 2nd ed.; Oxford University Press: Oxford, UK, 1998; pp. 1–352. [Google Scholar]
- Lee, S.; Choi, J.; Min, K. Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. Int. J. Remote Sens. 2004, 25, 2037–2052. [Google Scholar] [CrossRef]
- Süzen, M.L.; Kaya, B.Ş. Evaluation of environmental parameters in logistic regression models for landslide susceptibility mapping. Int. J. Digit. Earth 2012, 5, 338–355. [Google Scholar] [CrossRef]
- Budimir, M.E.A.; Atkinson, P.M.; Lewis, H.G. A systematic review of landslide probability mapping using logistic regression. Landslides 2015, 12, 419–436. [Google Scholar] [CrossRef] [Green Version]
- Piacentini, D.; Devoto, S.; Mantovani, M.; Pasuto, A.; Prampolini, M.; Soldati, M. Landslide susceptibility modeling assisted by Persistent Scatterers Interferometry (PSI): An example from the northwestern coast of Malta. Nat. Hazards 2015, 78, 681–697. [Google Scholar] [CrossRef] [Green Version]
- Pachauri, A.K.; Pant, M. Landslide hazard mapping based on geological attributes. Eng. Geol. 1992, 32, 81–100. [Google Scholar] [CrossRef]
- Piacentini, D.; Troiani, F.; Soldati, M.; Notarnicola, C.; Savelli, D.; Schneiderbauer, S.; Strada, C. Statistical analysis for assessing shallow-landslide susceptibility in South Tyrol (south-eastern Alps, Italy). Geomorphology 2012, 151–152, 196–206. [Google Scholar] [CrossRef]
- Tasoglu, I.K.; Citiroglu, H.K.; Mekik, C. GIS-based landslide susceptibility assessment: A case study in Kelemen Valley (Yenice—Karabuk, NW Turkey). Environ. Earth Sci. 2016, 75, 1291. [Google Scholar] [CrossRef]
- Hong, H.; Ilia, I.; Tsangaratos, P.; Chen, W.; Xu, C. A hybrid fuzzy weight of evidence method in landslide susceptibility analysis on the Wuyuan area, China. Geomorphology 2017, 290, 1–16. [Google Scholar] [CrossRef]
- Pawluszek, K.; Borkowski, A. Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland. Nat. Hazards 2017, 86, 919–952. [Google Scholar] [CrossRef] [Green Version]
- Wilson, M.F.J.; O’Connell, B.; Brown, C.; Guinan, J.C.; Grehan, A.J. Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope. Mar. Geod. 2007, 30, 3–35. [Google Scholar] [CrossRef] [Green Version]
- Riley, S.; De Gloria, S.D.; Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef] [Green Version]
- Evans, I.S. Geomorphometry and landform mapping: What is a landform? Geomorphology 2012, 137, 94–106. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piacentini, D.; Troiani, F.; Torre, D.; Menichetti, M. Land-Surface Quantitative Analysis to Investigate the Spatial Distribution of Gravitational Landforms along Rocky Coasts. Remote Sens. 2021, 13, 5012. https://doi.org/10.3390/rs13245012
Piacentini D, Troiani F, Torre D, Menichetti M. Land-Surface Quantitative Analysis to Investigate the Spatial Distribution of Gravitational Landforms along Rocky Coasts. Remote Sensing. 2021; 13(24):5012. https://doi.org/10.3390/rs13245012
Chicago/Turabian StylePiacentini, Daniela, Francesco Troiani, Davide Torre, and Marco Menichetti. 2021. "Land-Surface Quantitative Analysis to Investigate the Spatial Distribution of Gravitational Landforms along Rocky Coasts" Remote Sensing 13, no. 24: 5012. https://doi.org/10.3390/rs13245012
APA StylePiacentini, D., Troiani, F., Torre, D., & Menichetti, M. (2021). Land-Surface Quantitative Analysis to Investigate the Spatial Distribution of Gravitational Landforms along Rocky Coasts. Remote Sensing, 13(24), 5012. https://doi.org/10.3390/rs13245012