Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud
Abstract
:1. Introduction
Objectives
- Develop Hyperion and DESIS hyperspectral libraries of corn, soybean, and winter wheat in the study area over Ponca City, Oklahoma. To make the libraries robust by including spectral signature variability, we included images from wet, normal, and dry years for Hyperion, and spectral signatures throughout the growing season for DESIS.
- Establish DESIS optimal hyperspectral narrowbands required to achieve the best classification accuracies. This was done using lambda by lambda correlation analysis to determine the most unique and informative bands.
- Classify agricultural crops using supervised (Random Forest (RF), Support Vector Machine (SVM), Naive Bayes (NB)) and unsupervised (WekaXMeans (WXM)) machine learning classifiers on Google Earth Engine (GEE).
2. Materials and Methods
2.1. Overview
2.2. Study Area
2.3. Hyperspectral Data
2.4. Reference Data
2.5. Optimal Band Selection
2.6. Classification Algorithms
3. Results
3.1. Optimal Band Selection
3.2. Classification Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, B.; Dao, P.; Liu, J.; He, Y.; Shang, J. Recent advances of hyperspectral imaging technology and applications in agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Aneece, I.P.; Thenkabail, P.S.; Lyon, J.G.; Huete, A.; Slonecker, T. Spaceborne hyperspectral EO-1 Hyperion data pre-processing: Methods, approaches, and algorithms. In Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation; Taylor and Francis Inc.\CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Aneece, I.; Thenkabail, P. Accuracies Achieved in classifying five leading world crop types and their growth stages using optimal earth Observing-1 Hyperion hyperspectral Narrowbands on Google earth engine. Remote Sens. 2018, 10, 2027. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, B.; King, D.; Duffe, J. Comparison of empirical and physical modelling for estimation of biochemical and biophysical vegetation properties: Field scale analysis across an Arctic bioclimatic gradient. Remote Sens. 2020, 12, 3073. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Aneece, I.; Teluguntla, P.; Oliphant, A. Hyperspectral narrowband data propel gigantic leap in the earth remote sensing. Photogramm. Eng. Remote Sens. 2021, 87, 461–467. [Google Scholar] [CrossRef]
- Thenkabail, P.; Lyon, G.; Huete, A. Hyperspectral Remote Sensing of Vegetation; Volume I: Fundamentals, Sensor Systems, Spectral Libraries, and Data Mining for Vegetation; Taylor and Francis Inc.\CRC Press: New York, NY, USA, 2018; p. 449. [Google Scholar]
- Thenkabail, P.; Lyon, G.; Huete, A. Hyperspectral Remote Sensing of Vegetation; Volume II: Hyperspectral Indices and Image Classifications for Agriculture and Vegetation; Taylor and Francis Inc.\CRC Press: New York, NY, USA, 2018; p. 296. [Google Scholar]
- Thenkabail, P.; Lyon, G.; Huete, A. Hyperspectral Remote Sensing of Vegetation; Volume III: Biophysical and Biochemical Characterization and Plant Species Studies; Taylor and Francis Inc.\CRC Press: New York, NY, USA, 2018; p. 348. [Google Scholar]
- Thenkabail, P.; Lyon, G.; Huete, A. Hyperspectral Remote Sensing of Vegetation; Volume IV: Advanced Applications in Remote Sensing of Agricultural Crops and Natural Vegetation; Taylor and Francis Inc.\CRC Press: New York, NY, USA, 2018; p. 386. [Google Scholar]
- Vali, A.; Comai, S.; Matteucci, M. Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review. Remote Sens. 2020, 12, 2495. [Google Scholar] [CrossRef]
- Marshall, M.; Thenkabail, P.; Biggs, T.; Post, K. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation). Agric. For. Meteorol. 2016, 218–219, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Mariotto, I.; Thenkabail, P.S.; Huete, A.; Slonecker, E.T.; Platonov, A. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission. Remote Sens. Environ. 2013, 139, 291–305. [Google Scholar] [CrossRef]
- Dennison, P.E.; Qi, Y.; Meerdink, S.K.; Kokaly, R.F.; Thompson, D.R.; Daughtry, C.S.T.; Quemada, M.; Roberts, D.A.; Gader, P.D.; Wetherley, E.B.; et al. Comparison of methods for modeling fractional cover using simulated satellite hyperspectral imager spectra. Remote Sens. 2019, 11, 2072. [Google Scholar] [CrossRef]
- Thenkabail, P.; Teluguntla, P.; Xiong, J.; Oliphant, A.; Congalton, R.; Ozdogan, M.; Gumma, M.; Tilton, J.; Giri, C.; Milesi, C.; et al. Global Cropland Extent Product at 30m (GCEP30) Derived Using Landsat Satellite Time-Series Data for the Year 2015 through Multiple Machine Learning Algorithms on Google Earth Engine (GEE) Cloud; United States Geological Survey (USGS): Reston, VA, USA, 2021; Research Paper in Press. [Google Scholar]
- Christian, B.; Joshi, N.; Saini, M.; Mehta, N.; Goroshi, S.; Nidamanuri, R.R.; Thenkabail, P.; Desai, A.R.; Krishnayya, N. Seasonal variations in phenology and productivity of a tropical dry deciduous forest from MODIS and Hyperion. Agric. For. Meteorol. 2015, 214–215, 91–105. [Google Scholar] [CrossRef]
- Gerhards, M.; Schlerf, M.; Mallick, K.; Udelhoven, T. Challenges and future perspectives of Multi-/Hyperspectral thermal infrared remote sensing for crop Water-Stress detection: A review. Remote Sens. 2019, 11, 1240. [Google Scholar] [CrossRef] [Green Version]
- Kwan, C.; Ayhan, B.; Budavari, B.; Lu, Y.; Perez, D.; Li, J.; Bernabe, S.; Plaza, A. Deep Learning for land cover classification using only a few bands. Remote Sens. 2020, 12, 2000. [Google Scholar] [CrossRef]
- Lv, W.; Wang, X. Overview of hyperspectral image classification. J. Sens. 2020, 2020, 4817234. [Google Scholar] [CrossRef]
- Marshall, M.; Thenkabail, P. Advantage of hyperspectral EO-1 Hyperion over multispectral IKONOS, GeoEye-1, WorldView-2, Landsat ETM+, and MODIS vegetation indices in crop biomass estimation. ISPRS J. Photogramm. Remote Sens. 2015, 108, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Marshall, M.; Thenkabail, P.S. Biomass Modeling of four leading world crops using hyperspectral narrowbands in support of HyspIRI mission. Photogramm. Eng. Remote Sens. 2014, 80, 757–772. [Google Scholar] [CrossRef]
- Thenkabail, P.; Mariotto, I.; Gumma, M.; Middleton, E.; Landis, D.; Huemmrich, K. Selection of hyperspectral narrowbands (HNBs) and composition of hyperspectral two band vegetation indices (HVIs) for biophysical characterization and discrimination of crop types using field reflectance and Hyperion/ EO-1 data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Hoeppner, J.M.; Skidmore, A.K.; Darvishzadeh, R.; Heurich, M.; Chang, H.-C.; Gara, T.W. Mapping Canopy chlorophyll content in a temperate forest using airborne hyperspectral data. Remote Sens. 2020, 12, 3573. [Google Scholar] [CrossRef]
- Tsagkatakis, G.; Aidini, A.; Fotiadou, K.; Giannopoulos, M.; Pentari, A.; Tsakalides, P. Survey of Deep-Learning approaches for remote sensing observation enhancement. Sensors 2019, 19, 3929. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Liu, Z.; Men, S.; Li, Y.; Ding, Z.; He, J.; Zhao, Z. Underwater hyperspectral imaging technology and its applications for detecting and mapping the seafloor: A review. Sensors 2020, 20, 4962. [Google Scholar] [CrossRef]
- Herrmann, I.; Berger, K. Remote and proximal assessment of plant traits. Remote Sens. 2021, 13, 1893. [Google Scholar] [CrossRef]
- Xiong, J.; Thenkabail, P.S.; Tilton, J.C.; Gumma, M.K.; Teluguntla, P.; Oliphant, A.; Congalton, R.G.; Yadav, K.; Gorelick, N. Nominal 30-m cropland extent map of continental africa by integrating pixel-based and object-based algorithms using Sentinel-2 and Landsat-8 data on google earth engine. Remote Sens. 2017, 9, 1065. [Google Scholar] [CrossRef] [Green Version]
- Brovelli, M.A.; Sun, Y.; Yordanov, V. Monitoring forest change in the amazon using Multi-Temporal remote sensing data and machine learning classification on google earth engine. ISPRS Int. J. Geo-Inf. 2020, 9, 580. [Google Scholar] [CrossRef]
- Tian, H.; Pei, J.; Huang, J.; Li, X.; Wang, J.; Zhou, B.; Qin, Y.; Wang, L. Garlic and winter wheat identification based on active and passive satellite imagery and the google earth engine in northern china. Remote Sens. 2020, 12, 3539. [Google Scholar] [CrossRef]
- Amani, M.; Kakooei, M.; Moghimi, A.; Ghorbanian, A.; Ranjgar, B.; Mahdavi, S.; Davidson, A.; Fisette, T.; Rollin, P.; Brisco, B.; et al. Application of google earth engine cloud computing platform, sentinel imagery, and neural networks for crop mapping in Canada. Remote Sens. 2020, 12, 3561. [Google Scholar] [CrossRef]
- Naboureh, A.; Ebrahimy, H.; Azadbakht, M.; Bian, J.; Amani, M. RUESVMs: An ensemble method to handle the class imbalance problem in land cover mapping using Google Earth Engine. Remote Sens. 2020, 12, 3484. [Google Scholar] [CrossRef]
- Sankey, T.; Belmonte, A.; Massey, R.; Leonard, J. Regional-Scale forest restoration effects on ecosystem resiliency to drought: A synthesis of vegetation and moisture trends on Google Earth Engine. Remote Sens. Ecol. Conserv. 2021, 7, 259–274. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.; Xiong, J.; Gumma, M.; Giri, C.; Milesi, C.; Ozdogan, M.; Congalton, R.; Tilton, J.; Sankey, T.; et al. Global food security support analysis data at nominal 1 km (GFSAD1km) derived from remote sensing in support of food security in the Twenty-First century: Current achievements and future possibilities, Chapter 6. In Remote Sensing Handbook Volume II: Land Resources Monitoring, Modeling, and Mapping with Remote Sensing; CRC Press: Boca Raton, FL, USA, 2015; pp. 131–160. [Google Scholar]
- Teluguntla, P.; Thenkabail, P.S.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Oliphant, A.; Poehnelt, J.; Yadav, K.; Rao, M.; Massey, R. Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data. Int. J. Digit. Earth 2017, 10, 944–977. [Google Scholar] [CrossRef] [Green Version]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep learning classifiers for hyperspectral imaging: A review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Panda, S.; Rao, M.; Thenkabail, P.; Fitzerald, J. Remote sensing systems–platforms and sensors: Aerial, satellites, UAVs, optical, radar, and LiDAR, Chapter 1. In Remote Sensing Handbook, Volume I: Remotely Sensed Data Characterization, Classification, and Accuracies; USGS: Boca Raton, FL, USA, 2015; pp. 3–60. [Google Scholar]
- Cogliati, S.; Sarti, F.; Chiarantini, L.; Cosi, M.; Lorusso, R.; Lopinto, E.; Miglietta, F.; Genesio, L.; Guanter, L.; Damm, A.; et al. The PRISMA imaging spectroscopy mission: Overview and first performance analysis. Remote Sens. Environ. 2021, 262, 112499. [Google Scholar] [CrossRef]
- Cawse-Nicholson, K.; Townsend, P.; Schimel, D.; Assiri, A.; Blake, P.; Buongiorno, M.; Campbell, P.; Carmon, N.; Casey, K.; Correa-Pabón, R.; et al. NASA’s surface biology and geology designated observable: A perspective on surface imaging algorithms. Remote Sens. Environ. 2021, 257, 2–26. [Google Scholar] [CrossRef]
- Eckardt, A.; Horack, J.; Lehmann, F.; Krutz, D.; Drescher, J.; Whorton, M.; Soutullo, M. DESIS (DLR earth sensing imaging spectrometer for the ISS-MUSES platform). In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1457–1459. [Google Scholar]
- Krutz, D.; Müller, R.; Knodt, U.; Günther, B.; Walter, I.; Sebastian, I.; Säuberlich, T.; Reulke, R.; Carmona, E.; Eckardt, A.; et al. The instrument design of the DLR Earth Sensing Imaging Spectrometer (DESIS). Sensors 2019, 19, 1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, Z.; Sun, L.; Zhai, Q. Improved k-means and spectral matching for hyperspectral mineral mapping. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102154. [Google Scholar] [CrossRef]
- Laporte-Fauret, Q.; Lubac, B.; Castelle, B.; Michalet, R.; Marieu, V.; Bombrun, L.; Launeau, P.; Giraud, M.; Normandin, C.; Rosebery, D. Classification of atlantic coastal sand dune vegetation using in situ, UAV, and airborne hyperspectral data. Remote Sens. 2020, 12, 2222. [Google Scholar] [CrossRef]
- Liu, Y.; Lyu, S.; Hou, M.; Gao, Z.; Wang, W.; Zhou, X. A novel spectral matching approach for pigment: Spectral subsection identification considering ion absorption characteristics. Remote Sens. 2020, 12, 3415. [Google Scholar] [CrossRef]
- Dai, J.; Roberts, D.A.; Stow, D.A.; An, L.; Hall, S.J.; Yabiku, S.T.; Kyriakidis, P.C. Mapping understory invasive plant species with field and remotely sensed data in Chitwan, Nepal. Remote Sens. Environ. 2020, 250, 112037. [Google Scholar] [CrossRef]
- Mariotto, I.; Thenkabail, P.; Aneece, I. Global hyperspectral imaging Spectral-library of agricultural crops (GHISA) area of study: Central Asia. In Algorithm Theoretical Basis Document (ATBD); NASA Land Processes Distributed Active Archive Center (LP DAAC): Sioux Falls, SD, USA, 2020; p. 28. [Google Scholar]
- Mariotto, I.; Thenkabail, P.; Aneece, I. Global Hyperspectral Imaging Spectral-Library of Agricultural Crops (GHISA) Area of Study: Central Asia: User Guide; NASA Land Processes Distributed Active Archive Center (LP DAAC): Sioux Falls, SD, USA, 2020; p. 7. [Google Scholar]
- Aneece, I.; Thenkabail, P.; Aneece, I. Global hyperspectral imaging Spectral-library of agricultural crops (GHISA) area of study: Central Asia. In Algorithm Theoretical Basis Document (ATBD); NASA Land Processes Distributed Active Archive Center (LP DAAC): Sioux Falls, SD, USA, 2019; p. 25. [Google Scholar]
- Aneece, I.; Thenkabail, P. Global Hyperspectral Imaging Spectral-Library of Agricultural Crops (GHISA) for the Conterminous United States (CONUS): User Guide; NASA Land Processes Distributed Active Archive Center (LP DAAC): Sioux Falls, SD, USA, 2019; p. 7. [Google Scholar]
- Mesonet. January 28–30, 2002: Oklahoma Ice Storm; Oklahoma Climate: Long Term Averages and Extremes. Oklahoma Climatalogical Survey. Available online: http://climate.ok.gov/index.php/climate (accessed on 15 September 2021).
- Mesonet. Available online: http://www.mesonet.org/index.php/site/sites/station_names_map# (accessed on 15 September 2021).
- USDA. Cropscape-Cropland Data Layer. 2018. Available online: https://nassgeodata.gmu.edu/CropScape/ (accessed on 10 September 2021).
- NASS. USDA Crop Production 2017 Summary: January 2018; Technical Report; United States Department of Agriculture, National Agricultural Statistics Service: Washington, DC, USA, 2018. [Google Scholar]
- NASS. USDA CropScape and Cropland Data Layer-Metadata; Technical Report; United States Department of Agriculture, National Agricultural Statistics Service: Washington, DC, USA, 2018. [Google Scholar]
- Zhang, C.; Di, L.; Hao, P.; Yang, Z.; Lin, L.; Zhao, H.; Guo, L. Rapid in-season mapping of corn and soybeans using machine-learned trusted pixels from Cropland Data Layer. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102374. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z. Integration of the Cropland Data Layer based automatic stratification method into the traditional area frame construction process. Surv. Res. Methods 2021, 11, 289–306. [Google Scholar]
- Hao, P.; Wang, L.; Wang, L.; Zhan, Y.; Niu, Z.; Wu, M. Crop classification using crop knowledge of the previous-year: Case study in Southwest Kansas, USA. Eur. J. Remote Sens. 2016, 49, 1061–1077. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Gong, P.; Biging, G.S. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140, 1–13. [Google Scholar] [CrossRef]
- Lark, T.; Schelly, I.; Gibbs, H. Accuracy, bias, and improvements in mapping crops and cropland across the United States using the USDA Cropland Data Layer. Remote Sens. 2021, 13, 968. [Google Scholar] [CrossRef]
- Sacks, W.J.; Deryng, D.; Foley, J.A.; Ramankutty, N. Crop planting dates: An analysis of global patterns. Glob. Ecol. Biogeogr. 2010, 19, 607–620. [Google Scholar] [CrossRef]
- USGS. USGS Global food Security-Support Analysis Data at 30 m (GFSAD30). 2015. Available online: https://www.usgs.gov/centers/wgsc/science/global-food-security-support-analysis-data-30-m-gfsad?qt-science_center_objects=0#qt-science_center_objects (accessed on 1 January 2021).
- Yadav, K.; Congalton, R.G. Accuracy assessment of global food security-support analysis data (GFSAD) cropland extent maps produced at three different spatial resolutions. Remote Sens. 2018, 10, 1800. [Google Scholar] [CrossRef] [Green Version]
- Massey, R.; Sankey, T.T.; Congalton, R.G.; Yadav, K.; Thenkabail, P.S.; Ozdogan, M.; Meador, A.S. MODIS phenology-derived, multi-year distribution of conterminous U.S. crop types. Remote Sens. Environ. 2017, 198, 490–503. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Enclona, E.A.; Ashton, M.S.; Legg, C.; De Dieu, M.J. Hyperion, IKONOS, ALI, and ETM+ sensors in the study of African rainforests. Remote Sens. Environ. 2004, 90, 23–43. [Google Scholar] [CrossRef]
- Datt, B.; McVicar, T.; Van Niel, T.; Jupp, D.; Pearlman, J. Preprocessing eo-1 hyperion hyperspectral data to support the application of agricultural indexes. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1246–1259. [Google Scholar] [CrossRef] [Green Version]
- Suarez, L.A.; Apan, A.; Werth, J. Detection of phenoxy herbicide dosage in cotton crops through the analysis of hyperspectral data. Int. J. Remote Sens. 2017, 38, 6528–6553. [Google Scholar] [CrossRef]
- Nugent, P.W.; Shaw, J.A.; Jha, P.; Scherrer, B.; Donelick, A.; Kumar, V. Discrimination of herbicide-resistant kochia with hyperspectral imaging. J. Appl. Remote Sens. 2018, 12, 016037. [Google Scholar] [CrossRef] [Green Version]
- Feng, H.; Jiang, N.; Huang, C.; Fang, W.; Yang, W.; Chen, G.; Xiong, L.; Liu, Q. A hyperspectral imaging system for an accurate prediction of the above-ground biomass of individual rice plants. Rev. Sci. Instrum. 2013, 84, 095107. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Miller, J.; Pattey, E.; Haboudane, D.; Strachan, I.; Hinther, M. Monitoring crop biomass accumulation using multi-temporal hyper-spectral remote sensing data. IEEE Int. Geosci. Remote Sens. Symp. 2004, 3, 1637–1640. [Google Scholar]
- Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
- Ngie, A. Estimation of maize nitrate concentrations using EO-1 data and a non-linear regression model. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLII-3/W11, 109–116. [Google Scholar] [CrossRef] [Green Version]
- Jacon, A.; Galvao, L.; Dalagnol, R.; Santos, J. Aboveground biomass estimates over Brazilian savannas using hyperspectral metrics and machine learning models: Experiences with Hyperion/EO-1. GISci. Remote Sens. 2021, 58, 1112–1129. [Google Scholar] [CrossRef]
- Moharana, S. Hyperspectral Remote Sensing of Rice Agriculture for Field Scale Variability Mapping. Ph.D. Thesis, Indian Institute of Technology Guwahati, Dept. of Civil Engineering, Guwahati, India, December 2018. [Google Scholar]
- Omran, E. Remote estimation of vegetation parameters using narrow band sensor for precision agriculture in arid environment. Egypt. J. Soil Sci. 2018, 58, 73–92. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, H.; Soorya, P.P. Application of EO-1 hyperion data for mapping and discrimination of agricultural crops. In Pond Ecosystems of the Indian Sundarbans; Springer: New York, NY, USA, 2018; Volume 81, pp. 401–421. [Google Scholar]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Tyralis, H.; Papacharalampous, G.; Langousis, A. A brief review of random forests for water scientists and practitioners and their recent history in water resources. Water 2020, 11, 910. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, Y.; Tsangaratos, P.; Shahabi, H.; Ilia, I.; Xue, W.; Bian, H. Groundwater spring potential mapping using artificial intelligence approach based on kernel logistic regression, random forest, and alternating decision tree models. Appl. Sci. 2020, 10, 425. [Google Scholar] [CrossRef] [Green Version]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, X. Object-Based tree species classification using airborne hyperspectral images and LiDAR data. Forests 2019, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Abdi, A.M. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data. GISci. Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Cubranic, D.; Murphy, G. Automatic bug triage using text categorization. In Proceedings of the Sixteenth International Conference on Software Engineering & Knowledge Engineering; Citeseer: State College, PA, USA, 2004; pp. 92–97. [Google Scholar]
- Mori, T. Superposed naive bayes for accurate and interpretable prediction. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), Miami, FL, USA, 9–11 December 2015; pp. 1228–1233. [Google Scholar]
- Xuan, J.; Jiang, H.; Ren, Z.; Yan, J.; Luo, Z. Automatic bug triage using semi-supervised text classification. arXiv 2017, arXiv:1704.04769, 6. [Google Scholar]
- Pelleg, D.; Moore, A. X-means: Extending K-means with efficient estimation of the number of clusters. InIcml 2000, 1, 727–734. [Google Scholar]
- Pelleg, D.; Moore, A. Accelerating exact k-means algorithms with geometric reasoning. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Carnegie Melon University: Pittsburgh, PA, USA, 1999; pp. 277–281. [Google Scholar]
- Laloe, T.; Servien, R. The X-Alter algorithm: A parameter-free method to perform unsupervised clustering. J. Mod. Appl. Stat. Methods 2013, 12, 90–102. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Zhao, L. Band priority index: A feature selection framework for hyperspectral imagery. Remote Sens. 2018, 10, 1095. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Wang, R.; Liu, G.; Feng, R.; Wang, Y.; Wu, W. Partitioned relief-F method for dimensionality reduction of hyperspectral images. Remote Sens. 2020, 12, 1104. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Jia, K.; Xiao, C.; Wei, D.; Zhao, X.; Lan, J.; Wei, X.; Yao, Y.; Wang, B.; Sun, Y.; et al. Leaf area index estimation algorithm for GF-5 hyperspectral data based on different feature selection and machine learning methods. Remote Sens. 2020, 12, 2110. [Google Scholar] [CrossRef]
- Deng, X.; Zhu, Z.; Yang, J.; Zheng, Z.; Huang, Z.; Yin, X.; Wei, S.; Lan, Y. Detection of citrus huanglongbing based on multi-input neural network model of UAV hyperspectral remote sensing. Remote Sens. 2020, 12, 2678. [Google Scholar] [CrossRef]
- Thenkabail, P.; Gumma, M.; Telaguntla, P.; Mohammed, I. Hyperspectral remote sensing of vegetation and agricultural crops. Photogramm. Eng. Remote Sens. 2014, 80, 697–709. [Google Scholar]
- Ma, H.; Zhao, K.; Jin, X.; Ji, J.; Qiu, Z.; Gao, S. Spectral difference analysis and identification of different maturity blueberry fruit based on hyperspectral imaging using spectral index. Int. J. Agric. Biol. Eng. 2019, 12, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Mudereri, B.T.; Dube, T.; Niassy, S.; Kimathi, E.; Landmann, T.; Khan, Z.; Abdel-Rahman, E.M. Is it possible to discern Striga weed (Striga hermonthica) infestation levels in maize agro-ecological systems using in-situ spectroscopy? Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 102008. [Google Scholar] [CrossRef]
- Salem, S.I.; Higa, H.; Kim, H.; Kobayashi, H.; Oki, K.; Oki, T. Assessment of chlorophyll-a algorithms considering different trophic statuses and optimal bands. Sensors 2017, 17, 1746. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Du, Q. Hyperspectral band selection: A review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 118–139. [Google Scholar] [CrossRef]
- Kattenborn, T.; Maack, J.; Fassnacht, F.; Enßle, F.; Ermert, J.; Koch, B. Mapping forest biomass from space–Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 359–367. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olma, M.; Chica-Rivas, M. Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Puletti, N.; Camarretta, N.; Corona, P. Evaluating EO1-Hyperion capability for mapping conifer and broadleaved forests. Eur. J. Remote Sens. 2016, 49, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Praveen, Y.; Kiranmai, A.; Nikitha, K.; Devi, V. Hyperspectral sensor data fusion at decision level using support vector machine. Int. J. Res. Eng. Technol. 2016, 5, 14–18. [Google Scholar]
- Gopinath, G.; Sasidharan, N.; Surendran, U. Landuse classification of hyperspectral data by spectral angle mapper and support vector machine in humid tropical region of India. Earth Sci. Inform. 2020, 13, 633–640. [Google Scholar] [CrossRef]
- Lin, Z.; Yan, L. A support vector machine classifier based on a new kernel function model for hyperspectral data. GISci. Remote Sens. 2016, 53, 85–101. [Google Scholar] [CrossRef]
- Sabat-Tomala, A.; Raczko, E.; Zagajewski, B. Comparison of support vector machine and random forest algorithms for invasive and expansive species classification using airborne hyperspectral data. Remote Sens. 2020, 12, 516. [Google Scholar] [CrossRef] [Green Version]
- Tan, K.; Wang, H.; Chen, L.; Du, Q.; Du, P.; Pan, C. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest. J. Hazard. Mater. 2020, 382, 120987. [Google Scholar] [CrossRef]
- Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 50, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef] [Green Version]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Ghamisi, P.; Plaza, J.; Chen, Y.; Li, J.; Plaza, A. Advanced supervised classifiers for hyperspectral images: A review. IEEE Geosci. Remote Sens. Mag. 2017, 5, 1–23. [Google Scholar]
- Audebert, N.; Le Saux, B.; Lefèvre, S. Deep learning for classification of hyperspectral data: A comparative review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J. Deep learning for hyperspectral image classification: An overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
Hyperion | DESIS | |
---|---|---|
Sensor Type | Polar-Orbiting | On MUSES platform of ISS |
Years of Image Availability | 2001–2015 | 2019–present |
Spectral Range | 356 to 2577 nm | 400 to 1000 nm |
Number of Bands | 242 | 235 |
Spectral Resolution | 10 nm | 2.55 nm |
Spatial Resolution | 30 m | 30 m |
Signal to Noise Ratio at 550 nm | 161 | 195 with no binning |
Radiometric Resolution | 12 bit | 13 bit |
Sensor | Image | Area | Year | Precipitation Regime | Month |
---|---|---|---|---|---|
Hyperion | EO1H0280342010152110K7_PF2_01 | OK-1 | 2010 | Wet | June |
EO1H0280342010222110T6_SGS_01 | OK-1 | 2010 | Wet | August | |
EO1H0280342010245110P3_SGS_01 | OK-1 | 2010 | Wet | September | |
EO1H0280342012200110K7_SGS_01 | OK-1 | 2012 | Normal | July | |
EO1H0280342012234110K7_SGS_01 | OK-1 | 2012 | Normal | August | |
EO1H0280342012255110P3_SGS_01 | OK-1 | 2012 | Normal | September | |
EO1H0280342013162110K7_SG1_01 | OK-1 | 2013 | Dry | June | |
EO1H0280342013191110K7_SG1_01 | OK-1 | 2013 | Dry | July | |
EO1H0280342013236110K7_SG1_01 | OK-1 | 2013 | Dry | August | |
EO1H0280342013252110P3_SG1_01 | OK-1 | 2013 | Dry | September | |
DESIS | DESIS-HSI-20190621T132231-001 | OK-2 | 2019 | Wet | June |
DESIS-HSI-20190727T230233-001 | OK-2 | 2019 | Wet | July | |
DESIS-HSI-20190811T170907-001 | OK-2 | 2019 | Wet | August |
Number of Samples | |||||||
---|---|---|---|---|---|---|---|
Sensor | Month, Year | Corn | Soybean | Winter Wheat | Other Crop | Non- Crop | Total |
Hyperion | June, 2010 | 26 | 65 | 75 | 28 | 152 | 346 |
August, 2010 | 17 | 68 | 52 | 28 | 127 | 292 | |
September, 2010 | 22 | 61 | 74 | 28 | 179 | 364 | |
July, 2012 | 27 | 27 | 114 | 29 | 142 | 339 | |
August, 2012 | 9 | 24 | 115 | 27 | 139 | 314 | |
September, 2012 | 26 | 25 | 114 | 25 | 149 | 339 | |
June, 2013 | 22 | 23 | 148 | 65 | 176 | 434 | |
July, 2013 | 21 | 22 | 111 | 43 | 139 | 336 | |
August, 2013 | 21 | 24 | 129 | 51 | 179 | 404 | |
September, 2013 | 19 | 24 | 139 | 49 | 188 | 419 | |
DESIS | June, 2019 | 326 | 111 | 253 | 145 | 431 | 1266 |
July, 2019 | 403 | 254 | 382 | 352 | 520 | 1911 | |
August, 2019 | 386 | 237 | 352 | 292 | 495 | 1762 | |
Total Hyperion Samples | 210 | 363 | 1071 | 373 | 1570 | 3587 | |
Total DESIS Samples | 1115 | 602 | 987 | 789 | 1446 | 4939 | |
Total Samples | 1325 | 965 | 2058 | 1162 | 3016 | 8526 |
Band | Similar Narrow Bands | Application | References |
---|---|---|---|
(nm) | |||
504 | 502, 503, 504 | Disease, LAI | [86,87,88,89] |
522 | 521, 528, 529 | LUE, stress, disease, LAI | [3,86,87,88,89] |
540 | 531, 536, 541, 546 | LUE, stress, disease, crop growth stage classification | [21,87,89,90,91] |
556 | 556, 557, 560 | Nitrogen, crop growth stage classification, pigments, weed detection | [87,91,92,93] |
574 | 569, 570, 578 | Nitrogen, pigments, weed detection | [3,21,90,92] |
588 | 589, 590 | Biomass/yield | [12,87] |
602 | 599 | LULC classification | [87] |
614 | 609, 613, 618 | LULC classification, LAI | [86,87,88] |
625 | 627, 628, 630 | Biomass/yield, crop growth stage classification | [12,87,91] |
637 | 632, 638, 640 | Biomass/yield, disease | [12,86,87,89] |
648 | 648, 650 | Biomass/yield | [21,87] |
660 | 657, 658, 665 | LULC classification, pigments, weed detection | [86,87,92,93] |
678 | 677, 678, 680, 681 | Biomass/yield, disease, pigments, LAI, weed detection | [3,88,89,92,93] |
704 | 703, 705, 709 | Stress, pigments, LAI | [88,90,93] |
718 | 715, 720, 722 | Stress, pigments, crop growth stage classification | [3,21,90,91] |
740 | 734, 738, 740, 742 | LULC classification, crop growth stage classification, LAI | [87,88,91] |
763 | 754, 760, 763 | Biomass/yield, pigments | [3,21,87,93] |
778 | 773, 774 | Biomass/yield, crop classification | [12,87] |
796 | 793, 803 | Biomass/yield, crop classification | [12,87] |
824 | 824 | Biomass/yield | [12] |
848 | 844, 849, 852, 855 | Biomass/yield, pigments, disease, LAI | [3,21,88,89,90] |
866 | 864, 869 | Crop classification | [12,86] |
885 | 885 | Crop classification | [12] |
906 | 909, 910 | Biomass/yield, pigments | [21,86] |
919 | 915, 923 | Biomass/yield, pigments, crop growth stage classification | [3,91] |
934 | 933, 938 | Biomass/yield, LAI | [12,88] |
945 | 951, 953 | Biomass/yield, LAI | [12,88] |
960 | 968, 970 | Moisture, biomass/yield, protein, growth stage classification, LAI | [21,88,90,91] |
979 | 970, 973, 983 | Water absorption, LAI, crop classification, biomass/yield | [12,86,88,91] |
Number of Samples | ||||
---|---|---|---|---|
Sensor | Image(s) Used | Corn | Soybean | Winter Wheat |
Hyperion | June | 12 | 22 | 56 |
July | 12 | 13 | 56 | |
August | 11 | 29 | 74 | |
September | 17 | 27 | 81 | |
June–July | 11 | 11 | 52 | |
June–August | 19 | 40 | 87 | |
June–September | 23 | 42 | 96 | |
July–August | 14 | 22 | 105 | |
July–September | 23 | 21 | 106 | |
August–September | 19 | 51 | 143 | |
June–July–August | 16 | 15 | 66 | |
June–July–September | 16 | 15 | 65 | |
June–August–September | 27 | 58 | 127 | |
July–August–September | 19 | 31 | 156 | |
June–July–August–September | 21 | 19 | 87 | |
DESIS | June | 109 | 37 | 84 |
July | 134 | 85 | 127 | |
August | 129 | 79 | 117 | |
June–July | 78 | 24 | 5 | |
June–August | 87 | 22 | 9 | |
July–August | 91 | 49 | 11 |
Image(s) Used | Overall | Producer’s (User’s) Accuracies (%) * | |||||
---|---|---|---|---|---|---|---|
Accuracy (%) * | Corn | Soybean | Winter Wheat | ||||
June | 68 | 42 | (53) | 44 | (32) | 76 | (72) |
July | 66 | 41 | (88) | 29 | (50) | 73 | (73) |
August | 71 | 32 | (33) | 72 | (72) | 75 | (78) |
September | 77 | 42 | (67) | 42 | (58) | 88 | (75) |
June–July | 94 | 100 | (100) | 64 | (100) | 96 | (93) |
June–August | 93 | 91 | (85) | 100 | (94) | 97 | (92) |
June–September | 95 | 91 | (95) | 91 | (92) | 100 | (100) |
July–August | 94 | 100 | (100) | 95 | (100) | 96 | (89) |
July–September | 98 | 100 | (100) | 88 | (100) | 100 | (97) |
August–September | 94 | 93 | (93) | 85 | (93) | 94 | (93) |
June–July–August | 97 | 100 | (100) | 100 | (100) | 100 | (92) |
June–July–September | 100 | 100 | (100) | 100 | (100) | 100 | (100) |
June–August–September | 96 | 91 | (100) | 94 | (98) | 100 | (98) |
July–August–September | 99 | 100 | (97) | 93 | (100) | 100 | (99) |
June–July–August–September | 100 | 100 | (100) | 100 | (100) | 100 | (100) |
Image(s) Used | Overall | Producer’s (User’s) Accuracy (%) | |||||
---|---|---|---|---|---|---|---|
Accuracy (%) * | Corn | Soybean | Winter Wheat | ||||
June | 77 | 50 | (48) | 60 | (53) | 88 | (82) |
July | 76 | 56 | (75) | 75 | (59) | 91 | (79) |
August | 76 | 23 | (23) | 87 | (66) | 75 | (84) |
September | 77 | 59 | (56) | 47 | (66) | 87 | (79) |
June–July | 89 | 82 | (90) | 100 | (100) | 92 | (86) |
June–August | 93 | 91 | (85) | 90 | (88) | 96 | (95) |
June–September | 93 | 100 | (82) | 98 | (91) | 96 | (95) |
July–August | 93 | 100 | (83) | 100 | (100) | 96 | (90) |
July–September | 94 | 100 | (93) | 96 | (100) | 99 | (95) |
August–September | 91 | 100 | (79) | 85 | (94) | 94 | (93) |
June–July–August | 99 | 100 | (100) | 100 | (100) | 100 | (97) |
June–July–September | 100 | 100 | (100) | 100 | (100) | 100 | (100) |
June–August–September | 99 | 100 | (97) | 100 | (98) | 100 | (100) |
July–August–September | 99 | 100 | (100) | 97 | (100) | 99 | (99) |
June–July–August–September | 100 | 100 | (100) | 100 | (100) | 100 | (100) |
Image(s) Used | Overall | Producer’s (User’s) Accuracy (%) | |||||
---|---|---|---|---|---|---|---|
Accuracy (%) * | Corn | Soybean | Winter Wheat | ||||
June | 66 | 17 | (100) | 92 | (50) | 76 | (65) |
July | 66 | 17 | (63) | 23 | (75) | 91 | (59) |
August | 67 | 17 | (25) | 70 | (70) | 77 | (75) |
September | 67 | 26 | (41) | 40 | (53) | 91 | (69) |
June–July | 68 | 91 | (67) | 82 | (56) | 81 | (66) |
June–August | 72 | 46 | (42) | 94 | (67) | 84 | (80) |
June–September | 77 | 75 | (42) | 78 | (76) | 86 | (83) |
July–August | 71 | 25 | (50) | 69 | (70) | 82 | (73) |
July–September | 79 | 81 | (68) | 54 | (79) | 94 | (78) |
August–September | 70 | 52 | (45) | 62 | (47) | 87 | (76) |
June–July–August | 75 | 88 | (82) | 93 | (64) | 86 | (80) |
June–July–September | 86 | 100 | (84) | 87 | (81) | 95 | (87) |
June–August–September | 79 | 70 | (48) | 90 | (78) | 93 | (84) |
July–August–September | 79 | 53 | (43) | 72 | (69) | 91 | (79) |
June–July–August–September | 82 | 90 | (79) | 89 | (68) | 91 | (86) |
Image(s) Used | Overall | Producer’s (User’s) Accuracy (%) | |||||
---|---|---|---|---|---|---|---|
Accuracy (%) * | Corn | Soybean | Winter Wheat | ||||
June | 60 | 50 | (23) | 73 | (46) | 80 | (72) |
July | 34 | 93 | (30) | 31 | (10) | 41 | (66) |
August | 54 | 33 | (12) | 88 | (58) | 57 | (77) |
September | 61 | 44 | (25) | 31 | (88) | 46 | (69) |
June–July | 70 | 82 | (45) | 73 | (57) | 87 | (69) |
June–August | 71 | 83 | (33) | 89 | (81) | 80 | (88) |
June–September | 77 | 45 | (25) | 86 | (69) | 91 | (86) |
July–August | 66 | 73 | (54) | 60 | (69) | 61 | (78) |
July–September | 59 | 86 | (47) | 47 | (46) | 68 | (83) |
August–September | 63 | 56 | (24) | 40 | (64) | 74 | (76) |
June–July–August | 75 | 81 | (87) | 73 | (65) | 86 | (70) |
June–July–September | 78 | 88 | (67) | 73 | (61) | 91 | (86) |
June–August–September | 76 | 74 | (41) | 71 | (80) | 91 | (93) |
July–August–September | 73 | 71 | (54) | 69 | (82) | 81 | (79) |
June–July–August–September | 88 | 81 | (94) | 89 | (89) | 93 | (89) |
Overall Accuracy (%) * | ||||
---|---|---|---|---|
Image(s) Used | Random Forest | Support Vector Machine | Naive Bayes | WekaXMeans |
June | 80 | 70 | 56 | 61 |
July | 68 | 62 | 34 | 42 |
August | 79 | 65 | 50 | 48 |
June–July | 78 | 79 | 80 | 63 |
June–August | 83 | 85 | 70 | 75 |
July–August | 67 | 67 | 44 | 57 |
Image(s) Used | Producer’s (User’s) Accuracies (%) * | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Corn | RF Soy | WW | Corn | SVM Soy | WW | Corn | NB Soy | WW | Corn | WXM Soy | WW | |
June | 91 (99) | 81 (75) | 69 (67) | 98 (99) | 70 (65) | 49 (48) | 89 (96) | 76 (42) | 62 (49) | 90 (91) | 38 (41) | 63 (51) |
July | 83 (74) | 58 (80) | 65 (64) | 85 (68) | 51 (74) | 54 (64) | 61 (38) | 15 (21) | 54 (37) | 57 (43) | 12 (38) | 63 (48) |
August | 85 (76) | 80 (91) | 61 (76) | 81 (74) | 73 (77) | 53 (60) | 74 (53) | 61 (56) | 47 (62) | 55 (51) | 54 (72) | 56 (51) |
June–July | 100 (87) | 100 (63) | 0 (0) | 100 (98) | 79 (59) | 0 (0) | 100 (96) | 100 (55) | 0 (NA) | 100 (78) | 75 (78) | 0 (0) |
June–August | 84 (99) | 77 (74) | 11 (33) | 89 (94) | 82 (90) | 56 (36) | 80 (96) | 86 (83) | 56 (15) | 92 (86) | 82 (69) | 33 (27) |
July–August | 75 (78) | 69 (92) | 9 (33) | 81 (80) | 69 (92) | 18 (13) | 64 (73) | 57 (45) | 27 (6) | 69 (65) | 65 (51) | 9 (10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aneece, I.; Thenkabail, P.S. Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud. Remote Sens. 2021, 13, 4704. https://doi.org/10.3390/rs13224704
Aneece I, Thenkabail PS. Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud. Remote Sensing. 2021; 13(22):4704. https://doi.org/10.3390/rs13224704
Chicago/Turabian StyleAneece, Itiya, and Prasad S. Thenkabail. 2021. "Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud" Remote Sensing 13, no. 22: 4704. https://doi.org/10.3390/rs13224704
APA StyleAneece, I., & Thenkabail, P. S. (2021). Classifying Crop Types Using Two Generations of Hyperspectral Sensors (Hyperion and DESIS) with Machine Learning on the Cloud. Remote Sensing, 13(22), 4704. https://doi.org/10.3390/rs13224704