Monitoring Rainfed Alfalfa Growth in Semiarid Agrosystems Using Sentinel-2 Imagery
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. In Situ FVC Measurement
2.3. Sentinel-2 Data
2.4. Data Analysis
3. Results and Discussion
3.1. FVC–NDVI Correlation
3.2. Temporal Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vance, C.P.; Graham, P.H.; Allan, D.L. Biological nitrogen fixation: Phosphorus—A critical future need? In Nitrogen Fixation: From Molecules to Crop Productivity; Pedrosa, O., Hungria, M., Yates, M., Newton, W., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 509–514. [Google Scholar]
- Graham, P.H.; Vance, C.P. Legumes: Importance and constraints to greater use. Plant Physiol. 2003, 131, 872–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kayad, A.G.; Al-gaadi, K.A.; Tola, E.; Madugundu, R. Assessing the Spatial Variability of Alfalfa Yield Using Satellite Imagery and Ground-Based Data. PLoS ONE 2016, 11, e0157166. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Han, Y.; Torres-Jerez, I.; Wang, M.; Tang, Y.; Monteros, M.; Udvardi, M. System responses to long-term drought and re-watering of two contrasting alfalfa varieties. Plant J. 2011, 68, 871–889. [Google Scholar] [CrossRef]
- Araújo, S.S.; Beebe, S.; Crespi, M.; Delbreil, B.; González, E.M.; Gruber, V.; Lejeune-Henaut, I.; Link, W.; Monteros, M.J.; Prats, E.; et al. Abiotic stress responses in legumes: Strategies used to cope with environmental challenges. Crit. Rev. Plant Sci. 2015, 34, 237–280. [Google Scholar] [CrossRef]
- Quan, W.; Liu, X.; Wang, H.; Chan, Z. Comparative physiological and transcriptional analyses of two contrasting drought tolerant alfalfa varieties. Front. Plant Sci. 2016, 6, 1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webber, G.D.; Cocks, P.S.; Jeffries, B.C. Farming Systems in South Australia; Department of Agriculture and Fisheries: Adelaide, Australia, 1976.
- Delgado, I.; Mu, F. Uso de leguminosas forrajeras en las alternativas de cultivo en secano de aragón. In Proceedings of the VII Congress SEAE, Zaragoza, Spain, 18–23 September 2006. [Google Scholar]
- Cattivelli, L.; Rizza, F.; Badeck, F.W.; Mazzucotelli, E.; Mastrangelo, A.M.; Francia, E.; Marè, C.; Tondelli, A.; Stanca, A.M. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crop. Res. 2008, 105, 1–14. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, S.; Liu, Z.; Yang, F.; Yin, G. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. J. Plant Physiol. 2019, 232, 226–240. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S.; Liu, Y.; Jiang, J.; Wei, Y. A spectral reflectance-based approach to quantification of grassland cover from Landsat TM imagery. Remote Sens. Environ. 2003, 87, 371–375. [Google Scholar] [CrossRef]
- Tsakmakis, I.D.; Gikas, G.D.; Sylaios, G.K. Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize. Agric. Water Manag. 2021, 255, 106998. [Google Scholar] [CrossRef]
- Punalekar, S.M.; Verhoef, A.; Quaife, T.L.; Humphries, D.; Bermingham, L.; Reynolds, C.K. Application of Sentinel-2A data for pasture biomass monitoring using a physically based radiative transfer model. Remote Sens. Environ. 2018, 218, 207–220. [Google Scholar] [CrossRef]
- Al-gaadi, K.A.; Hassaballa, A.A.; Tola, E.; Kayad, A.G.; Madugundu, R.; Alblewi, B.; Assiri, F. Prediction of Potato Crop Yield Using Precision Agriculture Techniques. PLoS ONE 2016, 11, e0162219. [Google Scholar]
- Battude, M.; Al Bitar, A.; Morin, D.; Cros, J.; Huc, M.; Sicre, C.M.; Le Dantec, V.; Demarez, V. Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data. Remote Sens. Environ. 2016, 184, 668–681. [Google Scholar] [CrossRef]
- Zhang, M.; Su, W.; Fu, Y.; Zhu, D.; Xue, J.-H.; Huang, J.; Wang, W.; Wu, J.; Yao, C. Super-resolution enhancement of Sentinel-2 image for retrieving LAI and chlorophyll content of summer corn. Eur. J. Agron. 2019, 111, 125938. [Google Scholar] [CrossRef]
- ESA GMES Overview. Available online: http://www.esa.int/esaLP/SEMRRI0DU8E_LPgmes_0. (accessed on 6 September 2017).
- Ibrahim, E.S.; Rufin, P.; Nill, L.; Kamali, B.; Nendel, C.; Hostert, P. Mapping crop types and cropping systems in nigeria with sentinel-2 imagery. Remote Sens. 2021, 13, 3523. [Google Scholar] [CrossRef]
- Vuorinne, I.; Heiskanen, J.; Pellikka, P.K.E. Assessing leaf biomass of agave sisalana using sentinel-2 vegetation indices. Remote Sens. 2021, 13, 233. [Google Scholar] [CrossRef]
- Karlson, M.; Ostwald, M.; Bayala, J.; Bazié, H.R.; Ouedraogo, A.S.; Soro, B.; Sanou, J.; Reese, H. The Potential of Sentinel-2 for Crop Production Estimation in a Smallholder Agroforestry Landscape, Burkina Faso. Front. Environ. Sci. 2020, 8, 85. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J.; Clevers, J.; Kooistra, L.; van den Brande, M. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef] [Green Version]
- Chang, J.; Shoshany, M. Mediterranean Shrublands Biomass Estimation Using Sentinel-1 and Sentinel-2. In Proceedings of the IGARSS 2016—2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 5300–5303. [Google Scholar]
- Kasampalis, D.A.; Alexandridis, T.K.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of remote sensing on crop models: A review. J. Imaging 2018, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; Liu, Y. Multisensor Normalized Difference Vegetation Index Intercalibration. IEEE Geosci. Remote Sens. Mag. 2018, 6, 23–45. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Rivera, J.P.; Ruiz-Verdú, A.; Moreno, J. Brown and green LAI mapping through spectral indices. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 350–358. [Google Scholar] [CrossRef]
- Song, W.; Mu, X.; Ruan, G.; Gao, Z.; Li, L.; Yan, G. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 168–176. [Google Scholar] [CrossRef]
- Gitelson, A.A. Remote estimation of crop fractional vegetation cover: The use of noise equivalent as an indicator of performance of vegetation indices. Int. J. Remote Sens. 2013, 34, 6054–6066. [Google Scholar] [CrossRef]
- Clevers, J.; Kooistra, L.; van den Brande, M. Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef] [Green Version]
- Frampton, W.J.; Dash, J.; Watmough, G.; Milton, E.J. Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 2013, 82, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Xie, Q.; Dash, J.; Huete, A.; Jiang, A.; Yin, G.; Ding, Y.; Peng, D.; Hall, C.C.; Brown, L.; Shi, Y.; et al. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 187–195. [Google Scholar] [CrossRef]
- Masialeti, I.; Egbert, S.; Wardlow, B. A comparative analysis of phenological curves for major crops in Kansas. GISci. Remote Sens. 2010, 47, 241–259. [Google Scholar] [CrossRef]
- Payero, J.O.; Neale, C.M.U.; Wright, J.L. Comparision of eleven vegetation indices for estimating plant height of alfalfa and grass. Appl. Eng. Agric. 2004, 20, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Baxter, L.L.; West, C.P.; Brown, C.P.; Green, P.E. Comparing nondestructive sampling techniques for predicting forage mass in alfalfa–tall wheatgrass pasture. Agron. J. 2017, 109, 2097–2106. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of CubeSat, Landsat, and MODIS data. Remote Sens. 2018, 10, 890. [Google Scholar] [CrossRef] [Green Version]
- González-Sanpedro, M.C.; Le Toan, T.; Moreno, J.; Kergoat, L.; Rubio, E. Seasonal variations of leaf area index of agricultural fields retrieved from Landsat data. Remote Sens. Environ. 2008, 112, 810–824. [Google Scholar] [CrossRef] [Green Version]
- Patil, V.C.; Al-Gaadi, K.A.; Madugundu, R.; Tola, E.H.M.; Marey, S.; Aldosari, A.; Biradar, C.M.; Gowda, P.H. Assessing agricultural water productivity in desert farming system of Saudi Arabia. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 284–297. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Richardson, A.J.; Wiegand, C.L. Distinguishing Vegetation from Soil Background Information. Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Cibula, W.G.; Zetka, E.F.; Rickman, D.L. Response of thematic mapper bands to plant water stress. Int. J. Remote Sens. 1992, 13, 1869–1880. [Google Scholar] [CrossRef]
- Lymburner, L.; Beggs, P.J.; Jacobson, C.R. Estimation of Canopy-Average Surface-Specific Leaf Area using Landsat TM Data. Photogramm. Eng. Remote Sens. 2000, 66, 183–191. [Google Scholar]
- Pasqualotto, N.; Delegido, J.; Van Wittenberghe, S.; Rinaldi, M.; Moreno, J. Multi-crop green LAI estimation with a new simple sentinel-2 LAI index (SeLI). Sensors 2019, 19, 904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Dash, J.; Jeganathan, C.; Atkinson, P.M. The use of MERIS Terrestrial Chlorophyll Index to study spatio-temporal variation in vegetation phenology over India. Remote Sens. Environ. 2010, 114, 1388–1402. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Campos-Taberner, M.; Moreno-Martínez, Á.; Walther, S.; Duveiller, G.; Cescatti, A.; Mahecha, M.D.; Muñoz-Marí, J.; García-Haro, F.J.; Guanter, L.; et al. A unified vegetation index for quantifying the terrestrial biosphere. Sci. Adv. 2021, 7, eabc7447. [Google Scholar] [CrossRef] [PubMed]
- Gobierno de Navarra Meteorología y Climatología de Navarra. Available online: http://meteo.navarra.es/climatologia/fichasclimaticasaut_estacion.cfm?IDestacion=31 (accessed on 2 February 2020).
- Desir, G.; Marin, C.; Guerrero, J. Badlands and talus flatirons in the Bardenas Reales region. In Field Trips Guides, Proceedings of the Sixth International Conference on Geomorphology, Zaragoza, Spain, 7–11 September 2005; Desir, G., Gutierrez, F., Gutierrez, M., Eds.; Kronos: Deerfield Beach, FL, USA, 2005; Volume 1, pp. 55–95. [Google Scholar]
- Elosegui, J.; Ursua, C. Las Bardenas Reales; Gobierno de Navarra: Pamplona, Spain, 1990; ISBN 8423509311.
- Sancho, C.; Peña, J.L.; Muñoz, A.; Benito, G.; McDonald, E.; Rhodes, E.J. Holocene Alluvial Morphopedosedimentary Record and Environmental Changes in the Bardenas Reales Natural Park (NE Spain). Catena 2008, 73, 225–238. [Google Scholar] [CrossRef]
- European Space Agency (ESA). Available online: https://www.esa.int/ESA (accessed on 5 August 2019).
- Karydas, C.G. Optimization of multi-scale segmentation of satellite imagery using fractal geometry. Int. J. Remote Sens. 2020, 41, 2905–2933. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.W.; Schell, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Greenware Effect) of Natural Vegetation; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 1974.
- Birth, G.S.; McVey, G.R. Measuring the Color of Growing Turf with a Reflectance Spectrophotometer1. Agron. J. 1968, 60, 640. [Google Scholar] [CrossRef]
- Xu, B.; Yang, X.C.; Tao, W.G.; Qin, Z.H.; Liu, H.Q.; Miao, J.M.; Bi, Y.Y.; Yang, X.C.; Tao, W.G.; Qin, Z.H.; et al. MODIS—Based remote sensing monitoring of grass production in China. Int. J. Remote Sens. 2008, 29, 5313–5327. [Google Scholar] [CrossRef]
- ESA Sentinel-2 Mission and Space Segment Overview 2011. Available online: https://sentinel.esa.int/web/sentinel/missions/sentinel-2. (accessed on 20 September 2021).
- Lopes, M.; Fauvel, M.; Ouin, A.; Girard, S. Spectro-temporal heterogeneity measures from dense high spatial resolution satellite image time series: Application to grassland species diversity estimation. Remote Sens. 2017, 9, 993. [Google Scholar] [CrossRef] [Green Version]
- Lopes, M.; Fauvel, M.; Girard, S.; Sheeren, D. Object-based classification of grasslands from high resolution satellite image time series using Gaussian mean map kernels. Remote Sens. 2017, 9, 688. [Google Scholar] [CrossRef] [Green Version]
- Dusseux, P.; Gong, X.; Corpetti, T.; Hubert-Moy, L.; Corgne, S. Contribution of radar images for grassland management identification. In Proceedings of the SPIE 8531, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV, Edimburgh, UK, 24–27 September 2012. [Google Scholar]
- Dusseux, P.; Gong, X.; Hubert-Moy, L.; Corpetti, T. Identification of grassland management practices from leaf area index time series. J. Appl. Remote Sens. 2014, 8, 083559. [Google Scholar] [CrossRef]
ID | Quality | Area (ha) | Altitude (m) | Orientation | Slope (Degrees) | E |
---|---|---|---|---|---|---|
195 | High | 1.06 | 301.08 | 98 | 10.15 | 1–2 |
199 | High | 1.42 | 302.67 | 99 | 8.01 | 1–2 |
221 | Regular | 1.34 | 424.42 | 147 | 3.05 | 1–2 |
257 | Regular | 2.60 | 419.36 | 165 | 4.19 | 1–2 |
11 | Regular | 2.67 | 417.46 | 191 | 3.66 | 1–2 |
63 | Good | 3.13 | 546.48 | 173 | 2.32 | 1–2 |
59 | Good | 1.98 | 544.63 | 155 | 2.48 | 1–2 |
347 | Good | 4.19 | 538.86 | 182 | 2.54 | 1–2 |
126 | High | 1.40 | 430.71 | 206 | 8.84 | 2 |
129 | High | 1.18 | 433.64 | 202 | 3.70 | 2 |
8 | Regular | 0.29 | 416.49 | 178 | 3.93 | 2 |
188 | Regular | 1.28 | 418.50 | 284 | 8.53 | 2 |
193 | Regular | 1.22 | 407.48 | 176 | 7.84 | 2 |
228 | Regular | 0.94 | 421.24 | 257 | 8.87 | 2 |
231 | Regular | 1.03 | 421.43 | 122 | 6.78 | 2 |
232 | Regular | 0.26 | 427.56 | 162 | 3.51 | 2 |
313 | Regular | 3.01 | 421.71 | 168 | 4.95 | 2 |
355 | Good | 0.74 | 405.13 | 72 | 9.58 | 2 |
30 | Regular | 2.41 | 440.09 | 171 | 3.64 | 2 |
66 | Regular | 1.04 | 425.55 | 157 | 3.35 | 2 |
67 | Regular | 0.27 | 427.95 | 147 | 3.69 | 2 |
71 | Regular | 3.33 | 428.91 | 151 | 3.05 | 2 |
157 | Regular | 2.56 | 431.06 | 175 | 5.23 | 2 |
187 | Regular | 5.15 | 379.18 | 231 | 9.22 | 2 |
494 | Regular | 0.86 | 376.18 | 185 | 3.83 | 2 |
253 | Regular | 0.27 | 475.8 | 72 | 6.02 | 2 |
58 | Good | 0.97 | 563.19 | 194 | 2.84 | 2 |
74 | Good | 1.34 | 534.07 | 171 | 2.77 | 2 |
Band Number | Function | Central Wavelength (nm) | Spatial Resolution (m) |
---|---|---|---|
1 | Coastal aerosol | 443 | 60 |
2 | Blue | 490 | 10 |
3 | Green | 560 | 10 |
4 | Red | 665 | 10 |
5 | Red edge | 705 | 20 |
6 | Red edge | 740 | 20 |
7 | Red edge | 783 | 20 |
8 | NIR | 842 | 10 |
8a | Red edge | 865 | 20 |
9 | Water vapor | 945 | 60 |
10 | SWIR | 1380 | 60 |
11 | SWIR | 1610 | 20 |
12 | SWIR | 2190 | 20 |
Date | E1 | E2 | Date | E1 | E2 | Date | E1 | E2 | Date | E1 | E2 |
---|---|---|---|---|---|---|---|---|---|---|---|
14/05/2019 | X | 03/07/2018 | X | 26/10/2017 | X | 10/03/2017 | X | ||||
29/04/2019 | X | 28/06/2018 | X | 16/10/2017 | X | 19/01/2017 | X | ||||
30/03/2019 | X | 23/06/2018 | X | X | 06/10/2017 | X | 10/11/2016 | X | |||
05/03/2019 | X | 19/05/2018 | X | X | 17/08/2017 | X | X | 21/10/2016 | X | ||
13/02/2019 | X | 04/05/2018 | X | 28/07/2017 | X | X | 01/10/2016 | X | |||
30/11/2018 | X | 24/04/2018 | X | 18/07/2017 | X | X | 11/09/2016 | X | |||
16/10/2018 | X | 19/04/2018 | X | 18/06/2017 | X | X | 22/08/2016 | X | |||
01/09/2018 | X | 29/01/2018 | X | 19/04/2017 | X | 12/08/2016 | X | ||||
02/08/2018 | X | 04/01/2018 | X | 09/04/2017 | X | 02/08/2016 | X | ||||
28/07/2018 | X | X | 30/12/2017 | X | 30/03/2017 | X | 03/07/2016 | X | |||
23/07/2018 | X | 05/12/2017 | X | 20/03/2017 | X |
Vegetation Index | Equation | Reference |
---|---|---|
Normalized difference VI | Rouse et al. (1974) | |
Soil adjusted VI | Huete (1988) | |
Ratio VI | Birth and McVey (1968) | |
Perpendicular VI | Richardson and Wiegand (1977) | |
Green normalized difference VI | Gitelson et al. (1996) | |
Kernel-based NDVI | Camps-Valls et al. (2021) | |
Normalized difference water index | Cibula et al. (1992) | |
Specific leaf area vegetation index | Lymburner et al. (2000) | |
Modified chlorophyll absorption in ratio index | Daughtry et al. (2000) | |
MERIS terrestrial chlorophyll Index | Dash et al. (2010) | |
NDVI705 | Sims (2002) | |
Sentinel-2 LAI index | Pasqualotto et al. (2019) |
Index | Linear Fitting | Polynomial Fitting, Second Order | Exponential Fitting |
---|---|---|---|
NDVI | 0.713 | 0.727 | 0.463 |
PVI | 0.700 | 0.705 | 0.437 |
kNDVI | 0.659 | 0.705 | 0.400 |
SAVI | 0.695 | 0.700 | 0.431 |
RVI | 0.606 | 0.686 | 0.350 |
SeLI | 0.680 | 0.680 | 0.570 |
NDVI705 | 0.678 | 0.680 | 0.600 |
MCARI | 0.653 | 0.670 | 0.437 |
GNDVI | 0.658 | 0.658 | 0.497 |
SLAVI | 0.614 | 0.652 | 0.345 |
NDWI | 0.628 | 0.628 | 0.468 |
MTCI | 0.506 | 0.510 | 0.518 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Echeverría, A.; Urmeneta, A.; González-Audícana, M.; González, E.M. Monitoring Rainfed Alfalfa Growth in Semiarid Agrosystems Using Sentinel-2 Imagery. Remote Sens. 2021, 13, 4719. https://doi.org/10.3390/rs13224719
Echeverría A, Urmeneta A, González-Audícana M, González EM. Monitoring Rainfed Alfalfa Growth in Semiarid Agrosystems Using Sentinel-2 Imagery. Remote Sensing. 2021; 13(22):4719. https://doi.org/10.3390/rs13224719
Chicago/Turabian StyleEcheverría, Andrés, Alejandro Urmeneta, María González-Audícana, and Esther M González. 2021. "Monitoring Rainfed Alfalfa Growth in Semiarid Agrosystems Using Sentinel-2 Imagery" Remote Sensing 13, no. 22: 4719. https://doi.org/10.3390/rs13224719
APA StyleEcheverría, A., Urmeneta, A., González-Audícana, M., & González, E. M. (2021). Monitoring Rainfed Alfalfa Growth in Semiarid Agrosystems Using Sentinel-2 Imagery. Remote Sensing, 13(22), 4719. https://doi.org/10.3390/rs13224719